Small-scale magnetic helicity losses from a mean-field dynamo
Corresponding Author
Axel Brandenburg
NORDITA, AlbaNova University Center, Roslagstullsbacken 23, SE 10691 Stockholm, Sweden
Department of Astronomy, AlbaNova University Center, Stockholm University, SE 10691 Stockholm, Sweden
E-mail: [email protected]Search for more papers by this authorSimon Candelaresi
NORDITA, AlbaNova University Center, Roslagstullsbacken 23, SE 10691 Stockholm, Sweden
Department of Astronomy, AlbaNova University Center, Stockholm University, SE 10691 Stockholm, Sweden
Search for more papers by this authorPiyali Chatterjee
Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
Search for more papers by this authorCorresponding Author
Axel Brandenburg
NORDITA, AlbaNova University Center, Roslagstullsbacken 23, SE 10691 Stockholm, Sweden
Department of Astronomy, AlbaNova University Center, Stockholm University, SE 10691 Stockholm, Sweden
E-mail: [email protected]Search for more papers by this authorSimon Candelaresi
NORDITA, AlbaNova University Center, Roslagstullsbacken 23, SE 10691 Stockholm, Sweden
Department of Astronomy, AlbaNova University Center, Stockholm University, SE 10691 Stockholm, Sweden
Search for more papers by this authorPiyali Chatterjee
Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
Search for more papers by this authorABSTRACT
Using mean-field models with a dynamical quenching formalism, we show that in finite domains magnetic helicity fluxes associated with small-scale magnetic fields are able to alleviate catastrophic quenching. We consider fluxes that result from advection by a mean flow, the turbulent mixing down the gradient of mean small-scale magnetic helicity density or the explicit removal which may be associated with the effects of coronal mass ejections in the Sun. In the absence of shear, all the small-scale magnetic helicity fluxes are found to be equally strong for both large- and small-scale fields. In the presence of shear, there is also an additional magnetic helicity flux associated with the mean field, but this flux does not alleviate catastrophic quenching. Outside the dynamo-active region, there are neither sources nor sinks of magnetic helicity, so in a steady state this flux must be constant. It is shown that unphysical behaviour emerges if the small-scale magnetic helicity flux is forced to vanish within the computational domain.
REFERENCES
- Baryshnikova Y., Shukurov A. M., 1987, Astron. Nachr., 308, 89
- Berger M. A., Ruzmaikin A., 2000, J. Geophys. Res., 105, 10481
- Blackman E. G., Brandenburg A., 2002, ApJ, 579, 359
- Blackman E. G., Brandenburg A., 2003, ApJ, 584, L99
- Blackman E. G., Field G. B., 2000a, ApJ, 534, 984
- Blackman E. G., Field G. B., 2000b, MNRAS, 318, 724
- Brandenburg A., 2001a, ApJ, 550, 824
- Brandenburg A., 2001b, in P. Chossat, D. Armbruster, O. Iuliana, eds, Nato ASI Series 26, Dynamo and Dynamics, a Mathematical Challenge. Kluwer, Dordrecht , p. 125
- Brandenburg A., Dobler W., 2001, A&A, 369, 329
- Brandenburg A., Schmitt D., 1998, A&A, 338, L55
- Brandenburg A., Subramanian K., 2005, Astron. Nachr., 326, 400
- Brandenburg A., Dobler W., Subramanian K., 2002, Astron. Nachr., 323, 99
- Brandenburg A., Käpylä P. J., Mitra D., Moss D., Tavakol R., 2007, Astron. Nachr., 328, 1118
- Brandenburg A., Rädler K.-H., Rheinhardt M., Subramanian K., 2008, ApJ, 687, L49
- Cattaneo F., Hughes D. W., 1996, Phys. Rev. E, 54, R4532
- Choudhuri A. R., Schüssler M., Dikpati M., 1995, A&A, 303, L29
- Field G. B., Blackman E. G., 2002, ApJ, 572, 685
- Giesecke A., Ziegler U., Rüdiger G., 2005, Phys. Earth Planet. Inter., 152, 90
- Gruzinov A. V., Diamond P. H., 1994, Phys. Rev. Lett., 72, 1651
- Gruzinov A. V., Diamond P. H., 1995, Phys. Plasmas, 2, 1941
- Gruzinov A. V., Diamond P. H., 1996, Phys. Plasmas, 3, 1853
- Käpylä P. J., Brandenburg A., 2009, ApJ, 699, 1059
- Kleeorin N. I., Ruzmaikin A. A., 1982, Magnetohydrodynamics, 18, 116
- Kleeorin N., Rogachevskii I., Ruzmaikin A., 1995, A&A, 297, 159
- Kleeorin N., Moss D., Rogachevskii I., Sokoloff D., 2000, A&A, 361, L5
- Kleeorin N., Moss D., Rogachevskii I., Sokoloff D., 2002, A&A, 387, 453
- Kleeorin N., Moss D., Rogachevskii I., Sokoloff D., 2003, A&A, 400, 9
-
Krause F.,
Rädler K.-H., 1980, Mean-field Magnetohydrodynamics and Dynamo Theory. Pergamon Press,
Oxford
10.1515/9783112729694 Google Scholar
- Mitra M., Tavakol R., Käpylä P. J., Brandenburg A., 2009, Phys. Rev. Lett., submitted
- Moffatt H. K., 1978, Magnetic Field Generation in Electrically Conducting Fluids. Cambridge Univ. Press, Cambridge
- Parker E. N., 1979, Cosmical Magnetic Fields. Clarendon Press, Oxford
- Parker E. N., 1993, ApJ, 408, 707
- Pouquet A., Frisch U., Léorat J., 1976, J. Fluid Mech., 77, 321
- Rädler K.-H., Bräuer H.-J., 1987, Astron. Nachr., 308, 101
- Rogachevskii I., Kleeorin N., 2000, Phys. Rev. E, 61, 5202
-
Rüdiger G.,
Hollerbach R., 2004, The Magnetic Universe. Wiley-VCH,
Weinheim
10.1002/3527603654 Google Scholar
- Rüdiger G., Elstner D., Ossendrijver M., 2003, A&A, 406, 15
- Schmitt D., 1987, A&A, 174, 281
- Seehafer N., 1996, Phys. Rev. E, 53, 1283
- Shukurov, A. M., Sokolov, D. D., Ruzmaikin, A. A., 1985, Magn. Gidrodin., 3, 9
- Shukurov A., Sokoloff D., Subramanian K., Brandenburg A., 2006, A&A, 448, L33
- Stefani F., Gerbeth G., 2003, Phys. Rev. E, 67, 027302
- Stix M., 1974, A&A, 37, 121
- Subramanian K., Brandenburg A., 2004, Phys. Rev. Lett., 93, 205001
- Subramanian K., Brandenburg A., 2006, ApJ, 648, L71
- Vainshtein S. I., Cattaneo F., 1992, ApJ, 393, 165
- Vishniac E. T., Cho J., 2001, ApJ, 550, 752
- Yousef T. A., Brandenburg A., Rüdiger G., 2003, A&A, 411, 321