Surface wave tomography: global membrane waves and adjoint methods
D. Peter
Institute of Geophysics, ETH Zurich, Hönggerberg HPP, CH-8093 Zurich, Switzerland. E-mail: [email protected]
Search for more papers by this authorC. Tape
Seismological Laboratory, California Institute of Technology, Pasadena, CA 91125 , USA
Search for more papers by this authorL. Boschi
Institute of Geophysics, ETH Zurich, Hönggerberg HPP, CH-8093 Zurich, Switzerland. E-mail: [email protected]
Search for more papers by this authorJ. H. Woodhouse
University of Oxford, Department of Earth Sciences, Parks Road, Oxford OX1 3PR, UK
Search for more papers by this authorD. Peter
Institute of Geophysics, ETH Zurich, Hönggerberg HPP, CH-8093 Zurich, Switzerland. E-mail: [email protected]
Search for more papers by this authorC. Tape
Seismological Laboratory, California Institute of Technology, Pasadena, CA 91125 , USA
Search for more papers by this authorL. Boschi
Institute of Geophysics, ETH Zurich, Hönggerberg HPP, CH-8093 Zurich, Switzerland. E-mail: [email protected]
Search for more papers by this authorJ. H. Woodhouse
University of Oxford, Department of Earth Sciences, Parks Road, Oxford OX1 3PR, UK
Search for more papers by this authorSUMMARY
We implement the wave equation on a spherical membrane, with a finite-difference algorithm that accounts for finite-frequency effects in the smooth-Earth approximation, and use the resulting ‘membrane waves’ as an analogue for surface wave propagation in the Earth. In this formulation, we derive fully numerical 2-D sensitivity kernels for phase anomaly measurements, and employ them in a preliminary tomographic application. To speed up the computation of kernels, so that it is practical to formulate the inverse problem also with respect to a laterally heterogeneous starting model, we calculate them via the adjoint method, based on backpropagation, and parallelize our software on a Linux cluster. Our method is a step forward from ray theory, as it surpasses the inherent infinite-frequency approximation. It differs from analytical Born theory in that it does not involve a far-field approximation, and accounts, in principle, for non-linear effects like multiple scattering and wave front healing. It is much cheaper than the more accurate, fully 3-D numerical solution of the Earth's equations of motion, which has not yet been applied to large-scale tomography. Our tomographic results and trade-off analysis are compatible with those found in the ray- and analytical-Born-theory approaches.
REFERENCES
- Aki, K. & Richards, P.G., 2002. Quantitative Seismology, 2nd edn, University Science Books, Sausalito , CA , USA .
- Baig, A.M. & Dahlen, F.A., 2004. Statistics of traveltimes and amplitudes in random media, Geophys. J. Int., 158(1), 187–210.
- Baig, A.M., Dahlen, F.A. & Hung, S.H., 2003. Traveltimes of waves in three-dimensional random media, Geophys. J. Int., 153(2), 467–482.
- Bassin, C., Laske, G. & Masters, G., 2000. The current limits of resolution for surface wave tomography in North America, EOS, Trans. Am. geophys. Un., 81, F897.
- Baumgardner, J.R. & Frederickson, P.O., 1985. Icosahedral Discretization of the Two-Sphere, SIAM J. Num. Anal., 22(6), 1107–1115.
- Boschi, L., 2001. Applications of linear inverse theory in modern global seismology, PhD thesis , Harvard University.
- Boschi, L., 2006. Global Multi-Resolution Models of Surface Wave Propagation: Comparing Equivalently-Regularized Born- and Ray-Theoretical Solutions, Geophys. J. Int., 167(1), 238–252.
- Boschi, L. & Ekström, G., 2002. New images of the Earth's upper mantle from measurements of surface wave phase velocity anomalies, J. geophys. Res., 107(B4), 2059, doi:DOI: 10.1029/2000JB000059.
- Boschi, L., Ekström, G. & Kustowski, B., 2004. Multiple resolution surface wave tomography: the Mediterranean basin, Geophys. J. Int., 157, 293–304.
- Boschi, L., Becker, T.W., Soldati, G. & Dziewonski, A.M., 2006. On the relevance of Born theory in global seismic tomography, Geophys. Res. Lett., 33, L06302, doi:DOI: 10.1029/2005GL025063.
- Boschi, L., Ampuero, J.-P., Peter, D., Mai, P.M., Soldati, G. & Giardini, D., 2007. Petascale computing and resolution in global seismic tomography, Phys. Earth planet. Inter., in press, doi:DOI: 10.1016/j.pepi.2007.02.011.
-
Bunge, H.-P. &
Tromp, J., 2003. Supercomputing moves to universities and makes possible new ways to organize computational research, EOS, Trans. Am. geophys. Un., 84, 30–33.
10.1029/2003EO040004 Google Scholar
- Capdeville, Y., 2005. An efficient Born normal mode method to compute sensitivity kernels and synthetic seismograms in the Earth, Geophys. J. Int., 163, 639–646.
