Acid-Base Regulation by Azolla spp. with N2 as Sole N Source and with Supplementation by NH+4 or NO−3
Corresponding Author
J. A. Raven
Department of Biological Sciences, University of Dundee, U.K.
Institut für Botanik und Mikrobiologie der Technischen Universität München Lehrstuhl für Botanik Arcisstraße 21 D-8000 München 2 Federal Republic of Germany
Department of Biological Sciences University of Dundee Dundee DD1 4HN United Kingdom
Search for more papers by this authorCorresponding Author
C. Rothemund
Present Address: Institut für Botanik und Mikrobiologie der Technischen Universität München, Lehrstuhl für Botanik, Arcisstrasse 21; D-8000 München 2, FRG
Institut für Botanik und Mikrobiologie der Technischen Universität München Lehrstuhl für Botanik Arcisstraße 21 D-8000 München 2 Federal Republic of Germany
Department of Biological Sciences University of Dundee Dundee DD1 4HN United Kingdom
Search for more papers by this authorCorresponding Author
B. Wollenweber
Department of Biological Sciences, University of Dundee, U.K.
Institut für Botanik und Mikrobiologie der Technischen Universität München Lehrstuhl für Botanik Arcisstraße 21 D-8000 München 2 Federal Republic of Germany
Department of Biological Sciences University of Dundee Dundee DD1 4HN United Kingdom
Search for more papers by this authorCorresponding Author
J. A. Raven
Department of Biological Sciences, University of Dundee, U.K.
Institut für Botanik und Mikrobiologie der Technischen Universität München Lehrstuhl für Botanik Arcisstraße 21 D-8000 München 2 Federal Republic of Germany
Department of Biological Sciences University of Dundee Dundee DD1 4HN United Kingdom
Search for more papers by this authorCorresponding Author
C. Rothemund
Present Address: Institut für Botanik und Mikrobiologie der Technischen Universität München, Lehrstuhl für Botanik, Arcisstrasse 21; D-8000 München 2, FRG
Institut für Botanik und Mikrobiologie der Technischen Universität München Lehrstuhl für Botanik Arcisstraße 21 D-8000 München 2 Federal Republic of Germany
Department of Biological Sciences University of Dundee Dundee DD1 4HN United Kingdom
Search for more papers by this authorCorresponding Author
B. Wollenweber
Department of Biological Sciences, University of Dundee, U.K.
Institut für Botanik und Mikrobiologie der Technischen Universität München Lehrstuhl für Botanik Arcisstraße 21 D-8000 München 2 Federal Republic of Germany
Department of Biological Sciences University of Dundee Dundee DD1 4HN United Kingdom
Search for more papers by this authorAbstract
Diazotrophic cultures of three species of Azolla (Az. caroliniana, Az. microphylla, Az. pinnata) symbiotic with Anabaena azollae accumulated some 0.10–0.24 mol organic anion per mol N assimilated (0.010–0.018 mol organic anion per mol C assimilated), with a corresponding efflux of 0.05–0.11 mol H+ per mol N assimilated (0.006–0.009 mol H+ per mol C assimilated). These values are lower than those found for terrestrial diazotrophic vascular plants; this may be related to the decreased possibility of increasing Fe and P availability by rhizosphere acidification in a free-floating plant. Modification of the organic anion content, and of the quantity (and direction) of H+ exchange with the medium, with 5 mol m−3 NH+4 or NO−3 added to diazotrophic cultures, are consistent with substantial N acquisition from combined N as well as N2 assimilation. This conclusion is consistent with previously published work with 15N.
References
- Allen, C. Ft. and Allen, S. Titrimetric assay of H+ excreted by Ricinus communis cultivated on NH+4-N nutrient medium: the effect of ionic strength and nutrient phosphate concentration. Journal of Experimental Botany 38 (1987a), 597–606.
- Allen, S. and Allen, C. R. The titrimetric assay of OH− and HCO−3 excreted by Ricinus communis cultivated on NO−3-containing nutrient media: the influence of ionic strength, end point pH and CO2 super-saturation. Journal of Experimental Botany 38 (1987b), 607–617.
