Turnover of Dopamine and Dopamine Metabolites in Rat Brain: Comparison Between Striatum and Substantia Nigra
Corresponding Author
H. Nissbrandt
Department of Pharmacology, University of Goteborg, Goteborg, Sweden
Address correspondence and reprint requests to Dr. H. Nissbrandt at Department of Pharmacology, University of Goteborg, P.O. Box 33031, S-400 33 Goteborg, Sweden.Search for more papers by this authorA. Carlsson
Department of Pharmacology, University of Goteborg, Goteborg, Sweden
Search for more papers by this authorCorresponding Author
H. Nissbrandt
Department of Pharmacology, University of Goteborg, Goteborg, Sweden
Address correspondence and reprint requests to Dr. H. Nissbrandt at Department of Pharmacology, University of Goteborg, P.O. Box 33031, S-400 33 Goteborg, Sweden.Search for more papers by this authorA. Carlsson
Department of Pharmacology, University of Goteborg, Goteborg, Sweden
Search for more papers by this authorAbstract
Abstract: Measurements of the turnover of dopamine (DA) and DA metabolites have been performed in the striatum and substantia nigra (SN) of the rat. Turnover rates of 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid have been assessed from the disappearance rates after blocking their formation by inhibition of monoamine oxidase by pargyline and of catechol-O-methyltransferase by tropolone. DA turnover has been measured as 3-methoxy-tyramine (3-MT) plus DA accumulation rate after MAO inhibition by pargyline and as accumulation rate of 3,4-dihy-droxyphenylalanine (DOPA) after inhibition of aromatic amino acid decarboxylase by NSD 1015 or NSD 1034. These measures of DA turnover have been compared with α-methyl-p-tyrosine (α-MT)-induced DA disappearance rate. In SN all the different measures of DA turnover are in the same range (55–62 nmol/g protein/h) whereas in striatum DOPA accumulation rate after NSD 1015 and α-MT- induced DA disappearance rate (16–23 nmol/g/h) are much lower than DOPAC disappearance rate after pargyline, 3-MT plus DA accumulation rate after pargyline, and DOPA accumulation rate after NSD 1034 (39–46 nmol/g/h). The data confirm our previous findings indicating that the fractional turnover rate of DA is more rapid in SN than in striatum and that O-methylation of DA is relatively more important in SN. In striatum at least two pools of DA with different turnover rates appear to exist, whereas in SN, DA behaves as if located in a single compartment.
Abbreviations used:
-
- COMT
-
- catechol-O-methyltransferase
-
- DA
-
- dopamine
-
- DOPA
-
- 3,4-dihydroxyphenylalanine
-
- DOPAC
-
- 3,4-dihydroxyphenylacetic acid
-
- HVA
-
- homovanillic acid
-
- LCEC
-
- HPLC with electrochemical detection
-
- MAO
-
- monoamine oxidase
-
- 3-MT
-
- 3-methoxytyramine
-
- α-MT
-
- α-methyl-p-tyrosine
-
- NSD 1015,3-hydroxybenzylhydrazine;NSD 1034
-
- 1-(3-hydroxybenzyl)-1-methylhydrazine
-
- SN
-
- substantia nigra
References
- Anden N-E., Roos B-E., and Werdinius B. (1963) On the occurrence of homovanillic acid in brain and cerebrospinal fluid and its determination by a flourometric method. Life Sci. 7, 448–458.
- Anden N-E., Rubenson A., Fuxe K., and Hokfelt T. (1967) Evidence for dopamine receptor stimulation by apomorphine. J. Pharm. Pharmacol. 19, 627–629.
- Anden N-E., Corrodi H., Fuxe K., and Ungerstedt U. (1971) Importance of nervous impulse flow for the neuroleptic induced increase in amine turnover in central dopamine neurons. Eur. J. Pharmacol. 15, 193–199.
- Anton A. H. and Sayre D. F. (1962) A study of the factors affecting the aluminum oxidetrihydroxyindole procedure for the analysis of catecholamines. J. Pharmacol. Exp. Ther. 138, 360–375.
- Beal M. F. and Martin J. B. (1985) Topographical dopamine and serotonin distribution and turnover in rat striatum. Brain Res. 358, 10–15.
- Björklund A. and Lindvall O. (1975) Dopamine in dendrites of substantia nigra neurons: suggestions for a role in dendritic terminals. Brain Res. 83, 531–537.
