Low frequency stimulation of the nucleus tegmenti pedunculopontini increases cortical metabolism in Parkinsonian patients
R. Ceravolo
Clinica Neurologica, Dipartimento di Neuroscienze, Università di Pisa, Pisa
Both authors equally contributed to the manuscript.
Search for more papers by this authorL. Brusa
U.O.C. Neurologia, Ospedale S. Eugenio, ASL RMC, Rome
Both authors equally contributed to the manuscript.
Search for more papers by this authorS. Galati
Clinica Neurologica, Dipartimento di Neuroscienze, Università di Roma Tor, Vergata, Rome
Search for more papers by this authorD. Volterrani
Unità di Medicina Nucleare-Università di Pisa, Pisa
Search for more papers by this authorG. Siciliano
Clinica Neurologica, Dipartimento di Neuroscienze, Università di Pisa, Pisa
Search for more papers by this authorM. Pierantozzi
Clinica Neurologica, Dipartimento di Neuroscienze, Università di Roma Tor, Vergata, Rome
Search for more papers by this authorV. Moschella
Clinica Neurologica, Dipartimento di Neuroscienze, Università di Roma Tor, Vergata, Rome
Search for more papers by this authorU. Bonuccelli
Clinica Neurologica, Dipartimento di Neuroscienze, Università di Pisa, Pisa
Search for more papers by this authorP. Stanzione
Clinica Neurologica, Dipartimento di Neuroscienze, Università di Roma Tor, Vergata, Rome
IRCCS Fondazione S. Lucia, Rome, Italy
Search for more papers by this authorA. Stefani
Clinica Neurologica, Dipartimento di Neuroscienze, Università di Roma Tor, Vergata, Rome
IRCCS Fondazione S. Lucia, Rome, Italy
Search for more papers by this authorR. Ceravolo
Clinica Neurologica, Dipartimento di Neuroscienze, Università di Pisa, Pisa
Both authors equally contributed to the manuscript.
Search for more papers by this authorL. Brusa
U.O.C. Neurologia, Ospedale S. Eugenio, ASL RMC, Rome
Both authors equally contributed to the manuscript.
Search for more papers by this authorS. Galati
Clinica Neurologica, Dipartimento di Neuroscienze, Università di Roma Tor, Vergata, Rome
Search for more papers by this authorD. Volterrani
Unità di Medicina Nucleare-Università di Pisa, Pisa
Search for more papers by this authorG. Siciliano
Clinica Neurologica, Dipartimento di Neuroscienze, Università di Pisa, Pisa
Search for more papers by this authorM. Pierantozzi
Clinica Neurologica, Dipartimento di Neuroscienze, Università di Roma Tor, Vergata, Rome
Search for more papers by this authorV. Moschella
Clinica Neurologica, Dipartimento di Neuroscienze, Università di Roma Tor, Vergata, Rome
Search for more papers by this authorU. Bonuccelli
Clinica Neurologica, Dipartimento di Neuroscienze, Università di Pisa, Pisa
Search for more papers by this authorP. Stanzione
Clinica Neurologica, Dipartimento di Neuroscienze, Università di Roma Tor, Vergata, Rome
IRCCS Fondazione S. Lucia, Rome, Italy
Search for more papers by this authorA. Stefani
Clinica Neurologica, Dipartimento di Neuroscienze, Università di Roma Tor, Vergata, Rome
IRCCS Fondazione S. Lucia, Rome, Italy
Search for more papers by this authorAbstract
Background and purpose: To evaluate the effects of 25-Hz deep brain stimulation of the nucleus tegmenti pedunculopontini (PPTg) on brain metabolic activity.
Methods: Six patients with Parkinson’s disease (PD) who had bilateral stereotactic implantation of PPTg at least 12 months prior to evaluation were included in our study. All underwent, in separate sessions, 18-FDG-PET in core assessment programme for intra-cerebral transplantation as well as motor evaluation [Unified Parkinson’s disease rating scale (UPDRS) – section III] and a battery of cognitive testing.
Results: PPTg-ON (low bipolar contacts, 25 Hz) promoted a significant increase of glucose utilization in bilateral prefrontal areas including dorsolateral prefrontal cortex (DLPFC, BA9), orbito-frontal cortex (BA47), anterior cingulate (BA 25–32), superior frontal gyrus (BA 10) and supramarginal gyrus (BA40); a significant increase of uptake and consumption of FDG also occurred in the left ventral striatum, left subgyral (BA 46), right insula (BA 13) and right superior temporal gyrus (BA 22). PPTg-ON was associated with a significant decrease of glucose utilization in the left cerebellar anterior lobe (culmen) and right cerebellar posterior lobe (declive). In the same patients, PPTg-ON improved delayed recall (P < 0.05) and executive functions whilst the UPDRS revealed a modest (−21%) and variable treatment effect.
