Precipitation rather than temperature influenced the phylogeography of the endemic shrub Anarthrophyllum desideratum in the Patagonian steppe
Andrea Cosacov
Laboratorio de Ecología Evolutiva y Biología Floral, Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET–Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
Search for more papers by this authorLeigh A. Johnson
Department of Biology and M. L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602 USA
Search for more papers by this authorValeria Paiaro
Laboratorio de Ecología Evolutiva y Biología Floral, Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET–Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
Search for more papers by this authorAndrea A. Cocucci
Laboratorio de Ecología Evolutiva y Biología Floral, Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET–Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
Search for more papers by this authorFrancisco E. Córdoba
Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), CONICET–Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
Search for more papers by this authorCorresponding Author
Alicia N. Sérsic
Laboratorio de Ecología Evolutiva y Biología Floral, Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET–Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
Correspondence: Alicia N. Sérsic, Laboratorio de Ecología Evolutiva y Biología Floral, Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET–Universidad Nacional de Córdoba, Casilla de Correo 495, 5000 Córdoba, Argentina.
E-mail: [email protected]
Search for more papers by this authorAndrea Cosacov
Laboratorio de Ecología Evolutiva y Biología Floral, Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET–Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
Search for more papers by this authorLeigh A. Johnson
Department of Biology and M. L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602 USA
Search for more papers by this authorValeria Paiaro
Laboratorio de Ecología Evolutiva y Biología Floral, Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET–Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
Search for more papers by this authorAndrea A. Cocucci
Laboratorio de Ecología Evolutiva y Biología Floral, Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET–Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
Search for more papers by this authorFrancisco E. Córdoba
Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), CONICET–Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
Search for more papers by this authorCorresponding Author
Alicia N. Sérsic
Laboratorio de Ecología Evolutiva y Biología Floral, Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET–Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
Correspondence: Alicia N. Sérsic, Laboratorio de Ecología Evolutiva y Biología Floral, Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET–Universidad Nacional de Córdoba, Casilla de Correo 495, 5000 Córdoba, Argentina.
E-mail: [email protected]
Search for more papers by this authorAbstract
Aim
In order to assess the impact of precipitation changes during Pleistocene glaciations on plant species of the Patagonian steppe, a phylogeographical study of the endemic shrub Anarthrophyllum desideratum was performed.
Location
Southern Patagonia: Argentina and Chile.
Methods
Chloroplast intergenic spacers trnS–trnG and rpoB–trnC were sequenced for 264 individuals from 33 localities spanning the entire distribution of A. desideratum. Phylogenetic (statistical parsimony, maximum likelihood and Bayesian inference) and population genetic analyses (spatial analyses of molecular variance, mismatch distributions, neutrality tests and Bayesian skyline plot) were performed. Divergence time estimates using a calibrated molecular clock were also conducted. Niche modelling was used to reconstruct the palaeodistribution to validate phylogeographical patterns.
Results
Thirty haplotypes were identified that clustered into two main lineages, revealing a significant latitudinal phylogeographical break north and south of the Deseado River (c. 47° S). Infra-specific diversification began in the late Miocene, with northern and southern lineages separating c. 3 Ma, after the eastern Patagonian lowlands started to become increasingly arid. Three areas of high molecular diversity were identified: one in southern and two in northern Patagonia where niche modelling indicates that the species may have survived during the Last Glacial Maximum. These putative refugia received more moisture than much of the steppe during glaciation-associated aridization. The south-western refugium is the more likely source for eastward range expansion during post-glacial humidification.
Main conclusions
Anarthrophyllum desideratum responded differently to historical processes north and south of the Deseado River. In the north this species survived in situ in fragmented populations, whereas in the south it survived in localized refugia that presumably avoided extreme aridization, and from which it expanded eastwards. For southern Patagonia, our results support a new historical scenario affected more by precipitation regimes than by temperature changes associated with glacial cycles. This hypothesis should be considered in future plant phylogeographical studies from the Patagonian steppe.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer-reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
jbi2776-sup-0001-AppendixS1.docWord document, 45 KB | Appendix S1 Outgroup species, locality, coordinates and voucher numbers. |
jbi2776-sup-0002-AppendixS2.docxWord document, 62.2 KB | Appendix S2 Spatial analysis of molecular variance results for the southern and northern groups of Anarthrophyllum desideratum populations. |
jbi2776-sup-0003-AppendixS3.docxWord document, 11.7 KB | Appendix S3 Percentage contribution of climatic variables to the past and current simulations of the distribution of Anarthrophyllum desideratum. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Alekseyenko, A.V., Lee, C.J. & Suchard, M.A. (2008) Wagner and Dollo: a stochastic duet by composing two parsimonious solos. Systematic Biology, 57, 772–784.