- Brodie B. B., Costa E., Dlabac A., Neff N.H., and Smookler H. H. (1966) Application of steady state kinetics to the estimation of synthesis rate and turnover time of tissue catecholamines. J. Pharmacol. Exp. Ther. 154, 493–498.
- Buda M., Gonon F., Cespuglio R., Jouvet M., and Pujol J. F. (1981) In vivo electrochemical detection of catechols in several dopaminergic brain regions of anaesthetized rats. Eur. J. Pharmacol. 73, 61–68.
- Buu N. T., Duhaime J., Savard C., Truong L., and Kuchel O. (1981) Presence of conjugated catecholamines in rai brain: a new method of analysis of catecholamine sulfates. J. Neurochem 36, 769–772.
- Carlsson A. and Hillarp N-Å. (1962) Formation of phenolic acids in brain after administration of 3,4-dihydroxyphenylalanine Ada Physiol. Scand. 55, 95–100.
-
Carlsson A. and
Lindqvist M. (1963) Effect of chlorpromazine or haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain.
Acta Pharmacol. Toxicol.
20, 140–144.
10.1111/j.1600-0773.1963.tb01730.x Google Scholar
- Carlsson A. and Lindqvist M. (1973) Effect of ethanol on the hydroxylation of tyrosine and tryptophan in rat brain in vivo. J. Pharm. Pharmacol. 25, 437–440.
- Carlsson A. and Waldeck B. (1964) A method for the fluorimetric determination of 3-methoxytyramine in tissues and the occurrence of this amine in brain. Scand. J. Clin. Lab. Invest 16, 133–138.
- Cheramy A., Leviel V., and Glowinski J. (1981) Dendritic release of dopamine in the substantia nigra. Nature 289, 537–542.
- Dedek J., Baumes R., Tien-Due N., Gomeni R., and Korf J. (1979) Turnover of free and conjugated (sulphonyloxy) dihydroxyphenylacetic acid and homovanillic acid in rat striatum. J. Neurochem. 33, 687–695.
- Di Guilio A. M., Gropetti A., Cattabeni F., Galli C. L., Maggi A., Algeri S., and Ponzio F. (1978) Significance of dopamine metabolites in the evaluation of drugs acting on dopaminergic neurons. Eur. J. Pharmacol. 52, 201–207.
- Di Paolo T., Daigle M., and Dupont A. (1982) Distribution of dopamine in 35 subregions of the rat caudate-putamen: a high performance liquid chromatography with electrochemical detection analysis. J. Can. Sci. Neural. 9, 421–427.
- Doteuchi M., Wang C., and Costa E. (1974) Compartmentation of dopamine in rat striatum. Mol. Pharmacol. 10, 225–234.
- Elchisak M. A., Maas J. W., Arid Roth R. H. (1977) Dihydroxyphe-nylacetic acid conjugate: natural occurrence and demonstration of probenecid-induced accumulation in rat striatum, olfactory tubercles and frontal cortex. Eur. J. Pharmacol. 41, 369–378.
- Felice L. J., Felice J. D., and Kissinger P. T. (1978) Determination of catacholamines in rat brain parts by reverse-phase ion-pair liquid chromatography. J. Neurochem. 31, 1461–1465.
- Fornstedt B., Rosengren E., and Carlsson A. (1986) Occurrence and distribution of 5-S-cysteinyl derivatives of dopamine, DOPA and DOPAC in the brains of eight mammalian species. Neuropharmacology 25, 451–454.
- Francis L. P. S., Broch O. J., Monge P., and Solheim E. (1980) Sub-cellular distribution of dopamine metabolites and their elimination from the rat brain. Neuropharmacology 19, 269–276.
- Geffen L. B., Jessel T. M., Cuello A. C., and Iversen L. L. (1976) Release of dopamine from dendrites in rat substantia nigra. Nature 260, 258–260.
- Glowinski J. (1975) Properties and functions of intraneuronal monoamine compartments in central aminergic neurons, in Handbook of Psychopharmacology, Vol. i ( L. L. Iversen, S. D. Iversen, and S. H. Snyder, eds). pp. 139–167. Plenum Press, New York .
