Regulation of the adaptor molecule LAT2, an in vivo target gene of AML1/ETO (RUNX1/RUNX1T1), during myeloid differentiation
Jesús Duque-Afonso
Department of Haematology/Oncology, University of Freiburg
Search for more papers by this authorLeticia Solari
Department of Haematology/Oncology, University of Freiburg
Search for more papers by this authorAitomi Essig
Department of Experimental Anaesthesiology, University of Freiburg, Freiburg, Germany
Search for more papers by this authorTobias Berg
Department of Haematology/Oncology, University of Freiburg
Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
Search for more papers by this authorHeike L. Pahl
Department of Experimental Anaesthesiology, University of Freiburg, Freiburg, Germany
Search for more papers by this authorMichael Lübbert
Department of Haematology/Oncology, University of Freiburg
Search for more papers by this authorJesús Duque-Afonso
Department of Haematology/Oncology, University of Freiburg
Search for more papers by this authorLeticia Solari
Department of Haematology/Oncology, University of Freiburg
Search for more papers by this authorAitomi Essig
Department of Experimental Anaesthesiology, University of Freiburg, Freiburg, Germany
Search for more papers by this authorTobias Berg
Department of Haematology/Oncology, University of Freiburg
Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
Search for more papers by this authorHeike L. Pahl
Department of Experimental Anaesthesiology, University of Freiburg, Freiburg, Germany
Search for more papers by this authorMichael Lübbert
Department of Haematology/Oncology, University of Freiburg
Search for more papers by this authorSummary
The leukaemia-specific fusion oncoprotein RUNX1/RUNX1T1 (AML1/ETO), resulting from the chromosomal translocation (8;21) in acute myeloid leukaemia (AML), imposes a striking genotype–phenotype relationship upon this distinct subtype of AML, which is mediated by multiple, co-ordinate downstream effects induced by this chimeric transcription factor. We previously identified the LAT2 gene, encoding the adaptor molecule LAT2 (NTAL, LAB), which is phosphorylated by KIT and has a role in mast cell and B-cell activation, as a target of the repressor activity of RUNX1/RUNX1T1. These results were confirmed and extended by demonstrating downregulation of the LAT2 protein in response to conditional RUNX1/RUNX1T1 expression, and its absence in primary AML with the t(8;21). In contrast, in a cohort of 43 AML patients, higher levels of LAT2 were associated with myelomonocytic features. Differentiation of HL-60 and NB4 cells towards granulocytes by all trans-retinoic acid (ATRA) resulted in downregulation of LAT2; conversely, it was upregulated during phorbol ester-induced monocytic differentiation of HL-60 cells. Forced expression of LAT2 in Kasumi-1 cells resulted in a striking block of ATRA- and phorbol ester-induced differentiation, implicating disturbances of the graded expression of this adaptor molecule in the maturation block of myeloid leukaemia cells.
Supporting Information
Table S1. Expression of differentiation antigens CD11b and CD11c during in vitro maturation of NB4 and HL-60 myeloid cell lines.
Table S2. LAT2 expression of AML patients of different cytogenetic subgroups.
Filename | Description |
---|---|
BJH_8586_sm_TablesS1-S2.doc39 KB | Supporting info item |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Berg, T., Fliegauf, M., Burger, J., Staege, M.S., Liu, S., Martínez, N., Heidenreich, O., Burdach, S., Haferlach, T., Werner, M.H. & Lübbert, M. (2008) Transcriptional upregulation of p21/WAF/Cip1 in myeloid leukemic blasts expressing AML1-ETO. Haematologica, 93, 1728–1733.
- Brdicka, T., Imrich, M., Angelisova, P., Brdickova, N., Horvath, O., Spicka, J., Hilgert, I., Lusková, P., Dráber, P., Novák, P., Engels, N., Wienands, J., Simeoni, L., Österreicher, J., Aguado, E., Malissen, M., Schraven, B. & Horejsi, V. (2002) Non-T-cell activation linker (NTAL): a transmembrane adaptor protein involved in immunoreceptor signaling. Journal of Experimental Medicine, 196, 1617–1626.
