Simulations of strong ground motion in SW Iberia for the 1969 February 28 (Ms= 8.0) and the 1755 November 1 (M∼ 8.5) earthquakes – I. Velocity model
Corresponding Author
Raphaël Grandin
Centro de Geofísica de Évora, Universidade de Évora, Évora, Portugal
Now at: Institut de Physique du Globe de Paris (IPGP), Laboratoire de Tectonique et Mécanique de la Lithosphère, 4 place Jussieu, 75252 Paris, France. E-mail: [email protected]Search for more papers by this authorJosé Fernando Borges
Centro de Geofísica de Évora, Universidade de Évora, Évora, Portugal
Departmento de Física, Universidade de Évora, Évora, Portugal
Search for more papers by this authorMourad Bezzeghoud
Centro de Geofísica de Évora, Universidade de Évora, Évora, Portugal
Departmento de Física, Universidade de Évora, Évora, Portugal
Search for more papers by this authorBento Caldeira
Centro de Geofísica de Évora, Universidade de Évora, Évora, Portugal
Departmento de Física, Universidade de Évora, Évora, Portugal
Search for more papers by this authorCorresponding Author
Raphaël Grandin
Centro de Geofísica de Évora, Universidade de Évora, Évora, Portugal
Now at: Institut de Physique du Globe de Paris (IPGP), Laboratoire de Tectonique et Mécanique de la Lithosphère, 4 place Jussieu, 75252 Paris, France. E-mail: [email protected]Search for more papers by this authorJosé Fernando Borges
Centro de Geofísica de Évora, Universidade de Évora, Évora, Portugal
Departmento de Física, Universidade de Évora, Évora, Portugal
Search for more papers by this authorMourad Bezzeghoud
Centro de Geofísica de Évora, Universidade de Évora, Évora, Portugal
Departmento de Física, Universidade de Évora, Évora, Portugal
Search for more papers by this authorBento Caldeira
Centro de Geofísica de Évora, Universidade de Évora, Évora, Portugal
Departmento de Física, Universidade de Évora, Évora, Portugal
Search for more papers by this authorSUMMARY
This is the first paper of a series of two concerning strong ground motion in SW Iberia due to earthquakes originating from the adjacent Atlantic area. The aim of this paper is to build and calibrate a velocity model that will be used in the companion paper for seismic intensity modelling of the 1969 (Ms= 8.0) and 1755 (M= 8.5–8.7) earthquakes.
Taking into account the geological evolution of the region since the Palaeozoic, we build a 3-D velocity model down to the Moho discontinuity, substantially different from a simple 1-D layered model. The velocity model presented in this paper is built a priori, using information originating from a variety of geological and geophysical studies. Its resolution is sufficient to simulate realistically seismic wave propagation in the low-frequency (f < 0.5 Hz) range, which is the most significant for the study of the destructive effects of large earthquakes at a regional scale.
To validate the model, we compute synthetic seismograms for three recent earthquakes of moderate magnitudes (4.6 < Mw < 5.3) located offshore, in the most seismically active area in the region. Synthetics are generated using a wave propagation code, based on the finite-difference method, which was chosen for its simplicity and accuracy in the frequency range considered in this study (0.1–0.5 Hz). We compare simulated waveforms with three-component seismograms for 9 different stations. Traveltimes of the direct P waves, and the amplitude of ground motion, are accurately reproduced at all stations. The frequency content of the seismograms fits the observations, especially for the lowest frequencies investigated (0.1–0.3 Hz). For each earthquake, the estimated seismic moment is in good agreement with values obtained by other authors, using different methods. We conclude that the velocity model provides encouraging results for the computation of low frequency seismograms in the region, and can be used for the study of larger earthquakes, for which the radiated wavefield has a predominant low-frequency spectrum.
REFERENCES
- Afilhado, A., Vales, D., Hirn, A., González, A., Matias, L. & Mendes-Victor, L., 1999. Contribution for the monitoring of the SW Portuguese margin: crustal thinning along IAM5, 22nd IUGG assembly, Birmingham , UK , 18–30 July, Abstracts, p. B. 7.
