Smooth inversion for ground surface temperature histories: estimating the optimum regularization parameter by generalized cross-validation
V. Rath
Applied Geophysics, RWTH Aachen University, Lochnerstr., 4-20, D-52056 Aachen, Germany. E-mail: [email protected]
Search for more papers by this authorD. Mottaghy
Applied Geophysics, RWTH Aachen University, Lochnerstr., 4-20, D-52056 Aachen, Germany. E-mail: [email protected]
Search for more papers by this authorV. Rath
Applied Geophysics, RWTH Aachen University, Lochnerstr., 4-20, D-52056 Aachen, Germany. E-mail: [email protected]
Search for more papers by this authorD. Mottaghy
Applied Geophysics, RWTH Aachen University, Lochnerstr., 4-20, D-52056 Aachen, Germany. E-mail: [email protected]
Search for more papers by this authorSUMMARY
The inversion of recent borehole temperatures has proved to be a successful tool to determine ancient ground surface temperature histories. To take into account heterogeneity of thermal properties and their non-linear dependence on temperature itself, a versatile 1-D inversion technique based on a finite-difference approach has been developed. Regularization of the generally ill-posed problem is obtained by an appropriate version of Tikhonov regularization of variable order. In this approach, a regularization parameter has to be determined, representing a trade-off between data fit and model smoothness. We propose to select this parameter by generalized cross-validation. The resulting technique is employed in case studies from the Kola ultradeep drilling site, and another borehole from northeastern Poland. Comparing the results from both sites corroborates the hypothesis that subglacial ground surface temperatures as met in Kola often are much higher than the ones in areas exposed to atmospheric conditions (Poland).
REFERENCES
- Beltrami, H., Cheng, L. & Mareschal, J.C., 1997. Simultaneous inversion of borehole temperature data for determination of ground surface temperature history, Geophys. J. Int., 129, 311–318.
-
Björck, Å., 1996. Numerical Methods for Least Squares Problems, SIAM,
Philadelphia
.
10.1137/1.9781611971484 Google Scholar
- Boulton, G.S., Dongelmans, P., Punkari, M. & Broadgate, M., 2001. Paleoglaciology of an ice sheet through a glacial cycle: the European ice sheet through the Weichselian, Quater. Sci. Revi., 20, 591–625.
- Chapman, D.S., 1986. Thermal gradients in the continental crust, in The Nature of The Lower Continental Crust, eds J.B. Dawson, D.A. Carswell, J. Hall & K.H. Wedepohl, Geological Society Special Publication No. 24, Blackwell Scientific Publications, Oxford.
- Clauser, C. & Mareschal, J.C., 1995. Ground temperature history in central Europe from borehole temperature data, Geophys. J. Int., 121(3), 805–817.
- Dahl-Jensen, D., Mosegaard, K., Gundestrup, N., Clow, G.D., Johnsen, S.J., Hansen, A.W. & Balling, N., 1998. Past temperatures directly from the greenland ice sheet, Science, 282, 268–271.
- Farquharson, C.G. & Oldenburg, D.W., 2004. A comparison of automatic techniques for estimating the regularization parameter in non-linear inverse problems, Geophys. J. Int., 156, 411–425.
- Ferguson, G., Beltrami, H. & Woodbury, A.D., 2006. Perturbation of ground surface temperature reconstructions by groundwater flow Geophys. Res. Lett., 33, L13708.
- Forsström, P.-J., 2005. Through a glacial cycle: simulation of the Eurasian ice sheet dynamics during the last glaciation, Ann. Acad. Sci. Fennicae Geologica-Geographica, 168, 1–94.
- Fraedrich, K. & Schönwiese, C.-D., 2002. Space-time variability of the European climate, in The Science of Desaster: Climate Disruptions, Heart Attacks, and Market Crashes, pp. 120–155, eds A. Bunde, J. Kropp & H. Schellnhuber, Springer Verlag, Berlin .
- Frommer, A. & Maass, P., 1999. Fast CG-based methods for Tikhonov-Phillips regularization, SIAM J. Sci. Comp., 20(5), 1831–1850.