- Buday, L., Khwaja, A., Sipeki, S., Faragó, A. & Downward, J. (1996) Interactions of Cbl with two adapter proteins, Grb2 and Crk, upon T-cell activation. Journal of Biological Chemistry, 271, 6159–6163.
- Burel, S.A., Harakawa, N., Zhou, L., Pabst, T., Tenen, D.G. & Zhang, D.E. (2001) Dichotomy of AML1-ETO functions: growth arrest versus block of differentiation. Molecular and Cellular Biology, 21, 5577–5590.
- Cameron, S., Taylor, D.S., TePas, E.C., Speck, N.A. & Mathey-Prevot, B. (1994) Identification of a critical regulatory site in the human interleukin-3 promoter by in vivo footprinting. Blood, 83, 2851–2859.
- Chomczynski, P. & Sacchi, N. (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochemistry, 162, 156–159.
- Dorrell, C., Takenaka, K., Minden, M.D., Hawley, R.G. & Dick, J.E. (2004) Hematopoietic cell fate and the initiation of leukemic properties in primitive primary human cells are influenced by Ras activity and farnesyltransferase inhibition. Molecular and Cellular Biology, 24, 6993–7002.
- Erickson, P., Gao, J., Chang, K.S., Look, T., Whisenant, E., Raimondi, S., Lasher, R., Trujillo, J., Rowley, J. & Drabkin, H. (1992) Identification of breakpoints in t(8;21) acute myelogenous leukemia and isolation of a fusion transcript, AML1/ETO, with similarity to Drosophila segmentation gene, runt. Blood, 80, 1825–1831.
- Fazi, F., Zardo, G., Gelmetti, V., Travaglini, L., Ciolfi, A., Di Croce, L., Rosa, A., Bozzoni, I., Grignani, F., Lo-Coco, F., Pelicci, P.G. & Nervi, C. (2007) Heterochromatic gene repression of the retinoic acid pathway in acute myeloid leukemia. Blood, 109, 4432–4440.
- Fliegauf, M., Stock, M., Berg, T. & Lübbert, M. (2004) Williams-Beuren syndrome critical region-5/non-T-cell activation linker: a novel target gene of AML1/ETO. Oncogene, 23, 9070–9081.
- Frank, R., Zhang, J., Uchida, H., Meyers, S., Hiebert, S.W. & Nimer, S.D. (1995) The AML1/ETO fusion protein blocks transactivation of the GM-CSF promoter by AML1B. Oncogene, 11, 2667–2674.
- Gelmetti, V., Zhang, J., Fanelli, M., Minucci, S., Pelicci, P.G. & Lazar, M.A. (1998) Aberrant recruitment of the nuclear receptor corepressor-histone deacetylase complex by the acute myeloid leukemia fusion partner ETO. Molecular and Cellular Biology, 18, 7185–7191.
- Janssen, E., Zhu, M., Zhang, W., Koonpaew, S. & Zhang, W. (2003) LAB: a new membrane-associated adaptor molecule in B-cell activation. Nature Immunology, 4, 117–123.
- Kitamura, T., Koshino, Y., Shibata, F., Oki, T., Nakajima, H., Nosaka, T. & Kumagai, H. (2003) Retrovirus-mediated gene transfer and expression cloning: powerful tools in functional genomics. Experimental Hematology, 31, 1007–1014.
- Linggi, B., Müller-Tidow, C., van de Locht, L., Hu, M., Nip, J., Serve, H., Berdel, W.E., van der Reijden, B., Quelle, D.E., Rowley, J.D., Cleveland, J., Jansen, J.H., Pandolfi, P.P. & Hiebert, S.W. (2002) The t(8;21) fusion protein, AML1 ETO, specifically represses the transcription of the p14(ARF) tumor suppressor in acute myeloid leukemia. Nature Medicine, 8, 743–750.