- Alves, T.M., Gawthorpe, R.L., Hunt, D.W. & Monteiro, J.H., 2003. Cenozoic tectonosedimentary evolution of the Western Iberian Margin, Mar. Geol., 195, 75–108, doi:DOI: 10.1016/S0025.
- Arthaud, F. & Matte, P., 1975. Les décrochements tardi-hercyniens du sud-ouest de l'Europe. Géométrie et essai de reconstitution des conditions de la déformation, Tectonophysics, 25, 139–171.
-
Banda, E.,
Torne, M. &
the IAM Group, 1995. Iberian Atlantic Margins group investigates deep structure of the ocean margins, EOS, 76(3), 25–28.
10.1029/EO076i003p00025 Google Scholar
- Beresnev, I.A., 2001. What we can and cannot learn about earthquake sources from the spectra of seismic waves, Bull. Seism. Soc. Am., 91(2), 397–400.
- Borges, J.F., Fitas, A.J.S., Bezzeghoud, M., & Teves-Costa, P., 2001. Seismotectonics of Portugal and its adjacent Atlantic area, Tectonophysics, 337, 373–387.
- Buforn, E., Bezzeghoud, M., Udías, A. & Pro, C., 2004. Seismic sources on the Iberia-African plate boundary and their tectonic implications, Pure Appl. Geophys., 161, doi:DOI: 10.1007/s00024-003-2466-1.
- Cabral, J., 1993. Neotectónica de Portugal continental, Ph. D. thesis , Fac. Ciências, Univ. Lisboa , Portugal , 435 pp.
- Carrilho, J., 2005. Estudo da sismicidade da Zona Sudoeste de Portugal Continental, M. S. thesis . Univ. of Lisboa , 172 pp.
- Carvalho, J., 2005. Sísmica de alta resolução aplicada à prospecção, geotecnica e risco sísmico, Ph.D. thesis . Univ. of Lisbon , 435 pp.
- Carvalho, J., Cabral, J., Gonçalves, R., Torres, L. & Mendes-Victor, L., 2006. Geophysical methods applied to fault characterization and earthquake potential assessment in the Lower Tagus Valley, Portugal, Tectonophysics, 418, 277–297.
- Chen, W.P. & Grimison, N., 1989. Earthquakes associated with diffuse zones of deformation in the oceanic lithosphere: some examples, Tectonophysics, 166, 133–150.
- Clayton, R. & Engquist, B., 1977. Absorbing boundary conditions for acoustic and elastic wave equations, Bull. Seism. Soc. Am., 67, 1529–1540.
- Curtis, M.L., 1999. Structural and kinematic evolution of a Miocene to recent sinistral restraining bend: the Montejunto massif, Portugal, J. Struct. Geol., 21, 39–54.
- Dean, S.M., Minshull, T.A., Whitmarsh, R.B. & Louden, K.E., 2000. Deep structure of the ocean-continent transition in the Southern Iberia Abyssal Plain from seismic refraction profiles: the IAM-9 transect at 40°20′N, J. geophys. Res., 105, 5859–5885.
- Duggen, S., Hoernle, K., Van Den Bogaard, P. & Harris, C., 2004. Magmatic evolution of the Alborán region: the role of subduction in forming the western Mediterranean and causing the Messinian Salinity Crisis, Earth. Planet. Sci. Lett., 218, 91–108.
- Faccioli, E., Maggio, F., Paolucci, R. & Quarteroni, A., 1997. 2D and 3D elastic wave propagation by a pseudo-spectral domain decomposition method, J. Seismol., 1, 237–251.
- Fernàndez, M., Marzán, I., Correia, A. & Ramalho, E., 1998. Heat flow, heat production, and lithospheric thermal regime in the Iberian Peninsula, Tectonophysics, 291, 29–53.
- Fernàndez, M., Marzán, I. & Torne, M., 2004. Lithospheric transition from the Variscan Iberian Massif to the Jurassic oceanic crust of the Central Atlantic, Tectonophysics, 386, 97–115.
- Flinch, J.F., Bally, A.W. & Wu, S., 1996. Emplacement of a passive margin evaporitic allochton in the Betic Cordillea of Spain, Geology, 24, 67–70.
- Fukao, Y., 1973. Thrust faulting at a lithospheric plate boundary: the Portugal earthquake of 1969, Earth Planet. Sci. Lett., 18, 205–216.