- Capdeville, Y., Chaljub, E., Vilotte, J.-P. & Montagner, J.-P., 2003. Coupling the spectral element method with a modal solution for elastic wave propagation in global Earth models, Geophys. J. Int., 152, 34–67.
- Carannante, S. & Boschi, L., 2005. Databases of surface wave dispersion, Ann. Geophys., 48, 945–955.
- Cui, J. & Freeden, W., 1997. Equidistribution on the sphere. SIAM J. Sci. Comp., 18(2), 595–609.
- Dahlen, F.A. & Tromp, J., 1998. Theoretical Global Seismology, Princeton University Press, Princeton , NJ , USA .
-
Dahlen, F.A.,
Hung, S.H. &
Nolet, G., 2000. Fréchet kernels for finite-frequency traveltimes—I. Theory, Geophys. J. Int., 141(1), 157–174.
10.1046/j.1365-246X.2000.00070.x Google Scholar
- De Hoop, M.V. & Van Der Hilst, R.D., 2005. On sensitivity kernels for ‘wave-equation’ transmission tomography, Geophys. J. Int., 160, 621–633.
- Dziewonski, A.M. & Anderson, D.L., 1981. Preliminary reference Earth model, Phys. Earth planet. Inter., 25, 297–356.
- Ekström, G., Tromp, J. & Larson, E.W.F., 1997. Measurements and global models of surface wave propagation, J. geophys. Res., 102, 8137–8157.
- Favier, N., Chevrot, S. & Komatitsch, D., 2004. Near-field influence on shear wave splitting and traveltime sensitivity kernels, Geophys. J. Int., 156, 467–482.
- Friederich, W., 1999. Propagation of seismic shear and surface waves in a laterally heterogeneous mantle by multiple forward scattering, Geophys. J. Int., 136, 180–204.
- Heikes, R. & Randall, D.A., 1995a. Numerical integration of the shallow-water equations on a twisted icosahedral grid.1. Basic design and results of tests, Mon. Wea. Rev., 123, 1862–1880.
- Heikes, R. & Randall, D.A., 1995b. Numerical integration of the shallow-water equations on a twisted icosahedral grid.2. A detailed description of the grid and an analysis of numerical accuracy, Mon. Wea. Rev., 123, 1881–1887.
- Hudson, J.A. & Heritage, J.R., 1981. The use of the Born approximation in seismic scattering problems, Geophys. J. R. astr. Soc., 66, 221–240.
- Hung, S.H., Dahlen, F.A. & Nolet, G., 2000. Fréchet kernels for finite-frequency traveltimes—II. Examples, Geophys. J. Int., 141, 175–203.
- Hung, S.H., Dahlen, F.A. & Nolet, G., 2001. Wavefront healing: a banana-doughnut perspective, Geophys. J. Int., 146, 289–312.
- Kennett, B.L.N., 1972. Seismic waves in laterally inhomogeneous media, Geophys. J. R. astr. Soc., 27, 301–325.
- Komatitsch, D., Ritsema, J. & Tromp, J., 2002. The spectral-element method, Beowulf computing and global seismology, Science, 298, 1737–1742.
- Li, X.D. & Tanimoto, T., 1993. Waveforms of long-period body waves in a slightly aspherical Earth model, Geophys. J. Int., 112(1), 92–102.
- Li, X.D. & Romanowicz, B., 1995. Comparison of global waveform inversions with and without considering cross-branch modal coupling, Geophys. J. Int., 121, 695–709.
- Marquering, H., Dahlen, F.A. & Nolet, G., 1999. Three-dimensional sensitivity kernels for finite-frequency traveltimes: the banana-doughnut paradox, Geophys. J. Int., 137, 805–815.
- Moczo, P., Kristek, J. & Halada, L., 2004. The Finite-Difference Method for Seismologists: An Introduction., Comenius University, Bratislava .
- Nolet, G. & Dahlen, F.A., 2000. Wave front healing and the evolution of seismic delay times, J. geophys. Res., 105, 19 043–19 054.
- Press, W.H., Teukolsky, S.A., Vetterling, W.T. & Flannery, B.P., 1992. Numerical Recipes in FORTRAN: the Art of Scientific Computing, 2nd edn, Vol. xxvi, pp. 963, Cambridge University Press, Cambridge [England]; New York, NY , USA .
- Randall, D.A., Ringler, T.D., Heikes, R.P., Jones, P. & Baumgardner, J., 2002. Climate modeling with spherical geodesic grids, Comput. Sci. Eng., 4, 32–41.
- Sadourny, R., Arakawa, A. & Mintz, Y., 1968. Integration of nondivergent barotropic vorticity equation with an icosahedral-hexagonal grid for the sphere, Mon. Wea. Rev., 96, 351–356.
- Saff, E.B. & Kuijlaars, A.B.J., 1997. Distributing many points on a sphere, Math. Intell., 19(1), 5–11.
