Pathogenesis of the erythroid failure in Diamond Blackfan anaemia
Colin A. Sieff
Whitehead Institute for Biomedical Research, Cambridge
Department of Hematology/Oncology, Childrens Hospital Boston, Boston, MA, USA
Search for more papers by this authorJing Yang
Whitehead Institute for Biomedical Research, Cambridge
Department of Hematology/Oncology, Childrens Hospital Boston, Boston, MA, USA
Search for more papers by this authorLilia B. Merida-Long
Whitehead Institute for Biomedical Research, Cambridge
Search for more papers by this authorHarvey F. Lodish
Whitehead Institute for Biomedical Research, Cambridge
Search for more papers by this authorColin A. Sieff
Whitehead Institute for Biomedical Research, Cambridge
Department of Hematology/Oncology, Childrens Hospital Boston, Boston, MA, USA
Search for more papers by this authorJing Yang
Whitehead Institute for Biomedical Research, Cambridge
Department of Hematology/Oncology, Childrens Hospital Boston, Boston, MA, USA
Search for more papers by this authorLilia B. Merida-Long
Whitehead Institute for Biomedical Research, Cambridge
Search for more papers by this authorHarvey F. Lodish
Whitehead Institute for Biomedical Research, Cambridge
Search for more papers by this authorSummary
Diamond Blackfan anaemia (DBA) is a severe congenital failure of erythropoiesis. Despite mutations in one of several ribosome protein genes, including RPS19, the cause of the erythroid specificity is still a mystery. We hypothesized that, because the chromatin of late erythroid cells becomes condensed and transcriptionally inactive prior to enucleation, the rapidly proliferating immature cells require very high ribosome synthetic rates. RNA biogenesis was measured in primary mouse fetal liver erythroid progenitor cells; during the first 24 h, cell number increased three to fourfold while, remarkably, RNA content increased sixfold, suggesting an accumulation of an excess of ribosomes during early erythropoiesis. Retrovirus infected siRNA RPS19 knockdown cells showed reduced proliferation but normal differentiation, and cell cycle analysis showed a G1/S phase delay. p53 protein was increased in the knockdown cells, and the mRNA level for p21, a transcriptional target of p53, was increased. Furthermore, we show that RPS19 knockdown decreased MYB protein, and Kit mRNA was reduced, as was the amount of cell surface KIT protein. Thus, in this small hairpin RNA murine model of DBA, RPS19 insufficient erythroid cells may proliferate poorly because of p53-mediated cell cycle arrest, and also because of decreased expression of the key erythroid signalling protein KIT.
References
- Abkowitz, J.L., Sabo, K.M., Nakamoto, B., Blau, C.A., Martin, F.H., Zsebo, K.M. & Papayannopoulou, T. (1991) Diamond–Blackfan anemia: in vitro response of erythroid progenitors to the ligand for c-kit. Blood, 78, 2198–2202.
- Ball, S.E., McGuckin, C.P., Jenkins, G. & Gordon-Smith, E.C. (1996) Diamond–Blackfan anaemia in the U.K.: analysis of 80 cases from a 20-year birth cohort. British Journal of Haematology, 94, 645–653.
- Choesmel, V., Bacqueville, D., Rouquette, J., Noaillac-Depeyre, J., Fribourg, S., Cretien, A., Leblanc, T., Tchernia, G., Dacosta, L. & Gleizes, P.E. (2007) Impaired ribosome biogenesis in Diamond–Blackfan anemia. Blood, 109, 1275–1283.
- Cmejla, R., Cmejlova, J., Handrkova, H., Petrak, J. & Pospisilova, D. (2007) Ribosomal protein S17 gene (RPS17) is mutated in Diamond–Blackfan anemia. Human Mutation, 28, 1178–1182.
- Da Costa, L., Narla, G., Willig, T.N., Peters, L.L., Parra, M., Fixler, J., Tchernia, G. & Mohandas, N. (2003) Ribosomal protein S19 expression during erythroid differentiation. Blood, 101, 318–324.
- Dai, M.S. & Lu, H. (2004) Inhibition of MDM2-mediated p53 ubiquitination and degradation by ribosomal protein L5. Journal of Biological Chemistry, 279, 44475–44482.