- Alsos, I.G., Engelskjøn, T., Gielly, L., Taberlet, P. & Brochmann, C. (2005) Impact of ice ages on circumpolar molecular diversity: insights from an ecological key species. Molecular Ecology, 14, 2739–2753.
- Barreda, V., Guler, V. & Palazzesi, L. (2008) Late Miocene continental and marine palynological assemblages from Patagonia. The Late Cenozoic of Patagonia and Tierra del Fuego (ed. by J. Rabassa), pp. 343–350. Elsevier, Oxford.
- Buckley, T.R., Marske, K. & Attanayake, D. (2010) Phylogeography and ecological niche modelling of the New Zealand stick insect Clitarchus hookeri (White) support survival in multiple coastal refugia. Journal of Biogeography, 37, 682–695.
- Clement, M., Posada, D. & Crandall, K.A. (2000) TCS: a computer program to estimate gene genealogies. Molecular Ecology, 9, 1657–1999.
- Compagnucci, R.H. (2011) Atmospheric circulation over Patagonia from the Jurassic to present: a review through proxy data and climatic modelling scenarios. Biological Journal of the Linnean Society, 103, 229–249.
- Conterato, I.F., Miotto, S.T.S. & Schifino-Wittmann, M.T. (2007) Chromosome number, karyotype, and taxonomic considerations on the enigmatic Sellocharis paradoxa Taubert (Leguminosae, Papilionoideae, Genisteae). Botanical Journal of the Linnean Society, 155, 223–226.
- Cosacov, A., Sérsic, A.N., Sosa, V., Johnson, L.A. & Cocucci, A.A. (2010) Multiple periglacial refugia in the Patagonia steppe and post-glacial colonization of the Andes: the phylogeography of Calceolaria polyrhiza. Journal of Biogeography, 37, 1463–1477.
- Crandall, K.A. & Templeton, A.R. (1993) Empirical tests of some predictions from coalescent theory with applications to intraspecific phylogeny reconstruction. Genetics, 134, 959–969.
- Cullings, K.W. (1992) Design and testing of a plant-specific PCR primer for ecological and evolutionary studies. Molecular Ecology, 1, 233–240.
- Cusminsky, G., Schwalb, A., Pérez, A.P., Pineda, D., Viehberg, F., Whatley, R., Markgraf, V., Gilli, A., Ariztegui, D. & Anselmetti, F.S. (2011) Late Quaternary environmental changes in Patagonia as inferred from lacustrine fossil and extant ostracods. Biological Journal of the Linnean Society, 103, 397–408.
- Doyle, J.J. & Doyle, J.L. (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19, 11–15.
- Drummond, A.J. & Rambaut, A. (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7, 214.
- Drummond, A.J., Rambaut, A., Shapiro, B. & Pybus, O.G. (2005) Bayesian coalescent inference of past population dynamics from molecular sequences. Molecular Biology and Evolution, 22, 1185–1192.
- Dupanloup, I., Schneider, S. & Excoffier, L. (2002) A simulated annealing approach to define the genetic structure of populations. Molecular Ecology, 11, 2571–2581.
- Excoffier, L. (2004) Patterns of DNA sequence diversity and genetic structure after a range expansion: lessons from the infinite-island model. Molecular Ecology, 13, 853–864.
- Excoffier, L. & Lischer, H.E.L. (2010) Arlequin suite ver. 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10, 564–567.
- Fu, Y.X. (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics, 147, 915–925.
- Glasser, N.F., Harrison, S., Winchester, V. & Aniya, M. (2004) Late Pleistocene and Holocene palaeoclimate and glacier fluctuations in Patagonia. Global and Planetary Change, 43, 79–101.
- Golluscio, R.A. & Sala, O.E. (1993) Plant functional types and ecological strategies in Patagonian forbs. Journal of Vegetation Sciences, 4, 839–846.
- Gradstein, F.M. & Ogg, J.G. (2004) Geologic Time Scale 2004 – why, how, and where next! Lethaia, 37, 175–181.
- Guindon, S., Lethiec, F., Duroux, P. & Gascuel, O. (2005) PHYML online – a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Research, 33, W557–W559.
- Hamilton, M.B. (1999) Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation. Molecular Ecology, 8, 521–523.
- Heusser, C.J. (1987) Quaternary vegetation of southern South America. Quaternary of South America and Antarctic Peninsula, Vol. 5 (ed. by J. Rabassa), pp. 197–221. A. A. Balkema, Leiden.
- Hewitt, G.M. (2004) Genetic consequences of climatic oscillations in the Quaternary. Philosophical Transactions of the Royal Society B: Biological Sciences, 359, 183–195.
- Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978.
- Jacquemin, S.J. & Pyron, M. (2011) Impacts of past glaciation events on contemporary fish assemblages of the Ohio River basin. Journal of Biogeography, 38, 982–991.
- Jakob, S.S., Martinez-Meyer, E. & Blattner, F.R. (2009) Phylogeographic analyses and paleodistribution modeling indicate Pleistocene in situ survival of Hordeum species (Poaceae) in southern Patagonia without genetic or spatial restriction. Molecular Biology and Evolution, 26, 907–923.
- Katoh, K., Misawa, K., Kuma, K.-I. & Miyata, T. (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 30, 3059–3066.
- Keppel, G., Van Niel, K.P., Wardell-Johnson, G.W., Yates, C.J., Byrne, M., Mucina, L., Schut, A.G.T., Hopper, S.D. & Franklin, S.E. (2012) Refugia: identifying and understanding safe havens for biodiversity under climate change. Global Ecology and Biogeography, 21, 393–404.
- Kim, I., Phillips, C.J., Monjeau, J.A., Birney, E.C., Noack, K., Pumo, D.E., Sikes, R.S. & Dole, J.A. (1998) Habitat islands, genetic diversity, and gene flow in a Patagonian rodent. Molecular Ecology, 7, 667–678.
- Lavin, M., Herendeen, P.S. & Wojciechowski, M.F. (2005) Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the Tertiary. Systematic Biology, 54, 575–594.
- Lessa, E.P., D'Elía, G. & Pardiñas, U.F.J. (2010) Genetic footprints of late Quaternary climate change in the diversity of Patagonian–Fueguian rodents. Molecular Ecology, 19, 3031–3037.
- Lewis, G., Schrire, B., Mackinder, B. & Lock, M. (2005) Legumes of the world. Royal Botanic Gardens, Kew.
- Librado, P. & Rozas, J. (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25, 1451–1452.
- Markgraf, V. (1983) Late and postglacial vegetational and paleoclimatic changes in subantarctic, temperate and arid environments in Argentina. Palynology, 7, 43–70.
10.1080/01916122.1983.9989252 Google Scholar
- Martínez, O.A. & Coronato, A.M.J. (2008) The Late Cenozoic fluvial deposits of Argentine Patagonia. The Late Cenozoic of Patagonia and Tierra del Fuego (ed. by J. Rabassa), pp. 205–226. Elsevier, Oxford.
- Martínez, O.A. & Kutschker, A. (2011) The ‘Rodados Patagónicos’ (Patagonian Shingle Formation) of eastern Patagonia: environmental conditions of gravel sedimentation. Biological Journal of the Linnean Society, 103, 336–345.
- Morando, M., Avila, L.J., Turner, C.R. & Sites, J.W., Jr (2007) Molecular evidence for a species complex in the Patagonian lizard Liolaemus bibronii and phylogeography of the closely related Liolaemus gracilis (Squamata: Liolaemini). Molecular Phylogenetics and Evolution, 43, 952–973.
- Mráz, P., Gaudeul, M., Rioux, D., Gielly, L., Choler, P., Taberlet, P. & the IntraBioDiv Consortium (2007) Genetic structure of Hypochaeris uniflora (Asteraceae) suggests vicariance in the Carpathians and rapid post-glacial colonization of the Alps from an eastern Alpine refugium. Journal of Biogeography, 34, 2100–2114.
- Nei, M. (1987) Molecular evolutionary genetics. Columbia University Press, New York.
10.1111/j.1365-294X.2006.02908.x Google Scholar
- Neilson, R.P. (1995) A model for predicting continental-scale vegetation distribution and water-balance. Ecological Applications, 5, 362–385.
- Oliva, G.E., Noy-Meir, I. & Cibils, A. (2001) Fundamentos de ecología de pastizales. Ganadería sustentable en la Patagonia austral (ed. by P. Borrelli and G.E. Oliva), pp. 81–98. INTA, Río Gallegos, Argentina.
- Paez, M.M., Prieto, A.R. & Mancini, M.V. (1999) Fossil pollen from Los Toldos locality: a record of the Late-glacial transition in the Extra-Andean Patagonia. Quaternary International, 53–54, 69–75.
- Paiaro, V. (2011) Gradientes ambientales y márgenes de distribución: patrones espaciales de variabilidad fenotípica, atributos poblacionales y caracteres reproductivos en Anarthrophyllum desideratum (DC.) Benth. PhD Thesis, Universidad Nacional de Córdoba, Córdoba, Argentina.