- Garcia-Castellanos, D., Fernàndez, M. & Torne, M., 2002. Modeling the evolution of the Guadalquivir foreland basin (Southern Spain), Tectonics, 21(3), doi:DOI: 10.1029/2001TC001339.
- González, A., Córdoba, D., Vegas, R. & Matias, L.M., 1996. Crustal thinning in the Southwestern Iberia Margin, Geophys. Res. Lett., 23, 2477–2480.
- González, A., Torne, M., Córdoba, D., Vidal, N., Matias, L.M. & Diaz, J., 1998. Seismic crustal structure in the southwest of the Iberian Peninsula and the Gulf of Cadiz, Tectonophysics, 296, 317–331.
- Gràcia, E., Dañobeitia, J., Vergés, J., Bartolomé, R. & Córdoba, D., 2003a. Crustal architecture and tectonic evolution of the Gulf of Cadiz (SW Iberian margin) at the convergence of the Eurasian and African plates, Tectonics, 22(4), doi:DOI: 10.1029/2001TC901045.
- Gràcia, E., Dañobeitia, J. & Vergés, J., 2003b. Mapping active faults offshore Portugal (36°N–38°N): implications for the seismic hazard assessment along the southwest Iberian margin, Geology, 31(1), 83–86.
- Grandin, R., Borges, J.F., Bezzeghoud, M., Caldeira, B. & Carrilho, F., 2007. Simulations of strong ground motion in SW Iberia for the 1969 February 28 (MS= 8.0) and the 1755 November 1 (M∼ 8.5) earthquakes–II. Strong ground motion simulations, Geophys. J. Int., doi:DOI: 10.1111/j.1365-246X.2007.0357.x.
- Grimison, N. & Chen, W., 1986. The Azores-Gibraltar plate boundary: focal mechanisms, depth of earthquakes and their tectonical implications, J. geophys. Res., 91, 2029–2047.
- Hayward, N., Watts, A.B., Westbrook, G.K. & Collier, J.S., 1999. A seismic reflection and GLORIA study of compressional deformation in the Gorringe Bank region, eastern North Atlantic, Geophys. J. Int., 138, 831–850.
- Holbrook, W.S., Mooney, W.D. & Christensen, N.I., 1992. The seismic structure of the deep continental crust, in Continental Lower Crust, pp. 1–43, eds D.M. Fountain, R. Arculus & R.W. Kay, Elsevier, Amsterdam.
-
ILIHA-DSS Group (reporters: Diaz, J.,
Gallard, J.,
Córdoba, D.,
Senos, L.,
Matias, L.,
Suriñach, E.,
Hirn, A. &
Maguire, P.), 1993. A deep seismic sounding investigation of lithospheric heterogeneity and anisotropy beneath the Iberian Peninsula, Tectonophysics, 222, 35–51.
10.1016/0040-1951(93)90026-G Google Scholar
- Komatitsch, D. & Vilotte, J.-F., 1998. The spectral element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures, Bull. Seism. Soc. Am., 88, 368–392.
- Larsen, S.C. & Schultz, C.A., 1995. ELAS3D, 2D/3D Elastic Finite-Difference Wave Propagation Code, Lawrence Livermore National Laboratory, UCRLMA-121792, 18 pp.
- Leinfelder, R.R. & Wilson, R.C.L., 1989. Seismic and sedimentologic features of the Oxfordian-Kimmeridgian syn-rift sediments on the eastern margin of the Lusitanian Basin, Geologische Rundschau, 78, 81–104.
- Levander, A.R., 1988. Fourth-order finite-difference P-SV seismograms, Geophysics, 53, 1425–1436.
- Lonergan, L. & White, N., 1997. Origin of the Betic-Rif mountain belt, Tectonics, 16(3), 504–522.
- López-Arroyo, A. & Udías, A., 1972. Aftershock sequence and focal parameters of the february 28th, 1969 earthquake of the Azores-Gibraltar Fracture Zone, Bull. Seism. Soc. Am., 62(3), 699–720.
- Madariaga, R., 1976. Dynamics of an expanding circular fault, Bull. Seism. Soc. Am., 66(3), 639–666.