- Allen, S. and Raven, J. A. Intracellular pH regulation in Ricinus communis grown with ammonium or nitrate as N source: the role of long distance transport. Journal of Experimental Botany 38 (1987), 580–596.
- Beutler, H. O., Wurst, B., and Fischer, S. Eine neue Methode zur enzymatischen Bestimmung von Nitrat in Lebensmitteln. Deutsche Lebensmittel Rundschau 82 (1986), 283–289.
- Cameron, H. J. and Julian, G. R. Utilization of hydroxyapatite by cyanobacteria as their sole source of phosphate and calcium. Plant and Soil 109 (1988), 123–124.
- Dijkshoorn, W. and Van Wijk, A. C. The sulphur requirements of plants as evidenced by the S-N ratio in the organic matter A review of published data. Plant and Soil 26 (1967), 129–157.
- Harwood, J. C. and Nicholls, R. G. The plant sulpholipid — a major component on the sulphur cycle. Biochemical Society Transactions 7 (1979), 440–447.
- Ito, O. and Watanabe, T. The relationship between combined nitrogen uptakes and nitrogen fixation in Azolla — Anabaena symbioses. New Phytologist 95 (1983), 647–654.
- Jungk, A. Die Alkalinität der Pflanzenasche als Maß für den Kationenüberschuß in der Pflanze. Zeitschrift für Pflanzenernährungund Düngung 120 (1968), 99–105.
- Kurkdjian, A. and Guern, J. Intracellular pH: measurement and importance in cell activity. Annual Review of Plant Physiology and Plant Molecular Biology 40 (1989), 271–303.
- Mathieu, Y., Guern, J., Pean, M., Pasquier, C., Beloeil, J. C., and Lallemand, J.-Y. Cytoplasmic pH regulation in Acer pseudoplatanus cells II. Possible mechanisms involved in pH regulation during acid-load. Plant Physiology 82 (1986), 846–852.
- McInroy, S. G., Andrews, M., and Sprent, J. I. Growth, nodulation and nitrate reductase activity in the aquatic legume Neptunia plena (L.) Berth at different external NO−3 concentrations. Aquatic Botany 30 (1988), 379–388.
- Peters, G. A. and Meeks, J. C. The Azolla-Anabaena symbiosis: basic biology. Annual Review of Plant Physiology and Plant Molecular Biology 40 (1989), 193–210.
- Raven, J. A. Nutritional strategies of submerged benthic plants: the acquisition of C, N and P by rhizophytes and haptophytes. New Phytologist 88 (1981), 1–30.
- Raven, J. A. Energetics and Transport in Aquatic Plants. 587 p. A. R. Liss, New York, 1984.
- Raven, J. A. pH regulation in plants. Science Progress (Oxford) 69 (1985a), 475–509.
- Raven, J. A. Regulation of pH and generation of osmolarity in vascular land plants: costs and benefits in relation to efficiency of use of water, energy and nitrogen. New Phytologist 101 (1985b), 25–77.
- Raven, J. A. Biochemical disposal of excess H+ in plants New Phytologist 104 (1986), 175–206.
- Raven, J. A. The role of vacuoles. New Phytologist 106 (1987), 357–422.
- Raven, J. A. Acquisition of nitrogen by the shoots of land plants: its occurrence and implications for acid-base regulation. New Phytologist 109 (1988a), 1–20.
- Raven, J. A. The iron and molybdenum use efficiencies of plant growth with different energy, carbon and nitrogen sources. New Phytologist 109 (1988b), 279–287.
-
Raven, J. A. and
De Michelis, M. I.
Acid-base regulation during nitrate assimilation in Hydrodictyon africanum.
Plant, Cell and Environment
2 (1979), 245–257.
10.1111/j.1365-3040.1979.tb00076.x Google Scholar
- Raven, J. A. and De Michelis, M. I. Acid-base regulation during ammonium assimilation in Hydrodictyon africanum. Plant, Cell and Environment 3 (1980), 299–311.