- Daniely, Y., Dimitrova, D.D. & Borowiec, J.A. (2002) Stress-dependent nucleolin mobilization mediated by p53-nucleolin complex formation. Molecular and Cellular Biology, 22, 6014–6022.
- Dolznig, H., Boulme, F., Stangl, K., Deiner, E.M., Mikulits, W., Beug, H. & Mullner, E.W. (2001) Establishment of normal, terminally differentiating mouse erythroid progenitors: molecular characterization by cDNA arrays. FASEB Journal, 15, 1442–1444.
- Dolznig, H., Kolbus, A., Leberbauer, C., Schmidt, U., Deiner, E.M., Mullner, E.W. & Beug, H. (2005) Expansion and differentiation of immature mouse and human hematopoietic progenitors. Methods in Molecular Medicine, 105, 323–344.
- Draptchinskaia, N., Gustavsson, P., Andersson, B., Pettersson, M., Willig, T.N., Dianzani, I., Ball, S., Tchernia, G., Klar, J., Matsson, H., Tentler, D., Mohandas, N., Carlsson, B. & Dahl, N. (1999) The gene encoding ribosomal protein S19 is mutated in Diamond–Blackfan anaemia. Nature Genetics, 21, 169–175.
- Ebert, B.L., Lee, M.M., Pretz, J.L., Subramanian, A., Mak, R., Golub, T.R. & Sieff, C.A. (2005) An RNA interference model of RPS19 deficiency in Diamond–Blackfan anemia recapitulates defective hematopoiesis and rescue by dexamethasone: identification of dexamethasone-responsive genes by microarray. Blood, 105, 4620–4626.
- Emambokus, N., Vegiopoulos, A., Harman, B., Jenkinson, E., Anderson, G. & Frampton, J. (2003) Progression through key stages of haemopoiesis is dependent on distinct threshold levels of c-Myb. EMBO Journal, 22, 4478–4488.
- Farrar, J.E., Nater, M., Caywood, E., McDevitt, M.A., Kowalski, J., Takemoto, C.M., Talbot, Jr, C.C., Meltzer, P., Esposito, D., Beggs, A.H., Schneider, H.E., Grabowska, A., Ball, S.E., Niewiadomska, E., Sieff, C.A., Vlachos, A., Atsidaftos, E., Ellis, S.R., Lipton, J.M., Gazda, H.T. & Arceci, R.J. (2008) Abnormalities of the large ribosomal subunit protein, Rpl35a, in Diamond–Blackfan anemia. Blood, 112, 1582–1592.
- Fawcett, D.W. (2002) Hematopoiesis. In: Bloom & Fawcett: Concise Histology (ed. by D.W. Fawcett and R.P. Jensh), pp. 52–57. Arnold, London, New York, Delhi.
- Flygare, J., Aspesi, A., Bailey, J.C., Miyake, K., Caffrey, J.M., Karlsson, S. & Ellis, S. (2007) Human RPS19, the gene mutated in Diamond Blackfan anemia, encodes a ribosomal protein required for the maturation of 40S ribosomal subunits. Blood, 109, 980–986.
- Franze-Fernandez, M.T. & Pogo, A.O. (1971) Regulation of the nucleolar DNA-dependent RNA polymerase by amino acids in Ehrlich ascites tumor cells. Proceedings of the National Academy of Sciences of the United States of America, 68, 3040–3044.
- Freedman, M.H., Amato, D. & Saunders, E.F. (1976) Erythroid colony growth in congenital hypoplastic anemia. Journal of Clinical Investigation, 57, 673–677.
- Ganguli, G., Back, J., Sengupta, S. & Wasylyk, B. (2002) The p53 tumour suppressor inhibits glucocorticoid-induced proliferation of erythroid progenitors. EMBO Reports, 3, 569–574.
- Gazda, H.T., Zhong, R., Long, L., Niewiadomska, E., Lipton, J.M., Ploszynska, A., Zaucha, J.M., Vlachos, A., Atsidaftos, E., Viskochil, D.H., Niemeyer, C.M., Meerpohl, J.J., Rokicka-Milewska, R., Pospisilova, D., Wiktor-Jedrzejczak, W., Nathan, D.G., Beggs, A.H. & Sieff, C.A. (2004) RNA and protein evidence for haplo-insufficiency in Diamond–Blackfan anaemia patients with RPS19 mutations. British Journal of Haematology, 127, 105–113.
