Equilibrium configurations of strongly magnetized neutron stars with realistic equations of state
Corresponding Author
Kenta Kiuchi
Science & Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
E-mail: [email protected] (KKi); [email protected] (KKo)Search for more papers by this authorCorresponding Author
Kei Kotake
Division of Theoretical Astronomy, National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo 181-8588, Japan
Max-Planck-Institute für Astrophysik, Karl-Schwarzshild-Str. 1, D-85741 Garching, Germany
E-mail: [email protected] (KKi); [email protected] (KKo)Search for more papers by this authorCorresponding Author
Kenta Kiuchi
Science & Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
E-mail: [email protected] (KKi); [email protected] (KKo)Search for more papers by this authorCorresponding Author
Kei Kotake
Division of Theoretical Astronomy, National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo 181-8588, Japan
Max-Planck-Institute für Astrophysik, Karl-Schwarzshild-Str. 1, D-85741 Garching, Germany
E-mail: [email protected] (KKi); [email protected] (KKo)Search for more papers by this authorABSTRACT
We investigate equilibrium sequences of magnetized rotating stars with four kinds of realistic equations of state (EOSs) of SLy, FPS, Shen and LS, employing the Tomimura–Eriguchi scheme to construct the equilibrium configurations. We study the basic physical properties of the sequences in the framework of Newtonian gravity. In addition, we take a new step by taking into account a general relativistic effect to the magnetized rotating configurations. With these computations, we find that the properties of the Newtonian magnetized stars, e.g. structure of magnetic field, highly depends on the EOSs. The toroidal magnetic fields concentrate rather near the surface for Shen and LS EOSs than those for SLy and FPS EOSs. The poloidal fields are also affected by the toroidal configurations. Paying attention to the stiffness of the EOSs, we analyse this tendency in detail. In the general relativistic stars, we find that the difference due to the EOSs becomes small because all the employed EOSs become sufficiently stiff for the large maximum density, typically greater than 1015 g cm−3. The maximum baryon mass of the magnetized stars with axis ratio q∼ 0.7 increases about up to 20 per cent for that of spherical stars. We furthermore compute equilibrium sequences at finite temperature, which should serve as an initial condition for the hydrodynamic study of newly born magnetars. Our results suggest that we may obtain information about the EOSs from the observation of the masses of magnetars.
REFERENCES
- Akmal A., Pandharipande V. R., Ravenhall D. G., 1998, Phys. Rev. C, 58, 1804
- Baym G., Pethick C., 1979, ARA&A, 17, 415
- Bocquet M., Bonazzola S., Gourgoulhon E., Novak J., 1995, A&A, 301, 757
- Bonazzola S., Gourgoulhon E., 1996, A&A, 312, 675
- Braithwaite J., Spruit H. C., 2004, Nat, 431, 819
- Braithwaite J., Spruit H. C., 2006, A&A, 450, 1097
- Broderick A., Prakash M., Lattimer J. M., 2000, ApJ, 537, 351
- Cardall C. Y., Prakash M., Lattimer J. M., 2001, ApJ, 554, 322
- Chandrasekhar S., 1956, ApJ, 124, 232
- Chandrasekhar S., Fermi E., 1953, ApJ, 118, 116
- Cowling T. G., 1965, in L. H. Allen, D. B. McLaughlin, eds, Stellar Structure. Univ. Chicago Press, Chicago , p. 425
- Douchin F., Haensel P., 2001, A&A, 380, 151
- Duncan R. C., Thompson C., 1992, ApJ, 392, L9
- Ferrario L., Wickramasinghe D., 2007, MNRAS, 375, 1009
-
Ferraro V. C. A., 1937, MNRAS, 97, 458
10.1093/mnras/97.6.458 Google Scholar
- Ferraro V. C. A., 1954, ApJ, 119, 407
- Friedman B., Pandharipande V. R., 1981, Nucl. Phys. A, 361, 502
