A hybrid N-body code incorporating algorithmic regularization and post-Newtonian forces
Corresponding Author
S. Harfst
Sterrenkundig Instituut ‘Anton Pannekoek’ and Section Computational Science, University of Amsterdam, Kruislaan 403, 1098SJ Amsterdam, the Netherlands
E-mail: [email protected]Search for more papers by this authorA. Gualandris
Centre for Computational Relativity and Gravitation, Rochester Institute of Technology, 78 Lomb Memorial Drive, Rochester, NY 14623, USA
Search for more papers by this authorD. Merritt
Centre for Computational Relativity and Gravitation, Rochester Institute of Technology, 78 Lomb Memorial Drive, Rochester, NY 14623, USA
Search for more papers by this authorS. Mikkola
Centre for Computational Relativity and Gravitation, Rochester Institute of Technology, 78 Lomb Memorial Drive, Rochester, NY 14623, USA
Search for more papers by this authorCorresponding Author
S. Harfst
Sterrenkundig Instituut ‘Anton Pannekoek’ and Section Computational Science, University of Amsterdam, Kruislaan 403, 1098SJ Amsterdam, the Netherlands
E-mail: [email protected]Search for more papers by this authorA. Gualandris
Centre for Computational Relativity and Gravitation, Rochester Institute of Technology, 78 Lomb Memorial Drive, Rochester, NY 14623, USA
Search for more papers by this authorD. Merritt
Centre for Computational Relativity and Gravitation, Rochester Institute of Technology, 78 Lomb Memorial Drive, Rochester, NY 14623, USA
Search for more papers by this authorS. Mikkola
Centre for Computational Relativity and Gravitation, Rochester Institute of Technology, 78 Lomb Memorial Drive, Rochester, NY 14623, USA
Search for more papers by this authorABSTRACT
We describe a novel N-body code designed for simulations of the central regions of galaxies containing massive black holes. The code incorporates Mikkola's ‘algorithmic’ chain regularization scheme including post-Newtonian terms up to PN2.5 order. Stars moving beyond the chain are advanced using a fourth-order integrator with forces computed on a GRAPE board. Performance tests confirm that the hybrid code achieves better energy conservation, in less elapsed time, than the standard scheme and that it reproduces the orbits of stars tightly bound to the black hole with high precision. The hybrid code is applied to two sample problems: the effect of finite-N gravitational fluctuations on the orbits of the S-stars, and inspiral of an intermediate-mass black hole into the Galactic Centre.
REFERENCES
-
Aarseth S. J., 1985, in
J. U. Brackbill,
B. I. Cohen, eds, Multiple Time Scales Direct Methods for N-body Simulations. Academic Press,
Orlando
,
FL
, p. 377
10.1016/B978-0-12-123420-1.50017-3 Google Scholar
- Aarseth S. J., 2003a, Ap&SS, 285, 367
-
Aarseth S. J., 2003b, Gravitational N-Body Simulations. Cambridge Univ. Press,
Cambridge
10.1017/CBO9780511535246 Google Scholar
- Aarseth S. J., 2007, MNRAS, 378, 285
- Baumgardt H., Makino J., Ebisuzaki T., 2004, ApJ, 613, 1133
-
Baumgardt H.,
Gualandris A.,
Portegies Zwart S., 2006, MNRAS, 372, 174
10.1111/j.1365-2966.2006.10818.x Google Scholar
- Brown W. R., Geller M. J., Kenyon S. J., Kurtz M. J., 2006, ApJ, 640, L35
- Eisenhauer F. et al., 2005, ApJ, 628, 246
- Fragile P. C., Mathews G. J., 2000, ApJ, 542, 328
- Ghez A. M. et al., 2003, ApJ, 586, L127
- Ghez A. M., Salim S., Hornstein S. D., Tanner A., Lu J. R., Morris M., Becklin E. E., Duchêne G., 2005, ApJ, 620, 744
- Gualandris A., Merritt D., 2008, ApJ, 678, 780
- Gürkan M. A., Hopman C., 2007, MNRAS, 379, 1083
- Harfst S., Gualandris A., Merritt D., Spurzem R., Portegies Zwart S., Berczik P., 2007, New Astron., 12, 357
- Hopman C., Alexander T., 2006, ApJ, 645, L133
- Kustaanheimo P., Stiefel E., 1965, J. Reine Angew. Math., 218, 204
- Löckmann U., Baumgardt H., 2008, MNRAS, 384, 323
- Makino J., Aarseth S. J., 1992, PASJ, 44, 141
-
Makino J.,
Fukushige T.,
Koga M.,
Namura K., 2003, PASJ, 55, 1163
10.1111/j.1365-2966.2007.11720.x Google Scholar
- Matsubayashi T., Makino J., Ebisuzaki T., 2007, ApJ, 656, 879
-
McMillan S. L. W., 1986, Lecture Notes in Phys. Vol. 267, The Use of Supercomputers in Stellar Dynamics. Springer-Verlag,
New York
, p. 156
10.1007/BFb0116406 Google Scholar
- Merritt D., 2002, ApJ, 568, 998
- Merritt D., Mikkola S., Szell A., 2007, ApJ, 671, 53
- Mikkola S., Aarseth S. J., 1993, Celest. Mech. Dyn. Astron., 57, 439
- Mikkola S., Aarseth S., 2002, Celest. Mech. Dyn. Astron., 84, 343
- Mikkola S., Merritt D., 2006, MNRAS, 372, 219
- Mikkola S., Merritt D., 2008, AJ, 135, 2398
- Mikkola S., Tanikawa K., 1999a, MNRAS, 310, 745
- Mikkola S., Tanikawa K., 1999b, Celest. Mech. Dyn. Astron., 74, 287
- Milosavljević M., Merritt D., 2001, ApJ, 563, 34
- Preto M., Tremaine S., 1999, AJ, 118, 2532
- Quinlan G. D., Hernquist L., 1997, New Astron., 2, 533
- Rauch K. P., Tremaine S., 1996, New Astron., 1, 149
- Rubilar G. F., Eckart A., 2001, A&A, 374, 95
- Schödel R. et al., 2007, A&A, 469, 125
- Sigurdsson S., Hernquist L., Quinlan G. D., 1995, ApJ, 446, 75
- Weinberg N. N., Milosavljević M., Ghez A. M., 2005, ApJ, 622, 878
- Will C. M., 2008, ApJ, 674, L25
-
Zare K., 1974, Celest. Mech., 10, 207
10.1007/BF01227620 Google Scholar
- Zucker S., Alexander T., Gillessen S., Eisenhauer F., Genzel R., 2006, ApJ, 639, L21