- Gazda, H.T., Grabowska, A., Merida-Long, L.B., Latawiec, E., Schneider, H.E., Lipton, J.M., Vlachos, A., Atsidaftos, E., Ball, S.E., Orfali, K.A., Niewiadomska, E., Da Costa, L., Tchernia, G., Niemeyer, C., Meerpohl, J.J., Stahl, J., Schratt, G., Glader, B., Backer, K., Wong, C., Nathan, D.G., Beggs, A.H. & Sieff, C.A. (2006a) Ribosomal protein S24 gene is mutated in Diamond–Blackfan anemia. American Journal of Human Genetics, 79, 1110–1118.
- Gazda, H.T., Kho, A.T., Sanoudou, D., Zaucha, J.M., Kohane, I.S., Sieff, C.A. & Beggs, A.H. (2006b) Defective ribosomal protein gene expression alters transcription, translation, apoptosis, and oncogenic pathways in Diamond–Blackfan anemia. Stem Cells, 24, 2034–2044.
- Gazda, H.T., Sheen, M.R., Vlachos, A., Choesmel, V., O’Donohue, M.F., Schneider, H., Darras, N., Hasman, C., Sieff, C.A., Newburger, P.E., Ball, S.E., Niewiadomska, E., Matysiak, M., Zaucha, J.M., Glader, B., Niemeyer, C., Meerpohl, J.J., Atsidaftos, E., Lipton, J.M., Gleizes, P.E. & Beggs, A.H. (2008) Ribosomal protein L5 and L11 mutations are associated with cleft palate and abnormal thumbs in Diamond–Blackfan anemia patients. American Journal of Human Genetics, 83, 769–780.
- Gregory, C.J., Tepperman, A.D., McCulloch, E.A. & Till, J.E. (1974) Erythropoietic progenitors capable of colony formation in culture: response of normal and genetically anemic W-W-V mice to manipulations of the erythron. Journal of Cellular Physiology, 84, 1–12.
- Haupt, Y., Maya, R., Kazaz, A. & Oren, M. (1997) Mdm2 promotes the rapid degradation of p53. Nature, 387, 296–299.
- Honda, R., Tanaka, H. & Yasuda, H. (1997) Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Letters, 420, 25–27.
- Idol, R.A., Robledo, S., Du, H.Y., Crimmins, D.L., Wilson, D.B., Ladenson, J.H., Bessler, M. & Mason, P.J. (2007) Cells depleted for RPS19, a protein associated with Diamond Blackfan anemia, show defects in 18S ribosomal RNA synthesis and small ribosomal subunit production. Blood Cells, Molecules, and Diseases, 39, 35–43.
- Ikuta, K., Kina, T., MacNeil, I., Uchida, N., Peault, B., Chien, Y.H. & Weissman, I.L. (1990) A developmental switch in thymic lymphocyte maturation potential occurs at the level of hematopoietic stem cells. Cell, 62, 863–874.
- Jin, A., Itahana, K., O’Keefe, K. & Zhang, Y. (2004) Inhibition of HDM2 and activation of p53 by ribosomal protein L23. Molecular and Cellular Biology, 24, 7669–7680.
- Kina, T., Ikuta, K., Takayama, E., Wada, K., Majumdar, A.S., Weissman, I.L. & Katsura, Y. (2000) The monoclonal antibody TER-119 recognizes a molecule associated with glycophorin A and specifically marks the late stages of murine erythroid lineage. British Journal of Haematology, 109, 280–287.
- Kuramitsu, M., Hamaguchi, I., Takuo, M., Masumi, A., Momose, H., Takizawa, K., Mochizuki, M., Naito, S. & Yamaguchi, K. (2008) Deficient RPS19 protein production induces cell cycle arrest in erythroid progenitor cells. British Journal of Haematology, 140, 348–359.
- Levine, E.M., Becker, Y., Boone, C.W. & Eagle, H. (1965) Contact inhibition, macromolecular synthesis, and polyribosomes in cultured human diploid fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 53, 350–356.