-
Gallagher, K., 1990. Some strategies for estimating present day heat flow from exploration wells, Explor. Geophys., 21, 145–159.
10.1071/EG990145 Google Scholar
- Gallagher, K. & Sambridge, M., 1992. The resolution of past heat flow in sedimentary basins from non-linear inversion of geochemical data: the smoothest model approach, with synthetic examples, Geophys. J. Int., 109, 78–95.
- Golub, G.H. & Von Matt, U., 1996. Generalized cross-validation for large scale problems, Tech. Rep. TR-96-28, Swiss Center for Scientific Computing , ETH Zürich , CSCS/SCSC.
- Golub, G.H., Heath, M. & Wahba, G., 1979. Generalized cross-validation as a method for choosing a good ridge parameter, Technometrics, 21, 215–223.
- Haber, E. & Oldenburg, D., 2000. A GCV based method for nonlinear ill-posed problems, Comput. Geosci., 4(1), 41–63.
-
Haenel, R.,
Rybach, L. &
Stegena, L., 1988. Handbook of Terrestrial Heat-Flow Density Determination, Kluwer,
Dordrecht
,
Holland
.
10.1007/978-94-009-2847-3 Google Scholar
- Hansen, P.C., 1992. Analysis of ill-posed problems by means of the L-curve, SIAM Rev., 34, 561–580.
- Hansen, P.C., 1997. Rank Deficient and Discrete Ill-Posed Problems. Numerical Aspects of Linear Inversion, SIAM, Philadelphia .
- Hartmann, A. & Rath, V., 2005. Uncertainties and shortcomings of ground surface temperature histories derived from inversion of temperature logs, J. Geophys. Eng., 2, 299–311.
- Hartmann, A., Rath, V. & Clauser, C., 2005. Thermal conductivity from core and well log data, Int. J. Rock Mech. Min. Sci., 42, 1042–1055.
- Herrmann, H., 1999. Numerische Simulation reaktiver Strömungen im porösen Untergrund am Beispiel der Lösung und Ausfällung, PhD thesis , Mathem.-Naturw. Fakultät, Rheinische Friedrich-Wilhelms-Universität Bonn .
- Huang, S., Pollack, H.N. & Shen, P.-Y., 2000. Temperature trends over the past five centuries reconstructed from borehole temperatures, Nature, 403, 756–758.
- Ippisch, O., 2001. Coupled Transport in Natural Porous Media, PhD thesis , University of Heidelberg .
- Kohl, T., 1998. Palaeoclimatic temperature signals—can they be washed out? Tectonophysics, 291, 225–234.
- Krakauer, N.Y., Schneider, T., Randerson, J.T. & Olsen, S.C., 2004. Using generalized cross-validation to select parameters in inversions for regional carbon fluxes, Geophys. Res. Lett., 31, L19108.
- Kukkonen, I.T. & Joeleht, A., 2003. Weichselian temperatures from geothermal heat flow data, J. geophys. Res., 108(B3), 2163, doi:DOI: 10.1029/2001JB001579.
- D. Lide, ed., 2000. Handbook of Chemistry and Physics, 81st edn, CRC Press, Boca Raton, FL, USA.
- Mottaghy, D. & Rath, V., 2006. Latent heat effects in subsurface heat transport modeling and their impact on paleotemperature reconstructions, Geophys. J. Int., 164(1), 236–245.
- Mottaghy, D., Popov, Y.A., Schellschmidt, R., Clauser, C., Kukkonen, I.T., Nover, G., Milanovsky, S. & Romushkevich, R.A., 2005. New heat flow data from the immediate vicinity of the Kola superdeep borehole: vertical variation in heat flow density confirmed, Tectonophysics, 401(1–2), 119–142.
- Nielsen, S.B. & Beck, A.E., 1989. Heat flow density values and paleoclimate determined from stochastic inversion of four temperature-depth profiles from the Superior Province of the Canadian Shield, Tectonophysics, 164, 345–359.
- Nocedal, J. & Wright, S.J., 1999. Numerical Optimization, Springer, New York .
