GABAergic synaptogenesis marks the onset of differentiation of basket and stellate cells in mouse cerebellum
Barbara Lardi-Studler
Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
Search for more papers by this authorJean-Marc Fritschy
Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
Search for more papers by this authorBarbara Lardi-Studler
Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
Search for more papers by this authorJean-Marc Fritschy
Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
Search for more papers by this authorAbstract
Type 2 glycine transporter (GlyT2) mediates intracellular glycine transport and is expressed selectively in glycinergic neurons. Expression of GlyT2 gene promoter-driven enhanced green fluorescent protein (eGFP) in BAC transgenic mice allows selective visualization of glycinergic neurons by fluorescence microscopy. Here, we show that cerebellar interneuron precursors identified by the transcription factor Pax2, including γ-aminobutyric acid (GABA)ergic interneurons of the molecular layer (ML; basket and stellate cells), transiently express GlyT2-eGFP during development. In contrast, expression of endogenous GlyT2 is restricted to glycinergic Golgi cells. Comparison with knock-in mice expressing eGFP in GABAergic neurons [glutamic acid decarboxylase (GAD)67-eGFP] revealed that GlyT2-eGFP expression often precedes GAD67-eGFP and is therefore a marker of immature GABAergic interneurons. In the internal granule cell layer, GABAergic Golgi cells differentiated shortly after birth, prior to glycinergic Golgi cells. In the ML, GlyT2-eGFP-positive precursor cells migrated until the boundary with the external granule cell layer, forming an inside-out maturation gradient that determined the final position of interneurons in the ML. After migration, GlyT2-eGFP gradually disappeared, while interneurons differentiated morphologically and became immunoreactive for parvalbumin, the GABAA receptor α1 subunit, and the K+Cl– exchanger KCC2 (K+Cl– cotransporter type 2). Numerous presumptive GABAergic synaptic terminals were seen on immature ML interneurons as early as P4, preceding the expression of these neurochemical markers. These results suggest that GABAergic synaptogenesis marks the onset of differentiation of basket and stellate cells in the mouse cerebellum, and that GABAergic synaptic function might contribute to the differentiation of interneurons in the cerebellar cortex.
References
- Ango, F., Di Cristo, G., Higashiyama, H., Bennett, V., Wu, P. & Huang, Z.J. (2004) Ankyrin-based subcellular gradient of neurofascin, an immunoglobulin family protein, directs GABAergic innervation at Purkinje axon initial segment. Cell, 119, 257–272.
- Aoki, E., Semba, R. & Kashiwamata, S. (1989) When does GABA-like immunoreactivity appear in the rat cerebellar GABAergic neurons. Brain Res., 502, 245–251.
- Ben-Ari, Y. (2002) Excitatory actions of GABA during development: the nature of the nurture. Nat. Rev. Neurosci., 3, 728–739.
- De Bergeyck, V., Naerhuyzen, B., Goffinet, A.M. & Lambert de Rouvroit, C. (1998) A panel of monoclonal antibodies against reelin, the extracellular matrix protein defective in reeler mutant mice. J. Neurosci. Meth., 82, 17–24.
- Berninger, B., Marty, S., Zafra, F., Berzaghi, M.P., Thoenen, H. & Lindholm, D. (1995) GABAergic stimulation switches from enhancing to repressing BDNF expression in rat hippocampal neurons during maturation in vitro. Development, 121, 2327–2335.
- Carmona, M.A., Pozas, E., Martinez, A., Espinosa-Parrilla, J.F., Soriano, E. & Aguado, F. (2006) Age-dependent spontaneous hyperexcitability and impairment of GABAergic function in the hippocampus of mice lacking trkB. Cereb. Cortex, 16, 47–63.
- Celio, M.R. (1990) Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience, 35, 375–475.
- Chaudhry, F.A., Reimer, R.J., Bellocchio, E.E., Danbolt, N.C., Osen, K.K., Edwards, R.H. & Storm-Mathisen, J. (1998) The vesicular GABA transporter, VGAT, localizes to synaptic vesicles in sets of glycinergic as well as GABAergic neurons. J. Neurosci., 18, 9733–9750.
- Chavas, J. & Marty, A. (2003) Coexistence of excitatory and inhibitory GABA synapses in the cerebellar interneuron network. J. Neurosci., 23, 2019–2031.
- Cox, K.H., DeLeon, D.V., Angerer, L.M. & Angerer, R.C. (1984) Detection of mRNAs in sea urchin embryos by in situ hybridization using asymmetric RNA probes. Dev. Biol., 101, 485–502.
- Dumoulin, A., Rostaing, P., Bedet, C., Levi, S., Isambert, M.F., Henry, J.P., Triller, A. & Gasnier, B. (1999) Presence of the vesicular inhibitory amino acid transporter in GABAergic and glycinergic synaptic terminal boutons. J. Cell Sci., 112, 811–823.
-
Esclapez, M.,
Chang, D.K. &
Houser, C.R. (1996) Subpopulations of GABA neurons in the dentate gyrus express high levels of the α1 subunit of the GABAA receptor.