Conclusions: Low frequency stimulation of PPTg, a sub-region of the pedunculopontine nucleus complex, causes a minor motor benefit but a peculiar profile of cognitive improvement associated with a significant increase in FDG consumption in both prefrontal areas and mono-lateral ventral striatum. These data are consistent with multiple limbic and/or associative domains modulated by PPTg stimulation in our patients with PD.
References
- 1 Rodriguez-Oroz MC, Obeso JA, Lang AE, et al. Bilateral deep brain stimulation in Parkinson’s disease: a multicentre study with 4 years follow-up. Brain 2005; 128: 2240–2249.
- 2 Woods SP, Fields JA, Tröster AI. Neuropsychological sequelae of subthalamic nucleus deep brain stimulation in Parkinson’s disease: a critical review. Neuropsychol Rev 2002; 12: 111–126.
- 3 Witt K, Daniels C, Reiff J, et al. Neuropsychological and psychiatric changes after deep brain stimulation for Parkinson’s disease: a randomised, multicentre study. Lancet Neurol 2008; 7: 605–614.
- 4 Parsons TD, Rogers SA, Braaten AJ, Woods SP, Tröster AI. Cognitive sequelae of subthalamic nucleus deep brain stimulation in Parkinson’s disease: a meta-analysis. Lancet Neurol 2006; 5: 578–588.
- 5 Smeding HM, Speelman JD, Koning-Haanstra M, et al. Neuropsychological effects of bilateral STN stimulation in Parkinson disease: a controlled study. Neurology 2006; 66: 1830–1836.
- 6 Brudzynski SM, Houghton PE, Brownlee RD, Mogenson GJ. Involvement of neuronal cell bodies of the mesencephalic locomotor region in the initiation of locomotor activity of freely behaving rats. Brain Res Bull 1986; 16: 377–381.
- 7 Garcia-Rill A, Houser CR, Skinner RD, Smith W, Woodward DJ. Locomotioninducing sites in the vicinity of the pedunculopontine nucleus. Brain Res Bull 1987; 18: 731–738.
- 8 Takakusaki K. Forebrain control of locomotor behaviors. Brain Res Rev 2008; 57: 192–1989.
- 9 Jenkinson N, Nandi D, Miall RC, Stein JF, Aziz TZ. Pedunculopontine nucleus stimulation improves akinesia in a Parkinsonian monkey. Neuroreport 2004; 15: 2621–2624.
- 10 Nandi D, Liu X, Winter JL, Aziz TZ, Stein JF. Deep brain stimulation of the pedunculopontine region in the normal non-human primate. J Clin Neurosci 2002; 9: 170–174.
- 11 Mena-Segovia J, Bolam JP, Magill PJ. Pedunculopontine nucleus and basal ganglia: distant relatives or part of the same family? Trends Neurosci 2004; 27: 585–588.
- 12 Papahill H, Lozano AM. The pedunculopontine nucleus and Parkinson’s disease. Brain 2000; 123: 1767–1783.
- 13 Mazzone P, Lozano A, Stanzione P, et al. Implantation of human pedunculopontine nucleus: a safe and clinically relevant target in Parkinson’s disease. Neuroreport 2005; 16: 1877–1881.
- 14 Plaha P, Gill SS. Bilateral deep brain stimulation of the pedunculopontine nucleus for Parkinson’s disease. Neuroreport 2005; 16: 1883–1887.
- 15 Stefani A, Lozano AM, Peppe A, Stanzione P, Galati S, Tropepi D. Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson’s disease. Brain 2007; 130: 1596–1607.
- 16 Mazzone P, Sposato S, Insola A, Di Lazzaro V, Scarnati E. Stereotactic surgery of nucleus tegmenti pedunculopontini. Br J Neurosurg 2008; 22: S33–S40.
- 17 Romigi A, Placidi F, Peppe A, et al. Pedunculopontine nucleus stimulation influences REM sleep in Parkinson’s disease. Eur J Neurol 2008; 15: 64–65.
- 18 Costa A, Carlesimo GA, Caltagirone C, et al. Effects of deep brain stimulation of the peduncolopontine area on working memory tasks in patients with Parkinson’s disease. Parkinsonism Relat Disord 2010; 16: 64–67.
- 19 Olszewski J, Baxter D. Cytoarchitecture of the Human Brain Stem. Basel: S. Karger, 1982.
- 20
Paxinos G,
Huang XF.
Atlas of the Human Brainstem. San Diego: Academic Press, 1995.
10.1016/B978-0-08-092521-9.50007-X Google Scholar
- 21 Schaltenbrand G, Wahren W. Atlas for Stereotaxy of the Human Brain. Stuttgart, New York: Thieme, 1977.
- 22 Ceravolo R, Borghetti D, Kiferle L, et al. CSF phosphorylated TAU protein levels correlate with cerebral glucose metabolism assessed with PET in Alzheimer’s disease. Brain Res Bull 2008; 76: 80–84.
