Inference of past climate from borehole temperature data using Bayesian Reversible Jump Markov chain Monte Carlo
Peter O. Hopcroft
Department Earth Science & Engineering, Imperial College, London SW7 2AZ, UK. E-mail: [email protected]
Search for more papers by this authorKerry Gallagher
Géosciences Rennes, Université de Rennes 1, Rennes, 35042, France
Search for more papers by this authorChris C. Pain
Department Earth Science & Engineering, Imperial College, London SW7 2AZ, UK. E-mail: [email protected]
Search for more papers by this authorPeter O. Hopcroft
Department Earth Science & Engineering, Imperial College, London SW7 2AZ, UK. E-mail: [email protected]
Search for more papers by this authorKerry Gallagher
Géosciences Rennes, Université de Rennes 1, Rennes, 35042, France
Search for more papers by this authorChris C. Pain
Department Earth Science & Engineering, Imperial College, London SW7 2AZ, UK. E-mail: [email protected]
Search for more papers by this authorSUMMARY
Estimates of past climate derived from borehole temperatures are assuming a greater importance in context of the millennial temperature variation debate. However, recovery of these signals is usually performed with regularization which can potentially lead to underestimation of past variation when noise is present. In this work Bayesian inference is applied to this problem with no explicit regularization. To achieve this Reversible Jump Markov chain Monte Carlo is employed, and this allows models of varying complexity (i.e. variable dimensions) to be sampled so that it is possible to infer the level of ground surface temperature (GST) history resolution appropriate to the data. Using synthetic examples, we show that the inference of the GST signal back to more than 500 yr is robust given boreholes of 500 m depth and moderate noise levels and discuss the associated uncertainties. We compare the prior information we have used with the inferred posterior distribution to show which parts of the GST reconstructions are independent of this prior information. We demonstrate the application of the method to real data using five boreholes from southern England. These are modelled both individually and jointly, and appear to indicate a spatial trend of warming over 500 yr across the south of the country.
REFERENCES
- Andersen, K.E., Brooks, S.P. & Hansen, M.B., 2003. Bayesian inversion of geoelectrical resistivity data, J. Roy. Stat. Soc., Ser. B, Stat. Methodol., 65, 619–642.
- Beltrami, H. & Bourlon, E., 2004. Ground warming patterns in the Northern Hemisphere during the last five centuries, Earth planet. Sci. Lett., 227(3–4), 169–177.
- Beltrami, H. & Mareschal, J.C., 1992. Ground temperature histories for central and eastern Canada from geothermal measurements—Little Ice-Age signature, Geophys. Res. Lett., 19(7), 689–692.
-
Beltrami, H.,
Jessop, A.M. &
Mareschal, J.C., 1992. Ground temperature histories in eastern and central Canada from geothermal measurements—evidence of climatic-change, Global Planet. Change, 98(2–4), 167–184.
10.1016/0921-8181(92)90033-7 Google Scholar
- Beltrami, H., Cheng, L. & Mareschal, J.C., 1997. Simultaneous inversion of borehole temperature data for determination of ground surface temperature history, Geophys. J. Int., 129(2), 311–318.
- Bernardo, A. & Smith, J., 1994. Bayesian Theory, John Wiley, Chichester .
- Dahl-Jensen, D., Mosegaard, K., Gundestrup, N., Clow, G.D., Johnsen, S.J., Hansen, A.W. & Balling, N., 1998. Past temperatures directly from the Greenland Ice Sheet, Science, 282(5387), 268–271.
- Denison, D.G.T., Holmes, C.C., Mallick, B.K. & Smith, A.F.M., 2002. Bayesian Methods for Nonlinear Classification and Regression, John Wiley and Sons, Chichester .
- W.R. Gilks, S. Richardson & D. Spiegelhalter (eds), 1996. Markov Chain Monte Carlo in Practice, Chapman and Hall, London .
- Gonzalez-Rouco, F., Von Storch, H. & Zorita, E., 2003. Deep soil temperature as proxy for surface air-temperature in a coupled model simulation of the last thousand years, Geophys. Res. Lett., 30(21), 2116, doi:DOI: 10.1029/2003GL018264.
- Gonzalez-Rouco, J.F., Beltrami, H., Zorita, E. & Von Storch, H., 2006. Simulation and inversion of borehole temperature profiles in surrogate climates: spatial distribution and surface coupling, Geophys. Res. Lett., 33(1), L01703, doi:DOI: 10.1029/2005GL024693.
- Green, P.J., 1995. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination, Biometrika, 82(4), 711–732.
- Green, P.J., 2001. A Primer on Markov chain Monte Carlo, in Complex Stochastic Systems, pp. 1–62, eds O. Barndorff-Nielsen, D.R. Cox & C. Kluppelberg, Chapman and Hall, London .
-
Green, P.J., 2003. Trans-dimensional Markov chain Monte Carlo, in
P. Green,
N. Hjort &
S. Richardson, Highly Structured Stochastic Systems, pp. 179-198, Oxford Statistical Science Series, Oxford University Press,
Oxford
.
10.1093/oso/9780198510550.003.0017 Google Scholar
- Hartmann, A. & Rath, V., 2005. Uncertainties and shortcomings of ground surface temperature histories derived from inversion of temperature logs, J. Geophys. Eng., 2(4), 299–311.
- Hegerl, G.C., Crowley, T.J., Allen, M., Hyde, W.T., Pollack, H.N., Smerdon, J. & Zorita, E., 2007. Detection of human influence on a new, validated 1500-year temperature reconstruction, J. Clim., 20(4), 650–666.