- Gordon E. K., Markey S. P., Sherman R. L., and Kopin I. J. (1976) Conjugated 3,4-dihydroxyphenylacetic acid (DOPAC) in human and monkey cerebrospinal fluid and rat brain and the effects of probenecid treatment. Life Sci. 18, 1285–1292.
- Grabowska-Anden M., Anden N-E., Barany E., and Magnusson A. (1984) Organic acid transport to the blood from the corpus striatum, the thalamus and the cerebellum of the rat. Acta Pharmacol. Toxicol. 54, 177–182.
- Greenfield S. A. (1985) The significance of dendritic release of transmitter and protein in the substantia nigra. Neurochem. Int. 7, 887–901.
- Guldberg H. C., Sharman D. F., and Tegerdine P. R. (1971) Some observations on the estimation of 3-methoxytyramine in brain tissue. Br. J. Pharmacol. 42, 505–511.
- Hallman H. and Jonsson G. (1984) Neurochemical studies on central dopamine neurons—regional characterization of dopamine turnover. Med. Biol. 62, 198–209.
- Heffner T. G., Vosmer G., and Seiden L. S. (1984) Increased transport of 3,4-dihydroxyphenylacetic acid from brain during performance of operant behavior in the rat. Brain Res. 293, 85–91.
- Imperato A. and Di Chiara G. (1984) Trans-striatal dialysis coupled to reverse phase high performance liquid chromatography with electrochemical detection: a new method for the study of the in vivo release of endogenous dopamine and metabolites. J. Neurosci. 4, 966–977.
- Javoy F. and Glowinski J. (1971) Dynamic characteristics of the “functional compartment” of dopamine in dopaminergic terminals of the rat striatum. J. Neurochem. 18, 1305–1311.
- Jenner W. N. and Rose F. A. (1973) Studies on the sulphation of 3,4-dihydroxyphenylethylamine (dopamine) and related compounds by rat tissues. Biochem. J. 135, 109–114.
- Jonason J. and Rutledge C. O. (1968) The effect of protriptyline on the metabolism of dopamine and noradrenaline in rabbit brain in vitro. Ada Physiol. Scand. 73, 161–175.
- Karoum F., Neff N. H., and Wyatt R. J. (1977) The dynamics of dopamine metabolism in various regions of rat brain. Eur. J. Pharmacol. 44, 311–318.
- Karoum F., Chuang L-W., and Wyatt R. J. (1983) Biochemical and pharmacological characteristics of conjugated catecholamines in the rat brain. J. Neurochem. 40, 1735–1741.
- Kehr W. (1976) 3-Methoxytyramine as an indicator of impulse-induced dopamine release in rat brain in vivo. Naunyn Schmie-debergs Arch. Pharmacol. 293, 209–215.
- Lowry O. H., Rosebrough N. J., Fair A. L., and Randall R. J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275.
- Magnusson O., Nilsson L. B., and Westerlund D. (1980) Simultaneous determination of dopamine, dopac and homovanillic acid. Direct injection ofsupernatants from brain tissue homogenates in a liquid chromatography-electrochemical detection system. J. Chromatogr. 221, 237–247.
- Markwell M. A. K., Haas S. M., Bieber L. L., and Tolbert N. E. (1978) A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal. Biochem. 87, 206–210.
- Moleman P., Bruinvels J., and van Valkenburg C. F. M. (1978) Haloperidol inhibits the disappearance of acidic dopamine metabolites from rat striatum. J. Pharm. Pharmacol. 30, 583–585.
- Neff N. H., Tozer T. N., and Brodie B. B. (1967) Application of steady-state kinetics to studies of the transfer of 5-hydroxyindolacetic acid from brain to plasma. J. Pharmacol. Exp. Ther. 158, 214–218.
- Nieoullon A., Cheramy A., and Glowinski J. (1977) Release of dopamine in vivo from cat substantia nigra. Nature 266, 375–377.
- Nissbrandt H., Pileblad E., and Carlsson A. (1985) Evidence for dopamine release and metabolism beyond the control of nerve impulses and dopamine receptors in rat substantia nigra. J. Pharm. Pharmacol. 37, 884–889.
- Paden C. M. (1979) Disappearance of newly synthesized and total dopamine from the striatum of the rat after inhibition of synthesis: evidence for a homogeneous kinetic compartment. J. Neurochem. 33, 471–479.
- Rosengren E. (1960) On the role of monoamine oxidase for the in-activation of dopamine in brain. Acta Physiol. Scand. 49, 370–375.