- 23 Langston JW, Widner H, Goetz GC, et al. Core assessment program for intracerebral transplantations (CAPIT). Mov Disord 1992; 7: 2–13.
- 24 Fahn S, Elton RL, Members of the UPDRS Development Committee. Unified Parkinson’s disease rating scale. In: S Fahn, CD Marsden, M Goldstein, DB Calne, eds. Recent Developments in Parkinson’s Disease. New York, NY: Macmillan, 1987: 153–163.
- 25 Strafella AP, Lozano AM, Ballanger B, Poon YY, Lang AE, Moro E. rCBF changes associated with PPN stimulation in a patient with Parkinson’s disease: a PET study. Mov Disord 2008; 23: 1051–1054.
- 26 Ballanger B, Lozano AM, Moro E, et al. Cerebral blood flow changes induced by pedunculopontine nucleus stimulation in patients with advanced Parkinson’s disease: A [15O] H2O PET study. Hum Brain Mapp 2009; 30: 3901–3909.
- 27 Asanuma K, Tang C, Ma Y, et al. Network modulation in the treatment of Parkinson’s disease. Brain 2006; 129: 2667–2678.
- 28 Hilker R, Voges J, Thiel A, et al. Deep brain stimulation of the subthalamic nucleus versus levodopa challenge in Parkinson’s disease: measuring the on- and off-conditions with FDGPET. J Neural Transm 2002; 109: 1257–1264.
- 29 Hilker R, Voges J, Weisenbach S, et al. Subthalamic nucleus stimulation restores glucose metabolism in associative and limbic cortices and in cerebellum: evidence from a FDG-PET study in advanced Parkinson’s disease. J Cereb Blood Flow Metab 2004; 24: 7–16.
- 30 Kalbe E, Voges J, Weber T, et al. Frontal FDG-PET activity correlates with cognitive outcome after STN-DBS in Parkinson disease. Neurology 2009; 72: 42–49.
- 31 Zrinzo L, Zrinzo L, Tisch S, et al. Stereotactic localization of the human peduncolopontine nucleus: atlas-base coordinates and validation of a magnetic resonance imaging protocol for direct localization. Brain 2008; 131: 1588–1598.
- 32 Pierantozzi M, Palmieri MG, Galati S, et al. Pedunculopontine nucleus deep brain stimulation changes spinal cord excitability in Parkinson’s disease patients. J Neural Transm 2008; 115: 731–735.
- 33 Zanini S, Moschella V, Stefani A, et al. Grammar improvement following deep brain stimulation of the subthalamic and the pedunculopontine nuclei in advanced parkinson’s disease: a pilot study. Parkinsonism Relat Disord 2009; 15: 606–609.
- 34 Androulidakis AG, Mazzone P, Litvak V, et al. Oscillatory activity in the pedunculopontine area of patients with Parkinson’s disease. Exp Neurol 2008; 211: 59–66.
- 35 Kozak R, Bowman EM, Latimer MP, Rostron CL, Winn P. Excitotoxic lesions of the pedunculopontine tegmental nucleus in rats impair performance on a test of sustained attention. Exp Brain Res 2005; 162: 257–264.
- 36 Winn P. How best to consider the structure and function of the pedunculopontine tegmental nucleus: evidence from animal studies. J Neurol Sci 2006; 248: 234–250.
- 37 Grace AA, Floresco SB, Goto Y, Lodge DJ. Regulation of firing of dopaminergic neurons and control of goal-directed behaviors. Trends Neurosci 2007; 30: 220–227.
- 38 Peppe A, Pierantozzi M, Bassi A, et al. Stimulation of the subthalamic nucleus compared with the globus pallidus internus in patients with Parkinson disease. J Neurosurg 2004; 101: 195–200.
- 39 Stefani A, Peppe A, Pierantozzi M, et al. Multi-target strategy for Parkinsonian patients:the role of deep brain stimulation in the centromedian-parafascicularis complex. Brain Res Bull 2009; 78: 113–118.
- 40 Bédard MA, el Massioui F, Malapani C, et al. Attentional deficits in Parkinson’s disease: partial reversibility with naphtoxazine (SDZ NVI-085), a selective noradrenergic alpha 1 agonist. Clin Neuropharmacol 1998; 21: 108–117.
- 41 Chamberlain SR, Del Campo N, Dowson J, et al. Atomoxetine improved response inhibition in adults with attention deficit/hyperactivity disorder. Biol Psychiatry 2007; 6: 977–984.
- 42 Thobois S, Dominey P, Fraix V, et al. Effects of subthalamic nucleus stimulation on actual and imagined movement in Parkinson’s disease: a PET study. J Neurol 2002; 249: 1689–1698.
- 43 Moro E, Hamani C, Poon YY, et al. Unilateral pedunculopontine stimulation improves falls in Parkinson’s disease. Brain 2010; 133: 215–224.