- Liu, S., Shen, T., Huynh, L., Klisovic, M.I., Rush, L.J., Ford, J.L., Yu, J., Becknell, B., Li, Y., Liu, C., Vukosavljevic, T., Whitman, S.P., Chang, K.S., Byrd, J.C., Perrotti, D., Plass, C. & Marcucci, G. (2005) Interplay of RUNX1/MTG8 and DNA methyltransferase 1 in acute myeloid leukemia. Cancer Research, 65, 1277–1284.
- Loh, M.L., Sakai, D.S., Flotho, C., Kang, M., Fliegauf, M., Archambeault, S., Mullighan, C.G., Chen, L., Bergstraesser, E., Bueso-Ramos, C.E., Emanuel, P.D., Hasle, H., Issa, J.P., van den Heuvel-Eibrink, M.M., Locatelli, F., Stary, J., Trebo, M., Wlodarski, M., Zecca, M., Shannon, K.M. & Niemeyer, C.M. (2009) Mutations in CBL occur frequently in juvenile myelomonocytic leukemia. Blood, 114, 1859–1863.
- Lutterbach, B., Westendorf, J.J., Linggi, B., Patten, A., Moniwa, M., Davie, J.R., Huynh, K.D., Bardwell, V.J., Lavinsky, R.M., Rosenfeld, M.G., Glass, C., Seto, E. & Hiebert, S.W. (1998) ETO, a target of t(8;21) in acute leukemia, interacts with the N-CoR and mSin3 corepressors. Molecular and Cellular Biology, 18, 7176–7184.
- de la Luz Sierra, M., Sakakibara, S., Gasperini, P., Salvucci, O., Jiang, K., McCormick, P.J., Segarra, M., Stone, J., Maric, D., Zhu, J., Qian, X., Lowy, D.R. & Tosato, G. (2010) The transcription factor Gfi1 regulates G-CSF signaling and neutrophil development through the Ras activator RasGRP1. Blood, 115, 3970–3979.
- Maher, J., Baker, D., Dibb, N. & Roberts, I. (1996) Mutant ras promotes haemopoietic cell proliferation or differentiation in a cell-specific manner. Leukemia, 10, 83–90.
- Müller, A.M., Duque, J., Shizuru, J.A. & Lübbert, M. (2008) Complementing mutations in core binding factor leukemias: from mouse models to clinical applications. Oncogene, 27, 5759–5773.
- Niemeyer, C.M., Kang, M.W., Shin, D.H., Furlan, I., Erlacher, M., Bunin, N.J., Bunda, S., Finklestein, J.Z., Sakamoto, K.M., Gorr, T.A., Mehta, P., Schmid, I., Kropshofer, G., Corbacioglu, S., Lang, P.J., Klein, C., Schlegel, P.G., Heinzmann, A., Schneider, M., Starý, J., van den Heuvel-Eibrink, M.M., Hasle, H., Locatelli, F., Sakai, D., Archambeault, S., Chen, L., Russell, R.C., Sybingco, S.S., Ohh, M., Braun, B.S., Flotho, C. & Loh, M.L. (2010) Germline CBL mutations cause developmental abnormalities and predispose to juvenile myelomonocytic leukemia. Nature Genetics, 42, 794–800.
- Otto, F., Lübbert, M. & Stock, M. (2003) Upstream and downstream targets of RUNX proteins. Journal of Cell Biology, 89, 9–18.
- Rebollo, A. & Martínez-A, C. (1999) Ras proteins: recent advances and new functions. Blood, 94, 2971–2980.