Hippocampus, 6, 225–238.
10.1002/(SICI)1098-1063(1996)6:3<225::AID-HIPO2>3.0.CO;2-M CAS PubMed Web of Science® Google Scholar
- Farrant, M. & Brickley, S.G. (2003) Properties of GABAA receptor-mediated transmission at newly formed Golgi-granule cell synapses in the cerebellum. Neuropharmacology, 44, 181–189.
- Fiumelli, H. & Woodin, M.A. (2007) Role of activity-dependent regulation of neuronal chloride homeostasis in development. Curr. Opin. Neurobiol., 17, 81–86.
- Fritschy, J.M. & Mohler, H. (1995) GABAA-receptor heterogeneity in the adult rat brain: differential regional and cellular distribution of seven major subunits. J. Comp. Neurol., 359, 154–194.
- Fritschy, J.M., Panzanelli, P., Kralic, J.E., Vogt, K.E. & Sassoè-Pognetto, M. (2006) Differential dependence of axo-dendritic and axo-somatic GABAergic synapses on GABAA receptors containing the α1 subunit in Purkinje cells. J. Neurosci., 26, 3245–3255.
- Ganguly, K., Schinder, A., Wong, S. & Poo, M. (2001) GABA itself promotes the developmental switch of neuronal GABAergic responses from excitation to inhibition. Cell, 105, 521–532.
- Geurts, F.J., De Schutter, E. & Dieudonne, S. (2003) Unraveling the cerebellar cortex: cytology and cellular physiology of large-sized interneurons in the granular layer. Cerebellum, 2, 290–299.
-
Gomeza, J.,
Armsen, W.,
Betz, H. &
Eulenburg, V. (2006) Lessons from the knocked-out glycine transporters. In H.H. Sitte &
M. Freissmuth (Eds), Neurotransmitter Transporters. Springer, Berlin, Heidelberg, pp. 457–484.
10.1007/3-540-29784-7_19 Google Scholar
- Greif, K.F., Erlander, M.G., Tillakaretne, N.J.K. & Tobin, A.J. (1991) Postnatal expression of glutamate decarboxylases in developing rat cerebellum. Neurochem. Res., 16, 235–242.
- Hoshino, M., Nakamura, S., Mori, K., Kawauchi, T., Terao, M., Nishimura, Y.V., Fukuda, A., Fuse, T., Matsuo, M., Sone, M., Watanabe, M., Bito, H., Terashima, T., Wright, C., Kawaguchi, Y., Nakao, K. & Nabeshima, Y. (2005) Ptf1a, a bHLH transcriptional gene, defines GABAergic neuronal fates in cerebellum. Neuron, 47, 201–213.
- Komuro, H., Yacubova, E., Yacubova, E. & Rakic, P. (2001) Mode and tempo of tangential cell migration in the cerebellar external granular layer. J. Neurosci., 21, 527–540.
- Kralic, J.E., Sidler, C., Parpan, F., Homanics, G., Morrow, A.L. & Fritschy, J.M. (2006) Compensatory alteration of inhibitory synaptic circuits in thalamus and cerebellum of GABAA receptor α1 subunit knockout mice. J. Comp. Neurol., 495, 408–421.
- Laine, J. & Axelrad, H. (1998) Lugaro cells target basket and stellate cells in the cerebellar cortex. Neuroreport, 9, 2399–2403.
- Laine, J. & Axelrad, H. (2002) Extending the cerebellar Lugaro cell class. Neuroscience, 115, 363–374.
- Larouche, M., Che, P.M. & Hawkes, R. (2006) Neurogranin expression identifies a novel array of Purkinje cell parasagittal stripes during mouse cerebellar development. J. Comp. Neurol., 494, 215–227.
- Leto, K., Carletti, B., Williams, I.M., Magrassi, L. & Rossi, F. (2006) Different types of cerebellar GABAergic interneurons originate from a common pool of multipotent progenitor cells. J. Neurosci., 26, 11682–11694.
- Li, X., Zhao, X.H., Fang, Y., Jiang, X., Duong, T., Fan, C., Huang, C.C. & Kain, S.R. (1998) Generation of destabilized green fluorescent protein as a transcription reporter. J. Biol. Chem., 273, 34970–34975.
- Lippincott-Schwartz, J. & Patterson, G.H. (2003) Development and use of fluorescent protein markers in living cells. Science, 300, 87–91.
- Ludwig, A., Li, H., Saarma, M., Kaila, K. & Rivera, C. (2003) Developmental up-regulation of KCC2 in the absence of GABAergic and glutamatergic transmission. Eur. J. Neurosci., 18, 3199–3206.
-
Maricich, S.M. &
Herrup, K. (1999) Pax-2 expression defines a subset of GABAergic interneurons and their precursors in the developing murine cerebellum.
J. Neurobiol., 41, 281–294.
10.1002/(SICI)1097-4695(19991105)41:2<281::AID-NEU10>3.0.CO;2-5 CAS PubMed Web of Science® Google Scholar
-
Palay, S.L. &
Chan-Palay, V. (1974) Cerebellar Cortex: Cytology and Organization. Springer, Berlin, Heidelberg.