- Maldonado, A., Somoza, L. & Pallarés, L., 1999. The Betic orogen and the Iberian–African boundary in the Gulf of Cadiz: geological evolution (central North Atlantic), Mar. Geol., 155, 9–43.
- Matias, L.M., 1996. A sismologia experimental na modelação da estrutura da crusta em Portugal continental, Ph.D. thesis . Univ. of Lisbon , 398 pp.
- Mendes-Victor, L., Hirn, L.A. & Veinant, J.L., 1980. A seismic section accross the Tagus valley, Portugal: possible evolution of the crust, Ann. Géophys., 36, 469–476.
- Mendes-Victor, L., Baptista, M.A., Miranda, J.M. & Miranda, P.M.A., 1999. Can hydrodynamic modelling of tsunami contribute to seismic risk assessment?, Phys. Chem. Earth, 24, 139–144.
- Mougenot, D., 1988 Géologie de la marge Portugaise, Ph.D. thesis , Univ. Pierre et Marie Curie , Paris , 257 pp.
- Mueller, S., Prodehl, C., Mendes, A.S. & Moreira, V.S., 1973. Crustal structure in the Southwestern part of the Iberian Peninsula, Tectonophysics, 20, 307–318.
- Paulssen, H., 1990. The Iberian Peninsula and the ILIHA project, Terra Nova, 2, 429–435.
- Pinheiro, L.M., Whimarsh, R.B. & Miles, P.R., 1992. The ocean-continent boundary off the western continental margin of Iberia, II. Crustal structure in teh Tagus Abyssal Plain, Geophys. J. Int., 109, 106–124.
- Pitarka, A., Graves, R. & Sommerville, P., 2004. Validation of a 3D velocity model of the Puget Sound region based on modeling ground motion from the 28 February 2001 Nisqually earthquake, Bull. Seism. Soc. Am., 94(5), 1670–1689.
- Platt, J.P., Allerton, S., Kirker, A., Mandeville, C., Mayfield, A., Platzman, E.S. & Rimi, A., 2003. The ultimate arc: differential displacement, oroclinal bending, and vertical axis rotation in the External Betic-Rif arc, Tectonics, 22(3), doi:DOI: 10.1029/2001TC001321.
- Priolo, E., Carcione, J.M. & Seriani, G., 1994. Numerical simulation o interface waves by high-order spectral modeling techniques, J. Acoust. Soc. Am., 95(2), 681–693.
- Purdy, G.M., 1975. The eastern end of the Azores-Gibraltar plate boundary, Geophys. J. R. astr. Soc., 43, 973–1000.
- Rasmussen, E.S., Lomholt, S., Andersen, C. & Vejbaek, O.V., 1998. Aspects of the structural evolution of the Lusitanian Basin in Portugal and the shelf and slope area offshore Portugal, Tectonophysics, 300, 199–225.
- Ribeiro, A., Antunes, M.T., Ferreira, M.P., Rocha, R.B., Soares, A.F., Zbyszewsky, G., Moitinho de Almeida, F., De Carvalho, D. & Monteiro, J.H., 1979. Introduction à la Géologie Générale du Portugal. Serv. Geol. de Portugal Lisboa , 114 p.
- Ribeiro, A., Kullberg, M.C., Kullberg, J.C., Manuppella, G. & Phipps, S., 1990. A review of Alpine tectonics in Portugal: foreland detachment in basement and cover rocks, Tectonophysics, 184, 357–366.
- Ribeiro, A., Cabral, J., Baptista, R., Matias, L., 1996. Stress pattern in Portugal mainland and the adjacent Atlantic region, West Iberia, Tectonics, 15, 641–659.
- Robertsson, J.O.A., Blanch, J.O. & Symes, W.W., 1994. Viscoelastic finite-difference modeling, Geophysics, 59, 1444–1456.
- Simancas, J.F. et al. , 2003. Crustal structure of the transpressional Variscan orogen of SW Iberia: SW Iberia deep seismic reflection profile (IBERSEIS), Tectonics, 22(6), doi:DOI: 10.1029/2002TC001479.