- Raven, J. A. and Smith, F. A. Nitrogen assimilation and transport in vascular land plants in relation to intracellular pH regulation. New Phytologist 76 (1976), 415–431.
- Raven, J. A., MacFarlane, J. J., and Griffiths, H. The application of carbon isotope techniques. In: R. M. M. Crawford, ed. Plant Life in Aquatic and Amphibious Habitats, pp. 129–149. Blackwell Scientific Publications, Oxford, 1987.
-
Raven, J. A.,
Smith, F. A., and
Smith, S. E.
Ions and osmoregulation. In: D. W. Rains,
R. C. Vallentine and
A. Hollaender, eds., Genetic Engineering of Osmoregulation: Impact on Plant Productivity For Food, Chemicals and Energy, pp. 101–118. Plenum Press, New York, 1980.
10.1007/978-1-4684-3725-6_9 Google Scholar
- Raven, J. A., Franco, A. A., De Jesus, E. L., and Neto, J. J. H+ extrusion and organic acid synthesis in N2-fixing symbiosis involving vascular plants. New Phytologist 114 (1990), 369–389.
- Raven, J. A., Handley, L. L., MacFarlane, J. J., McInroy, S., McKenzie, L., Richards, J. H., and Samuelsson, G. The role of CO2 uptake by roots and CAM in acquisition of inorganic C by plants of the isoetid life-form: a review, with new data on Eriocaulon decangulare L. New Phytologist 108 (1988), 125–148.
- Sah, R. N., Goyal, S. S., and Rains, D. W. Interactive effects of combined nitrogen and phosphorus on growth and nitrogen fixation by Azolla. Plant and Soil 117 (1989a), 1–8.
- Sah, R. N., Goyal, S. S., and Rains, D. W. Effects of light on NO−3 transport by Azolla pinnata. Journal of Experimental Botany 40 (1989b), 543–549.
- Sale, P. J. M., Orr, P. T., Shell, G. S., and Erskine, D. J. C. Photosynthesis and growth rates of Salvinia molesta and Eichhornia crassipes. Journal of Applied Ecology 22 (1985), 125–137.
- Shearer, G. and Kohl, D. H. N2-Fixation in field settings: estimations based on natural 15N abundance. Australian Journal of Plant Physiology 13 (1986), 699–756.
- Shi, D. J. and Hall, D. O. The Azolla-Anabaena association: historical perspective, symbiosis and energy metabolism. Botanical Reviews 54 (1988), 354–386.
- Smith, F. A. and Raven, J. A. Intracellular pH and its regulation. Annual Review of Plant Physiology 30 (1979), 289–311.
- Sprent, J. I. The Biology of Nitrogen-Fixing Organisms. 196 p. McGraw-Hill, Maidenhead, 1979.
- Subudhi, B. P. R. and Singh, P. K. Effect of macronutrients and pH on the growth nitrogen fixation and soluble sugar content of the water fern Azolla pinnata. Biologia Plantarum 21 (1979), 66–70.
- Subudhi, B. P. R. and Watanabe, I. Differential phosphorus requirements of Azolla species and strains in phosphorus limited continuous culture. Soil Science and Plant Nutrition 27 (1981), 237–247.
- Tung, H. F. and Watanabe, I. Differential response of Azolla-Anabaena association to high temperature and minus phosphorus treatments. New Phytologist 93 (1983), 423–431.
- Vogel, H. A textbook of quantitative inorganic analysis, including elementary instrumental analysis. 4 ed. Longman Group Ltd, pp 730–731 (1978).
- Wollenweber, B. and Kinzel, H. Role of carboxylate in the nitrogen metabolism of plants from different natural habitats. Physiologia Plantarum 72 (1988), 321–328.
- Yoneyama, T., Ladha, J. K., and Watanabe, I. Nodule bacteroids and Anabaena: natural 15N enrichment in the legume — Rhizobium and Azolla-Anabaena symbiotic systems. Journal of Plant Physiology 127 (1987), 251–259.