10.1007/978-3-642-65581-4 Google Scholar
- Pfeffer, P.L., Payer, B., Reim, G., Di Magliano, M.P. & Busslinger, M. (2002) The activation and maintenance of Pax2 expression at the mid–hindbrain boundary is controlled by separate enhancers. Development, 129, 307–318.
- Pow, D.V. & Crook, D.K. (1993) Extremely high titre polyclonal antisera against small neurotransmitter molecules: rapid production, characterisation and use in light- and electron-microscopic immunohistochemistry. J. Neurosci. Meth., 48, 51–63.
- Poyatos, I., Ponce, J., Aragon, C., Gimenez, C. & Zafra, F. (1997) The glycine transporter GLYT2 is a reliable marker for glycine-immunoreactive neurons. Mol. Brain Res., 49, 63–70.
- Rakic, P. (1972) Extrinsic cytological determinants of basket and stellate cell dendritic pattern in the cerebellar molecular layer. J. Comp. Neurol., 146, 335–354.
- Rakic, P. (1973) Kinetics of proliferation and latency between final cell division and onset of differentiation of cerebellar stellate and basket neurons. J. Comp. Neurol., 147, 523–546.
- Rico, B., Xu, B. & Reichardt, L.F. (2002) TrkB receptor signaling is required for establishment of GABAergic synapses in the cerebellum. Nat. Neurosci., 5, 225–233.
- Simat, M., Parpan, F. & Fritschy, J.M. (2007) Heterogeneity of glycinergic and GABAergic interneurons in the granule cell layer of mouse cerebellum. J. Comp. Neurol., 500, 71–83.
- Singec, I., Knoth, R., Ditter, M., Frotscher, M. & Volk, B. (2003) Neurogranin expression by cerebellar neurons in rodents and non-human primates. J. Comp. Neurol., 459, 278–289.
- Spike, R.C., Watt, C., Zafra, F. & Todd, A.J. (1997) An ultrastructural study of the glycine transporter GLYT2 and its association with glycine in the superficial laminae of the rat spinal dorsal horn. Neuroscience, 77, 543–551.
- Takayama, C. & Inoue, Y. (2004) Morphological development and maturation of the GABAergic synapses in the mouse cerebellar granular layer. Dev. Brain Res., 150, 177–190.
- Takayama, C. & Inoue, Y. (2005) Developmental expression of GABA transporter-1 and 3 during formation of the GABAergic synapses in the mouse cerebellar cortex. Dev. Brain Res., 158, 41–49.
- Tamamaki, N., Yanagawa, Y., Tomioka, R., Miyazaki, J., Obata, K. & Kaneko, T. (2003) Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse. J. Comp. Neurol., 467, 60–79.
- Vicini, S., Ferguson, C., Prybylowski, K., Kralic, J.E., Morrow, A.L. & Homanics, G.E. (2001) GABAA receptor α1 subunit deletion prevents developmental changes of inhibitory synaptic currents in cerebellar neurons. J. Neurosci., 21, 3009–3016.
- Wang, W.Y. & Zoghbi, H.Y. (2001) Genetic regulation of cerebellar development. Nat. Rev. Neurosci., 2, 484–491.
- Weisheit, G., Gliem, M., Endl, E., Pfeffer, P.L., Busslinger, M. & Schilling, K. (2006) Postnatal development of the murine cerebellar cortex: formation and early dispersal of basket, stellate and Golgi neurons. Eur. J. Neurosci., 24, 466–478.
- Williams, J.R., Sharp, J.W., Kumari, V.G., Wilson, M.A. & Payne, J.A. (1999) The neuron-specific K-Cl cotransporter, KCC2. Antibody development and initial characterization of the protein. J. Biol. Chem., 274, 12656–12664.
- Wojcik, S.M., Katsurabayashi, S., Guillemin, I., Friauf, E., Rosenmund, C., Brose, N. & Rhee, J.S. (2006) A shared vesicular carrier allows synaptic corelease of GABA and glycine. Neuron, 50, 575–587.
- Yamanaka, H., Yanagawa, Y. & Obata, K. (2004) Development of stellate and basket cells and their apoptosis in mouse cerebellar cortex. Neurosci. Res., 50, 13–22.
- Zafra, F., Gomeza, J., Olivares, L., Aragon, C. & Gimenez, C. (1995) Regional distribution and developmental variation of the glycine transporters GLYT1 and GLYT2 in the rat CNS. Eur. J. Neurosci., 7, 1342–1352.
- Zeilhofer, H.R., Studler, B., Arabadzisz, D., Schweizer, C., Ahmadi, S., Layh, B., Bösl, M.R. & Fritschy, J.M. (2005) Glycinergic neurons expressing enhanced green fluorescent protein in bacterial artificial chromosome transgenic mice. J. Comp. Neurol., 482, 123–141.
- Zhang, L. & Goldman, J.E. (1996) Generation of cerebellar interneurons from dividing progenitors in white matter. Neuron, 16, 47–54.