- Rosengren E., Linder-Eliasson E., and Carlsson A. (1985) Detection of 5-S-cysteinyldopamine in human brain. J. Neural. Transm. 63, 247–253.
- Roth R. H., Walters J. R., and Aghajanian G. K. (1973) Effect of impulse flow on the release and synthesis of dopamine in the rat striatum, in Frontiers in Catecholamine Research ( E. Usdin and S. H. Snyder, eds), pp. 567–574. Pergamon Press, New York .
- Sharman D. F. (1963) A fluorometric method for the estimation of 4-hydroxy-3-methoxyphenylacetic acid (homovanillic acid) and its identification in brain tissue. Br. J. Pharmacol. 20, 204–213.
- Sharp T., Maidment N. T., Brazell M. P., Zetterstrom T., Ungerstedt U., Bennet G. W., and Marsden C. A. (1984) Changes in monoamine metabolites measured by simultaneous in vivo differential pulse voltammetry and intracerebral dialysis. Neuroscience 12, 1213–1221.
- Shoaf S. E. and Elchisak M. A. (1983) Distribution of free and conjugated dopamine in rats and mice. Life Sci. 33, 625–630.
- Swahn C-G. and Wiesel F-A. (1976) Determination of conjugated monoamine metabolites in brain tissue. J. Neural Transm. 39, 281–290.
- Tassin J. P., Cheramy A., Blanc G., Thierry A. M., and Glowinski J. (1976) Topographical distribution of dopaminergic innervation and of dopaminergic receptors in the rat striatum. I. Microestimation of 3H dopamine uptake and dopamine content in microdiscs. Brain Res. 107, 291–301.
- Tyce G. M. and Rorie D. K. (1982) Conjugated dopamine in superfusates of slices of rat striatum. J. Neurochem. 39, 1333–1339.
- von Euler U. S. (1958) Distribution and metabolism of catechol hormones in tissues and axons. Recent Prog. Harm. Res. 14, 483–512.
- Waldmeier P. C., Lauber J., Blum W., and Richter W. J. (1981) 3-Methoxytyramine: its suitability as an indicator of synaptic dopamine release. Naunyn Schmiedebergs Arch. Pharmacol. 315, 219–225.
- Werdinius B. (1966) Effect of probenecid on the level of homovanillic acid in the corpus striatum. J. Pharm. Pharmacol. 18, 546–547.
- Westerink B. H. C. (1979a) Effects of drugs on the formation of 3-methoxytyramine, a dopamine metabolite, in the substantia nigra, striatum, nucleus accumbens and tuberculum olfactorium of the rat. J. Pharm. Pharmacol. 31, 94–99.
- Westerink B. H. C. (1979b) Further studies on the sequence of dopamine metabolism in the rat brain. Eur. J. Pharmacol. 56, 313–322.
- Westerink B. H. C. and Korf J. (1976) Turnover of acid dopamine metabolites in striatal and mesolimbic tissue of the rat brain. Eur. J. Pharmacol. 37, 249–255.
- Westerink B. H. C. and Spaan S. J. (1982a) Estimation of the turnover of 3-methoxytyramine in the rat striatum by HPLC with electrochemical detection: implications for the sequence in the cerebral metabolism of dopamine. J. Neurochem. 38, 342–347.
- Westerink B. H. C. and Spaan S. J. (1982b) Simultaneous determination of the formation rate of dopamine and its metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) in various rat brain areas. Brain Res. 252, 239–245.
- Westerink B. H. C., Bosker F. J., and Wirix E. (1984) Formation and metabolism of dopamine in nine areas of the rat brain: modifications by haloperidol. J. Neurochem. 42, 1321–1327.
- Wiesel F-A., Fri C-G., and Sedwall G. (1973) Determination of homovanillic acid turnover in rat striatum using a monoamine oxidase inhibitor. Eur. J. Pharmacol. 23, 104–106.
- Wilk S., Watson E., and Travis B. (1975) Evaluation of dopamine metabolism in rat striatum by a gas chromatographic technique. Eur. J. Pharmacol. 30, 238–243.
- Zetterström T. and Ungerstedt U. (1984) Effects of apomorphine on the in vivo release of dopamine and its metabolites, studied by brain dialysis. Eur. J. Pharmacol. 97, 29–36.