- Phillips, S.L., Igbene, A., Fair, J.A., Ozbek, H. & Tavana, M., 1981. A technical data book for geothermal energy utilization, Tech. Rep. 12810, Lawrence Berkeley Labartory .
- Pollack, H.N., Huang, S. & Shen, P., 1998. Climate change record in subsurface temperatures: a global perspective, Science, 282, 279–281.
- Popov, Y.A., Pevzner, S.L., Pimenov, V.P. & Romushkevich, R.A., 1999. New geothermal data from the Kola superdeep well SG-3, Tectonophysics, 306, 345–366.
- Portniaguine, O. & Zhdanov, M.S., 1999. Focusing geophysical inversion images, Geophysics, 64, 874–887.
- Rath, V., Wolf, A. & Bücker, M., 2006. Joint three-dimensional inversion of coupled groundwater flow and heat transfer based on automatic differentiation: sensitivity calculation, verification, and synthetic examples, Geophys. J. Int., 167, 453–466.
- Šafanda, J. & Rajver, D., 2001. Signature of the last ice age in the present subsurface temperatures in the Czech Republic and Slovenia, Global Planet. Change, 29, 241–257.
- Šafanda, J., Szewzyk, J. & Majorowicz, J.A., 2004. Geothermal evidence of very low glacial temperatures on a rim of the Fennoscandian ice sheet, Geophys. Res. Lett., 31, L07211.
- Shen, P.Y. & Beck, A.E., 1991. Least squares inversion of borehole temperature measurements in functional space, J. geophys. Res., 96(B12), 19 965–19 979.
-
Strikwerda, J.C., 2004. Finite Difference Schemes and Partial Differential Equations, 2nd edn, SIAM,
Philadelphia
,
PA
.
10.1137/1.9780898717938 Google Scholar
- Taniguchi, M., 1993. Evaluation of vertical groundwater fluxes and thermal properties of aquifers based on transient temperature-depth profiles, Water Resour. Res., 29(6), 2021–2026.
- Tarantola, A., 1987. Inverse problem theory. Methods for data fitting and model parameter estimation, Elsevier, Amsterdam.
- Tarantola, A., 2004. Inverse Problem Theory. Methods for Model Parameter Estimation, SIAM, Philadelpha , http://www.ipgp.jussieu.fr/tarantola/Files/Professional/Books/index.html.
- Van Den Eshof, J. & Sleijpen, G.S.L., 2004. Accurate conjugate gradient methods for shifted systems, Appl. Numer. Math., 49(1), 17–37.
- Vasseur, G., Demongodin, L. & Bonneville, A., 1993. Thermal modelling of fluid flow effects in thin-dipping aquifers, Geophys. J. Int., 112, 276–289.
- Wagner, W. & Pruß, A., 2002. The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use, J. Phys. Chem. Ref. Data, 31, 387–535.
- Wahba, G., 1990. Spline Models for Observational Data, SIAM, Philadelphia .
- Walker, S.E., 1999. Inversion of EM data to recover 1-D conductivity and a geometric survey parameter, Master's thesis , University of British Columbia .
- Wood, W.L., 1990. Practical Time-Stepping Schemes, Clarendon, Oxford .
- Xu, Q., 2005. Representations of inverse covariances by differential operators, Adv. Atmos. Sci., 22(2), 181–198.
- Yanovskaya, T.B. & Ditmar, P.G., 1990. Smoothness criteria in surface wave tomography, Geophys. J. Int., 102, 63–72.
- Zhdanov, M.S., 2002. Geophysical Inverse Theory and Regularization Problems, Elsevier, Amsterdam .
- Zschocke, A., Rath, V., Grissemann, C. & Clauser, C., 2005. Quantifying deep fluid flow in inclined reservoirs from correlated discontinuities in vertical heat flow, J. Geophys. Eng., 2, 332–342.
- Zylkovskij, G.A., Robinson, B.A., Dash, V.B. & Trease, L.L., 1994. Models and methods summary for the FEHMN application, Tech. Rep. LA-UR-94-3787, Los Alamos Natioal Laboratory .