- Geppert U., Rheinhardt M., 2006, A&A, 456, 639
- Glendenning N. K., 2001, Phys. Rep., 342, 393
- Hachisu I., 1986, ApJ, 61, 479
- Harding A. K., Lai D., 2006, Rep. Prog. Phys., 69, 2631
- Hurley K., 1999, preprint (9912061)
- Ioka K., 2001, MNRAS, 327, 639
- Ioka K., Sasaki M., 2003, Phys. Rev. D, 67, 124026
- Ioka K., Sasaki M., 2004, ApJ, 600, 296
- Kaspi V. M., 2004, in F. M. Camilo, B. M. Gaensler, eds, Proc. IAU Symp. 218, Young Neutron Stars and Their Environments. Astron. Soc. Pac., San Francisco , p. 231
- Konno K., Obata T., Kojima Y., 1999, A&A, 352, 211
- Kotake K., Sawai H., Yamada S., Sato K., 2004a, ApJ, 608, 391
- Kotake K., Yamada S., Sato K., Sumiyoshi K., Ono H., Suzuki H., 2004b, Phys. Rev. D, 69, 124004
- Kotake K., Sato K., Takahashi K., 2006, Rep. Prog. Phys., 69, 971
- Kouveliotou C. et al., 1998, Nat, 393, 235
- Lattimer J. M., Douglas Swesty F., 1991, Nucl. Phys. A, 535, 331
- Lattimer J. M., Prakash M., 2007, Phys. Rep., 442, 109
- Livne E., Dessart L., Burrows A., Meakin C. A., 2007, ApJS, 170, 187
- Lovelace R. V. E., Mehanian C. M., Sulkanen M. E., 1986, ApJS, 62, 1
- Marek A., Dimmelmeier H., Janka H., Mueller E., Buras R., 2006, A&A, 445, 273
- Markey P., Taylar. R. J., 1973, MNRAS, 163, 77
- Markey P., Taylar. R. J., 1974, MNRAS, 168, 505
- Mereghetti S., 1999, preprint (9911252)
- Mestel L., 1961, MNRAS, 122, 473
- Miketinac M. J., 1975, Ap&SS, 35, 349
- Moiseenko S. G., Bisnovatyi-Kogan G. S., Ardeljan N. V., 2006, MNRAS, 370, 501
-
Monaghan J. J., 1965, MNRAS, 131, 105
10.1093/mnras/131.1.105 Google Scholar
- Monaghan J. J., 1966, MNRAS, 134, 275
- Morrison I. A., Baumgarte T. W., Shapiro S. L., 2004, ApJ, 610, 941
- Nozawa T., Stergioulas N., Gourgoulhon E., Eriguchi Y., 1998, A&AS, 132, 431
- Obergaulinger M., Aloy M. A., Müller E., 2006, A&A, 450, 1107
- Oppenheimer J. R., Volkoff G., 1939, Phys. Rev., 55, 374
- Ostriker J. P., Hartwick F. D. A., 1968, ApJ, 153, 797
- Ostriker J. P., Mark J. W.-K., 1968, ApJ, 151, 1075
- Page D., Geppert U., Weber F., 2006, Nucl. Phys. A, 777, 497
- Pandharipande V. R., Ravenhall D. G., 1989, NATO ASIB Proc. 205, Nuclear Matter and Heavy Ion Collisions. p. 103
- Prakash M., Bombaci I., Prakash M., Ellis P. J., Lattimer J. M., Knorren R., 1997, Phys. Rep., 280, 1
- Prendergast K. H., 1956, ApJ, 123, 498
- Rampp M., Janka H.-T., 2002, A&A, 396, 361
- Roberts P. H., 1955, ApJ, 122, 508
- Roxburgh I. W., 1966, MNRAS, 132, 347
- Shapiro S. L., Teukolsky S. A., 1983, Research Supported by the National Science Foundation. Wiley-Interscience, New York , p. 645
- Shibata M., Taniguchi K., Uryu K., 2005, Phys. Rev. D, 71, 084021
- Shen H., Toki H., Oyamatsu K., Sumiyoshi K., 1998a, Nucl. Phys. A, 637, 435
- Shen H., Toki H., Oyamatsu K., Sumiyoshi K., 1998b, Prog. Theor. Phys., 100, 1013
- Shibata M., Liu Y. T., Shapiro S. L., Stephens B. C., 2006, Phys. Rev. D, 74, 104026
- Sumiyoshi K., Yamada S., Suzuki H., Shen H., Chiba S., Toki H., 2005, ApJ, 629, 922
- Takiwaki T., Kotake K., Nagataki S., Sato K., 2004, ApJ, 616, 1086
- Thompson C., Duncan R. C., 1993, ApJ, 408, 194
- Thompson C., Duncan R. C., 1995, MNRAS, 275, 255
- Thompson C., Duncan R. C., 1996, ApJ, 473, 322
- Tomiumra Y., Eriguchi Y., 2005, MNRAS, 359, 1117
- Watts A., 2006, 36th COSPAR Scientific Assembly, p. 168
- Wiringa R. B., Fiks V., Fabrocini A., 1988, Phys. Rev. C, 38, 1010
- Woltjer L., 1960, ApJ, 131, 227
- Woods P. M., Thompson C., 2004, preprint (0406133)
- Wright G. A. E., 1973, MNRAS, 162, 339
- Yamada S., Sawai H., 2004, ApJ, 608, 907
- Yoshida S., Eriguchi Y., 2006, ApJS, 164, 156
- Yoshida S., Yoshida S., Eriguchi Y., 2006, ApJ, 651, 462
- Yuan Y. F., Zhang J. L., 1999, ApJ, 525, 950