- Huang, S. & Pollack, H., 1998. Global borehole temperature database for climate reconstruction. IGBP PAGES/World Data Center-A for Paleoclimatology data contribution series 1998−044. NOAA/NGDC Paleoclimatology Program, Boulder CO , USA .
- Huang, S.P., Shen, P.Y. & Pollack, H.N., 1996. Deriving century-long trends of surface temperature change from borehole temperatures, Geophys. Res. Lett., 23(3), 257–260.
-
Jaynes, E., 2003. Probability Theory: The Logic of Science, Cambridge University Press,
Cambridge
,
UK
.
10.1017/CBO9780511790423 Google Scholar
- Jefferys, W.H. & Berger, J.O., 1992. Ockham's razor and Bayesian-analysis, Am. Scientist, 80, 64–72.
- Jones, P.D. & Mann, M.E., 2004. Climate over past millennia, Rev. Geophys., 42(2), RG2002, doi:DOI: 10.1029/2003RG000243.
- Jones, P.D. & Moberg, A., 2003. Hemispheric and large-scale surface air temperature variations: an extensive revision and an update to 2001, J. Clim., 16(2), 206–223.
-
Kakuta, S., 1992. Surface-temperature history during the last 1000 years near Prudhoe Bay, Alaska: applying control theory to the inversion of borehole temperature profiles, Global Planet. Change, 6(2–4), 225–244.
10.1016/0921-8181(92)90039-D Google Scholar
- Lewis, R.W., Morgan, K., Thomas, H.R. & Seetharamu, K., 1996. The Finite Element Method in Heat Transfer Analysis, Wiley, Chichester .
- MacKay, D., 2003. Information Theory, Inference, and Learning Algorithms, Cambridge University Press, Cambridge .
- Malinverno, A., 2000. A Bayesian criterion for simplicity in inverse problem parametrization, Geophys. J. Int., 140(2), 267–285.
- Malinverno, A., 2002. Parsimonious Bayesian Markov chain Monte Carlo inversion in a nonlinear geophysical problem, Geophys. J. Int., 151(3), 675–688.
- Malinverno, A. & Briggs, V.A., 2004. Expanded uncertainty quantification in inverse problems: hierarchical Bayes and empirical Bayes, Geophysics, 69(4), 1005–1016.
- Malinverno, A. & Leaney, W.S., 2005. Monte-Carlo Bayesian look-ahead inversion of walkaway vertical seismic profiles, Geophys. Prospect., 53(5), 689–703.
- Manley, G., 1974. Central England temperatures—monthly means 1659 to 1973, Q. J. R. Meteorol. Soc., 100(425), 389–405.
- Mareschal, J. & Beltrami, H., 1992. Evidence for recent warming from perturbed geothermal gradients: examples from eastern Canada, Clim. Dyn., 6, 135–143.
- Moberg, A., Sonechkin, D.M., Holmgren, K., Datsenko, N.M. & Karlen, W., 2005. Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data, Nature, 433(7026), 613–617.
- Mosegaard, K. & Tarantola, A., 1995. Monte-carlo sampling of solutions to inverse problems, J. Geophys. Res.-Solid Earth, 100(B7), 12 431–12 447.
- Parker, D.E., Legg, T.P. & Folland, C.K., 1992. A new daily central England temperature series, 1772–1991, Int. J. Climatol., 12(4), 317–342.
- Pollack, H.N. & Huang, S.P., 2000. Climate reconstruction from subsurface temperatures, Ann. Rev. Earth Planet. Sci., 28, 339–365.
- Pollack, H.N., Shen, P.Y. & Huang, S.P., 1996. Inference of ground surface temperature history from subsurface temperature data: interpreting ensembles of borehole logs, Pure appl. Geophys., 147(3), 537–550.
- Sambridge, M., Gallagher, K., Jackson, A. & Rickwood, P., 2006. Trans-dimensional inverse problems, model comparison and the evidence, Geophys. J. Int., 167(2), 528–542.
- Scales, J.A. & Tenorio, L., 2001. Prior information and uncertainty in inverse problems, Geophysics, 66(2), 389–397.
- Serban, D.Z. & Jacobsen, B.H., 2001. The use of broad-band prior covariance for inverse palaeoclimate estimation, Geophys. J. Int., 147(1), 29–40.
- Shen, P.Y. & Beck, A.E., 1991. Least-squares inversion of borehole temperature-measurements in functional space, J. Geophys. Res.-Solid Earth, 96(B12), 19 965–19 979.
-
Shen, P.Y.,
Wang, K.,
Beltrami, H. &
Mareschal, J.C., 1992. A comparative study of inverse methods for estimating climatic history from borehole temperature data, Global Planet. Change, 6(2-4), 113–127.
10.1016/0921-8181(92)90030-E Google Scholar
- Sivia, J. & Skilling, D., 2006. Data Analysis. A Bayesian Tutorial, 2nd edn, Oxford University Press, Oxford , UK .
- Stephenson, J., Gallagher, K. & Holmes, C.C., 2006. Low temperature thermochronology and strategies for multiple samples 2: partition modelling for 2D/3D distributions with discontinuities, Earth planet. Sci. Lett., 241(3–4), 557–570.
-
Tarantola, A., 2005. Inverse Problem Theory and Methods for Model Parameter Estimation,
SIAM
,
Philadelphia
.
10.1137/1.9780898717921 Google Scholar
- Woodbury, A.D. & Ferguson, G., 2006. Ground surface paleotemperature reconstruction using information measures and empirical Bayes, Geophys. Res. Lett., 33(6), L06702, doi:DOI: 10.1029/2005GL025243.