- Stidham, C., Antolik, M., Dreger, D., Larsen, S. & Romanowicz, B., 1999. Three-dimensional structure influences on the strong-motion wavefield of the 1989 Loma Prieta earthquake, Bull. Seism. Soc. Am., 89, 1184–1202.
- Somoza, L., Maestro, A. & Lowrie, A., 1999. Allochtonous blocks as hydrocarbon traps in the gulf of Cadiz, Paper presented at 31st Offshore Technology Conference, Huston , TX .
- Soto, J.I., Comas, M.C. & De La Linde, J., 1996. Espesor de los sedimentos en la cuenca de Alborán mediante una conversión corregida, Geogaceta 20, 382–385, 1996.
- Souriau, A., 1984. Geoid anomalies over Gorringe Ridge, North Atlantic Ocean, Earth. planet. Sci. Lett., 68, 101–114.
- Stapel, G., Cloething, S. & Pronk, B., 1996. Quantitative subsidence analysis of the Mesozoic evolution of the Lusitanian basin (western Iberian margin), Tectonophysics, 266, 493–507.
- Stich, D., Ammon, C.J. & Morales, J., 2003. Moment tensor solutions for small and moderate earthquakes in the Ibero-Maghreb region, J. Geophys. Res., 108, 2148, doi:DOI: 10.1029/2002JB002057.
- Stich, D., Macilla, F. & Morales, J., 2005. Crust-mantle coupling in the Gulf of Cadiz (SW-Iberia), Geophys. Res. Lett., 32, doi:DOI: 10.1029/2005GL023098.
-
Tapponnier, P., 1977. Evolution tectonique du système Alpin en Mediterrannée: poinçonnement et écrasement rigide-plastique, Bull. Soc. Géol. Fr., 7
XIX(3), 437–460.
10.2113/gssgfbull.S7-XIX.3.437 Google Scholar
- Terrinha, P., 1997. Structural geology and tectonic evolution of the Algarve basin, South Portugal, Ph.D. thesis . Univ. of Lisboa , 425 pp.
- Torne, M., Fernàndez, M., Comas, M.C. & Soto, J.I., 2000. Lithospheric structure beneath the Alborán Basin: results from 3D gravity modeling and tectonic relevance, J. Geophys. Res., 105(B2), 3209–3228.
- Torelli, L., Sartori, R. & Zitellini, N., 1997. The giant chaotic body in the Atlantic Ocean off Gibraltar: new results from a deep seismic reflection survey, Mar. Petr. Geol., 14(2), 125–138.
- Tortella, D., Torne, M. & Pérez-Estaun, A., 1997. Geodynamic evolution of the eastern segment of the Azores-Gibraltar zone: the Gorringe Bank and the Gulf of Cadiz region, Mar. Geophys. Res., 19, 211–230.
- Virieux, J., 1986. P-SV wave propagation in heterogeneous media: velocity-stress finite-difference method, Geophysics, 51, 889–901.
- Wells, D. & Coppersmith, K., 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area and surface displacement, Bull. Seism. Soc. Am., 84, 974–1002.
- Whitmarsh, R.B., Miles, P.R. & Mauffret, A., 1990. The ocean-continent boundary off the western continental margin of Iberia – I. Crustal structure at 40°30′N, Geophys. J. Int., 103, 509–531.
- Wilson, R.C.L., 1975. Atlantic opening and Mesozoic continental margin basins of Iberia, Earth Planet. Sci. Lett., 25, 33–43.
- Wilson, R.C.L., Hiscott, R.N., Willis, M.G. & Gradstein, P.M., 1989. The Lusitanian Basin of west-central Portugal: Mesozoic and Tertiary tectonic, stratigraphic and subsidence history, in Extensional Tectonics and Stratigraphy of the North Atlantic Margins, pp. 341–361, Vol. 46, eds A.J. Tankard, & H.R. Balkwill, AAPG Mem., Tulsa , OK , USA .
- Zelt, C.A. & Smith, R.B., 1992. Seismic travel time inversion for 2-D crustal velocity structure, Geophys. J. Int., 108, 16–34.
-
Zitellini, N.
et al.
, 2001. Source of the 1755 Lisbon earthquake and tsunami investigated, EOS Trans. Amer. Geophys. U., 82, 285.
10.1029/EO082i026p00285-01 Google Scholar