- Paruelo, J.M., Beltrán, A., Jobbágy, E., Sala, O.E. & Golluscio, R.A. (1998) The climate of Patagonia: general patterns and controls on biotic processes. Ecología Austral, 8, 85–101.
- Phillips, S.J., Anderson, R.P. & Schapire, R.E. (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231–259.
- Ponce, J.F., Rabassa, J., Coronato, A. & Borromei, A.M. (2011) Palaeogeographical evolution of the Atlantic coast of Pampa and Patagonia since the last glacial maximum to the Middle Holocene. Biological Journal of the Linnean Society, 103, 363–379.
- Posada, D. (2008) jModelTest: phylogenetic model averaging. Molecular Biology and Evolution, 25, 1253–1256.
- Posada, D., Crandall, K.A. & Templeton, A.R. (2000) GeoDis: a program for the cladistic nested analysis of the geographical distribution of genetic haplotypes. Molecular Ecology, 9, 487–488.
- Rabassa, J., Coronato, A. & Martínez, O. (2011) Late Cenozoic glaciations in Patagonia and Tierra del Fuego: an updated review. Biological Journal of the Linnean Society, 103, 316–335.
- Rambaut, A. (2008) FigTree v1.1.1. Available at: http://tree.bio.ed.ac.uk/software/figtree.
- Rambaut, A. & Drummond, A.J. (2009) Tracer v1.5.0. Available at: http://beast.bio.ed.ac.uk/Tracer (accessed 20 August 2011).
- Ramos, V. (1999) Las provincias geológicas del territorio argentino. Anales del Servicio Geológico Minero Argentino, 29, 41–96.
- Ramos, V.A. & Ghiglione, M.C. (2008) Tectonic evolution of the Patagonian Andes. The Late Cenozoic of Patagonia and Tierra del Fuego (ed. by J. Rabassa), pp. 205–226. Elsevier, Oxford.
10.1016/S1571-0866(07)10004-X Google Scholar
- Rogers, A.R. & Harpending, H. (1992) Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology and Evolution, 9, 552–569.
- Roig, F.A. (1998) La vegetación de la Patagonia. Flora Patagónica, Vol. VIII, Part I (ed. by M.N. Correa), pp. 48–166. INTA, Buenos Aires, Argentina.
- Schwinning, S. & Sala, O.E. (2004) Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia, 141, 211–220.
- Sede, S.M., Nicola, M.V., Pozner, R. & Johnson, L.A. (2012) Phylogeography and palaeodistribution modelling in the Patagonian steppe: the case of Mulinum spinosum (Apiaceae). Journal of Biogeography, 39, 1041–1057.
- Sérsic, A.N., Cosacov, A., Cocucci, A.A., Johnson, L.A., Pozner, R., Avila, L.J., Sites, J.W., Jr & Morando, M. (2011) Emerging phylogeographical patterns of plants and terrestrial vertebrates from Patagonia. Biological Journal of the Linnean Society, 103, 475–494.
- Shaw, J., Lickey, E.B., Beck, J.T., Farmer, S.B., Liu, W., Miller, J., Siripun, K.C., Winder, C.T., Schilling, E.E. & Small, R.L. (2005) The tortoise and the hare. II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. American Journal of Botany, 92, 142–166.
- Simmons, M.P. & Ochoterena, H. (2000) Gaps as characters in sequence-based phylogenetic analyses. Systematic Biology, 49, 369–381.
- Sorarú, S.B. (1974) Revisión de Anarthrophyllum, género Argentino-Chileno de Leguminosas. Darwiniana, 18, 453–488.
- Srur, A.M. & Villalba, R. (2009) Annual growth rings of the shrub Anarthrophyllum rigidum across Patagonia: interannual variations and relationships with climate. Journal of Arid Environments, 73, 1074–1083.
- Stephenson, N.L. (1990) Climatic control of vegetation distribution: the role of the water balance. The American Naturalist, 135, 649–670.
- Suchard, M.A., Weiss, R.E. & Sinsheimer, J.S. (2001) Bayesian selection of continuous-time Markov chain evolutionary models. Molecular Biology and Evolution, 18, 1001–1013.
- Tajima, F. (1983) Evolutionary relationship of DNA sequences in finite populations. Genetics, 105, 437–460.
- Tajima, F. (1989) The effect of change in population size on DNA polymorphism. Genetics, 123, 597–601.
- Templeton, A.R. (1998) Nested clade analysis of phylogeographic data: testing hypotheses about gene flow and population history. Molecular Ecology, 7, 381–397.
- Templeton, A.R. (2011) Inference key for the nested haplotype tree analysis of geographical distances. Available at: http://darwin.uvigo.es/download/geodisKey_06Jan11.pdf (accessed 20 August 2011).