- Sanada, M., Suzuki, T., Shih, L.Y., Otsu, M., Kato, M., Yamazaki, S., Tamura, A., Honda, H., Sakata-Yanagimoto, M., Kumano, K., Oda, H., Yamagata, T., Takita, J., Gotoh, N., Nakazaki, K., Kawamata, N., Onodera, M., Nobuyoshi, M., Hayashi, Y., Harada, H., Kurokawa, M., Chiba, S., Mori, H., Ozawa, K., Omine, M., Hirai, H., Nakauchi, H., Koeffler, H.P. & Ogawa, S. (2009) Gain-of-function of mutated C-CBL tumour suppressor in myeloid neoplasms. Nature, 460, 904–908.
- Schmidt, M.H. & Dikic, I. (2005) The Cbl interactome and its functions. Nature Reviews Molecular and Cellular Biology, 6, 907–918.
- Schoch, C., Kohlmann, A., Schnittger, S., Brors, B., Dugas, M., Mergenthaler, S., Kern, W., Hiddemann, W., Eils, R. & Haferlach, T. (2002) Acute myeloid leukemias with reciprocal rearrangements can be distinguished by specific gene expression profiles. Proceedings of the National Academy of Sciences U S A, 99, 10008–10013.
- Tedoldi, S., Paterson, J.C., Hansmann, M.L., Natkunam, Y., Rudiger, T., Angelisova, P., Du, M.Q., Roberton, H., Roncador, G., Sanchez, L., Pozzobon, M., Masir, N., Barry, R., Pileri, S., Mason, D.Y., Marafioti, T. & Horejsí, V. (2006) Transmembrane adaptor molecules: a new category of lymphoid-cell markers. Blood, 107, 213–221.
- Tessarz, A.S., Weiler, S., Zanzinger, K., Angelisova, P., Horejsi, V. & Cerwenka, A. (2007) Non-T-cell activation linker (NTAL) negatively regulates TREM-1/DAP12-induced inflammatory cytokine production in myeloid cells. Journal of Immunology, 178, 1991–1999.
- Thien, C.B. & Langdon, W.Y. (2005) c-Cbl and Cbl-b ubiquitin ligases: substrate diversity and the negative regulation of signalling responses. Biochemical Journal, 391, 153–166.
- Tkaczyk, C., Horejsi, V., Iwaki, S., Draber, P., Samelson, L.E., Satterthwaite, A.B., Nahm, D.H., Metcalfe, D.D. & Gilfillan, A.M. (2004) NTAL phosphorylation is a pivotal link between the signaling cascades leading to human mast cell degranulation following Kit activation and Fc epsilon RI aggregation. Blood, 104, 207–214.
- Volna, P., Lebduska, P., Draberova, L., Simova, S., Heneberg, P., Boubelik, M., Bugajev, V., Malissen, B., Wilson, B.S., Horejsí, V., Malissen, M. & Dráber, P. (2004) Negative regulation of mast cell signaling and function by the adaptor LAB/NTAL. Journal of Experimental Medicine, 200, 1001–1013.
- Wang, Y., Horvath, O., Hamm-Baarke, A., Richelme, M., Gregoire, C., Guinamard, R., Horejsi, V., Angelisova, P., Spicka, J., Schraven, B., Malissen, B. & Malissen, M. (2005) Single and combined deletions of the NTAL/LAB and LAT adaptors minimally affect B-cell development and function. Molecular and Cellular Biology, 25, 4455–4465.
- Zhu, M., Liu, Y., Koonpaew, S., Granillo, O. & Zhang, W. (2004) Positive and negative regulation of FcepsilonRI-mediated signaling by the adaptor protein LAB/NTAL. Journal of Experimental Medicine, 200, 991–1000.
- Zhu, M., Koonpaew, S., Liu, Y., Shen, S., Denning, T., Dzhagalov, I., Rhee, I. & Zhang, W. (2006) Negative regulation of T-cell activation and autoimmunity by the transmembrane adaptor protein LAB. Immunity, 25, 757–768.