- Smith, J.O. III. &Serra, X., 1987. PARSHL: An Analysis/Synthesis Program for Non-Harmonic Sounds Based on a Sinusoidal Representation, Proceedings of the International Computer Music Conference (ICMC-87, Tokyo), Computer Music Association.
- Snieder, R., 1987. Surface wave scattering theory, with applications to forward and inverse problems in seismology, PhD thesis , Utrecht University , the Netherlands .
- Snieder, R. & Nolet, G., 1987. Linearized scattering of surface waves on a spherical Earth, J. Geophys., 61, 55–63.
- Spetzler, J. & Snieder, R., 2001. The effect of small-scale heterogeneity on the arrival time of waves, Geophys. J. Int., 145, 786–796.
- Spetzler, J., Trampert, J. & Snieder, R., 2002. The effect of scattering in surface wave tomography, Geophys. J. Int., 149, 755–767.
- Strohmaier, E., Dongarra, J.J., Meuer, H.W. & Simon, H.D., 2005. Recent trends in the marketplace of high performance computing, Parallel Comput., 31, 261–273.
- Stuhne, G.R. & Peltier, W.R., 1996. Vortex erosion and amalgamation in a new model of large scale flow on the sphere, J. Comput. Phys., 128, 58–81.
- Sword, C.H., Claerbout, J.F. & Sleep, N.H., 1986. Finite-element propagation of acoustic waves on a spherical shell, Stanford Exploration Project (SEP), 50, 43–78.
- Talagrand, O. & Courtier, P., 1987. Variational assimilation of meteorological observations with the adjoint vorticity equation. I: theory, Q. J. R. Meteorol. Soc., 113, 1311–1328.
- Tanimoto, T., 1990. Modelling curved surface wave paths: membrane surface wave synthetics, Geophys. J. Int., 102, 89–100.
- Tanimoto, T., 2003. Geometrical approach to surface wave finite frequency effects, Geophys. Res. Lett., 30, 1993, doi:DOI: 10.1029/2003GL017475.
- Tape, C.H., 2003. Waves on a Spherical Membrane, M.Sc. thesis, University of Oxford , UK .
- Tape, C., Liu, Q. & Tromp, J., 2007. Finite-frequency tomography using adjoint methods—methodology and examples using membrane surface waves, Geophys. J. Int., 168(3), 1105–1129.
- Tarantola, A., 1984. Inversion of seismic reflection data in the acoustic approximation, Geophysics, 49, 1259–1266.
- Tong, J., Dahlen, F.A., Nolet, G. & Marquering, H., 1998. Diffraction effects upon finite-frequency travel times: a simple 2-D example, Geophys. Res. Lett., 25, 1983–1986.
- Tromp, J. & Dahlen, F.A., 1993. Variational-principles for surface wave propagation on a laterally heterogeneous Earth.3. Potential representation, Geophys. J. Int., 112, 195–209.
- Tromp, J., Tape, C. & Liu, Q., 2005. Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels, Geophys. J. Int., 160, 195–216.
-
Tsuboi, S.,
Komatitsch, D.,
Ji, C. &
Tromp, J., 2003. Broadband modeling of the 2002 Denali fault earthquake on the Earth Simulator, Phys. Earth planet. Inter., 139, 305–312.
10.1016/j.pepi.2003.09.012 Google Scholar
- Wang, Z. & Dahlen, F.A., 1995. Spherical-spline parameterization of 3-dimensional Earth models, Geophys. Res. Lett., 22, 3099–3102.
- Wielandt, E., 1987. On the validity of the ray approximation for interpreting delay times, in Seismic Tomography, ed. G. Nolet, Reidel, Dordrecht .
- Williamson, D.L., 1968. Integration of barotropic vorticity equation on a spherical geodesic grid, Tellus, 20, 642–653.
- Woodhouse, J.H. & Girnius, T.P., 1982. Surface waves and free oscillations in a regionalized Earth model, Geophys. J. R. astr. Soc., 68, 653–673.
- Wu, R. & Aki, K., 1985. Scattering characteristics of elastic waves by an elastic heterogeneity, Geophysics, 50, 582–595.
- Yoshizawa, K. & Kennett, B.L.N., 2005. Sensitivity kernels for finite-frequency surface waves, Geophys. J. Int., 162, 910–926.
- Zhao, L., Jordan, T.H. & Chapman, C.H., 2000. Three-dimensional Fréchet differential kernels for seismic delay times, Geophys. J. Int., 141, 558–576.
- Zhou, Y., Dahlen, F.A. & Nolet, G., 2004. Three-dimensional sensitivity kernels for surface wave observables, Geophys. J. Int., 158, 142–168.
- Zhou, Y., Dahlen, F.A., Nolet, G. & Laske, G., 2005. Finite-frequency effects in global surface-wave tomography, Geophys. J. Int., 163, 1087–1111.