Determination of a specific region of the purine–cytosine permease involved in the recognition of its substrates
Corresponding Author
J. C. Bloch
URA-GEM(D1481), Institut de Biologie Moléculaire et Cellulaire (IBMC) du CNRS, 15 rue Descartes, 67084 Strasbourg, France.
*Tel. 88 41 70 32; Fax 88 61 06 80.Search for more papers by this authorH. Sychrova
Institute of Physiology, CSAV, Videnska 1083, 14220 Prague 4, Czechoslovakia.
Search for more papers by this authorJ. L. Souciet
URA-GEM(D1481), Institut de Biologie Moléculaire et Cellulaire (IBMC) du CNRS, 15 rue Descartes, 67084 Strasbourg, France.
Search for more papers by this authorR. Jund
UPR-SMBMR(9002), Institut de Biologie Moléculaire et Cellulaire (IBMC) du CNRS, 15 rue Descartes, 67084 Strasbourg, France.
Search for more papers by this authorM. R. Chevallier
URA-GEM(D1481), Institut de Biologie Moléculaire et Cellulaire (IBMC) du CNRS, 15 rue Descartes, 67084 Strasbourg, France.
Search for more papers by this authorCorresponding Author
J. C. Bloch
URA-GEM(D1481), Institut de Biologie Moléculaire et Cellulaire (IBMC) du CNRS, 15 rue Descartes, 67084 Strasbourg, France.
*Tel. 88 41 70 32; Fax 88 61 06 80.Search for more papers by this authorH. Sychrova
Institute of Physiology, CSAV, Videnska 1083, 14220 Prague 4, Czechoslovakia.
Search for more papers by this authorJ. L. Souciet
URA-GEM(D1481), Institut de Biologie Moléculaire et Cellulaire (IBMC) du CNRS, 15 rue Descartes, 67084 Strasbourg, France.
Search for more papers by this authorR. Jund
UPR-SMBMR(9002), Institut de Biologie Moléculaire et Cellulaire (IBMC) du CNRS, 15 rue Descartes, 67084 Strasbourg, France.
Search for more papers by this authorM. R. Chevallier
URA-GEM(D1481), Institut de Biologie Moléculaire et Cellulaire (IBMC) du CNRS, 15 rue Descartes, 67084 Strasbourg, France.
Search for more papers by this authorSummary
Three u.v.-induced mutants of the purine–cytosine permease gene of Saccharomyces cerevisiae, with altered apparent Michaelis constant of transport (Kmapp), were cloned and sequenced. One of the mutants had extensive nucleotide replacement, whereas the other two had a single mutation. To evaluate the contribution of the different amino acid replacements to the phenotype of the complex mutant, simpler mutants were created by site-directed mutagenesis. All the amino acid replacements found in the segment from amino acids 371 to 377 inclusive, contribute to the determination of the phenotype. According to the model postulated this segment lies on the cell surface. In particular, amino acids at position 374 and 377 modulate the affinity of the permease towards its substrates. In the wild-type, when asparagine is present at both of these positions, the lowest Kmapp values are found.
References
- Brèthes, D., Chirio, M.C., Napias, C., Chevallier, M.R., Lavie, J.L., and Chevallier, J. (1992) In vivo and in vitro studies of the purine-cytosine permease of Saccharomyces cerevisiae. Eur J Biochem 204: 699–704.
- Chevallier, M.R., Bloch, J.C, and Lacroute, F. (1980) Transcriptional and translational expression of a chimeric bacterial-yeast plasmid in yeasts. Gene 11: 11–19.
- Chevallier, M.R., Jund, R., and Lacroute, F. (1975). Characterization of cytosine permeation in Saccharomyces cerevisiae. J Bacteriol 122: 629–641.
- Clewell, D.B., and Helinski, D.R. (1969) Supercoiled DNA protein complex in Escherichia coli: purification and induced conversion to an open circular DNA form. Proc Natl Acad Sci USA 62: 1159–1166.
- Forêt, M., Schmidt, R., and Reichert, U. (1978) On the mechanism of substrate binding to the purine-transport system of Saccharomyces cerevisiae. Eur J Biochem 82: 33–43.
- Grenson, M. (1969) The utilization of exogenous pyrimidines and the recycling of uridine-5′-phosphate derivatives in Saccharomyces cerevisiae, as studied by means of mutants affected in pyrimidine uptake and metabolism. Eur J Biochem 11: 249–260.
- Hampsey, D.M., Ernst, J.F., Stewart, J.W., and Sherman, F. (1988) Multiple base-pair mutations in yeast. J Mol Biol 201: 471–486.
- Helene, C. (1977) Specific recognition of guanine bases in protein-nucleic acid complexes. FEBS Lett 74: 10–13.
- Henderson, P.J.F. (1985) Statistical analysis of enzyme kinetic data. In Techniques in the Life Sciences B1/II. Protein and Enzyme Biochemistry (Part II Supplement). K.F. Tipton (eds). Amsterdam : Elsevier, pp. 1–43.
- Holmes, D.S., and Quigley, M. (1981) A rapid boiling method for the preparation of bacterial plasmids. Anal Biochem 114: 193–197.
- Hopkins, P., Chevallier, M.R., Jund, R., and Eddy, A.A. (1988) Use of plasmid vectors to show that the uracil and cytosine permeases of the yeast Saccharomyces cerevisiae are electrogenic proton sym ports. FEMS Microbiol Letts 49: 173–177.
- Jund, R., and Lacroute, F. (1970) Genetic and physiological aspects of resistance to 5-fluoropyrimidines In Saccharomyces cerevisiae. J Bacteriol 102: 607–615.
- King, S.C. and Wilson, H. (1990) Towards an understanding of the structural basis of ‘forbidden’ transport pathways in the Escherichia coli lactose carriers: mutations probing the energy barriers to uncoupled transport. Mol Microbiol 4: 1433–1438.
- Kunkel, T.A. (1985) Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci USA 82: 488–492.
- Mandel, M., and Higa, A. (1970) Calcium dependent bacteriophage DNA infection. J Mol Biol 53: 159–162.
- Maniatis, T., Fritsch, E.F., and Sambrook, J. (1982) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor , New York : Cold Spring Harbor Laboratory Press, pp. 390–401.
- Polak, A., and Grenson, M. (1973) Evidence for a common transport system for cytosine, adenine, and hypoxanthine In Saccharomyces cerevisiae and Candida albicans. Eur J Biochem 32: 276–282.
- Quiocho, F.A. (1986) Carbohydrate-binding proteins: tertiary structure and protein-sugar interactions. Annu Rev Biochem 55: 287–315.
- Sanger, F., Nicklen, S., and Coulson, A.R. (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467.
- Schmidt, R., Manolson, M.F., and Chevallier, M.R. (1984) Photo-affinity labeling and characterization of the cloned purine-cytosine transport system in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 8: 6276–6280.
- Sellini, S., Maurizot, J.C., Dimicoli, J.L, and Helene, C. (1973) Hydrogen bonding of amino acid side chains to nucleic acid bases. FEBS Lett 30: 219–224.
- Sikorski, R.S., and Hieter, P. (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19–27.
- Weber, E., Rodriguez, C., Chevallier, M.R., and Jund, R. (1990) The purine–cytosine permease gene of Saccharomyces cerevisiae primary structure and the deduced protein sequence of the FCy2 gene product. Mol Microbiol 4: 585–596.
- Winston, F., Ohumley, F., and Fink, G.R. (1983) Eviction and transplacement of genes in yeast. Meth Enzymol 101: 211–228.