- Lohrum, M.A., Ludwig, R.L., Kubbutat, M.H., Hanlon, M. & Vousden, K.H. (2003) Regulation of HDM2 activity by the ribosomal protein L11. Cancer Cell, 3, 577–587.
- Marechal, V., Elenbaas, B., Piette, J., Nicolas, J.C. & Levine, A.J. (1994) The ribosomal L5 protein is associated with mdm-2 and mdm-2–p53 complexes. Molecular and Cellular Biology, 14, 7414–7420.
- McGowan, K.A., Li, J.Z., Park, C.Y., Beaudry, V., Tabor, H.K., Sabnis, A.J., Zhang, W., Fuchs, H., De Angelis, M.H., Myers, R.M., Attardi, L.D. & Barsh, G.S. (2008) Ribosomal mutations cause p53-mediated dark skin and pleiotropic effects. Nature Genetics, 40, 963–970.
- Miyake, K., Utsugisawa, T., Flygare, J., Kiefer, T., Hamaguchi, I., Richter, J. & Karlsson, S. (2008) Ribosomal protein S19 deficiency leads to reduced proliferation and increased apoptosis but does not affect terminal erythroid differentiation in a cell line model of Diamond–Blackfan anemia. Stem Cells, 26, 323–329.
- Mucenski, M.L., McLain, K., Kier, A.B., Swerdlow, S.H., Schreiner, C.M., Miller, T.A., Pietryga, D.W., Scott, Jr, W.J. & Potter, S.S. (1991) A functional c-myb gene is required for normal murine fetal hepatic hematopoiesis. Cell, 65, 677–689.
- Nathan, D.G., Clarke, B.J., Hillman, D.G., Alter, B.P. & Housman, D.E. (1978) Erythroid precursors in congenital hypoplastic (Diamond–Blackfan) anemia. Journal of Clinical Investigation, 61, 489–498.
- Ohene-Abuakwa, Y., Orfali, K.A., Marius, C. & Ball, S.E. (2005) Two-phase culture in Diamond Blackfan Anemia: localization of erythroid defect. Blood, 105, 838–846.
- Oliner, J.D., Pietenpol, J.A., Thiagalingam, S., Gyuris, J., Kinzler, K.W. & Vogelstein, B. (1993) Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature, 362, 857–860.
- Olivieri, N.F., Grunberger, T., Ben-David, Y., Ng, J., Williams, D.E., Lyman, S., Anderson, D.M., Axelrad, A.A., Correa, P., Bernstein, A. & Freedman, M.H. (1991) Diamond–Blackfan anemia: heterogenous response of hematopoietic progenitor cells in vitro to the protein product of the Steel locus. Blood, 78, 2211–2215.
- Orfali, K.A., Ohene-Abuakwa, Y. & Ball, S.E. (2004) Diamond Blackfan anaemia in the UK: clinical and genetic heterogeneity. British Journal of Haematology, 125, 243–252.
- Perdahl, E.B., Naprstek, B.L., Wallace, W.C. & Lipton, J.M. (1994) Erythroid failure in Diamon–Blackfan anemia is characterized by apoptosis. Blood, 83, 645–650.
- Pestov, D.G., Strezoska, Z. & Lau, L.F. (2001) Evidence of p53-dependent cross-talk between ribosome biogenesis and the cell cycle: effects of nucleolar protein Bop1 on G(1)/S transition. Molecular and Cellular Biology, 21, 4246–4255.
- Ramenghi, U., Garelli, E., Valtolina, S., Campagnoli, M.F., Timeus, F., Crescenzio, N., Mair, M., Varotto, S., D’Avanzo, M., Nobili, B., Massolo, F., Mori, P.G., Locatelli, F., Gustavsson, P., Dahl, N. & Dianzani, I. (1999) Diamond–Blackfan anaemia in the Italian population. British Journal of Haematology, 104, 841–848.
- Rubbi, C.P. & Milner, J. (2003) Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses. EMBO Journal, 22, 6068–6077.
- Sieff, C.A., Yokoyama, C.T., Zsebo, K.M., Nathan, D.G. & Williams, D.A. (1991) The enhancement of erythropoiesis by Steel factor (SF) and the production of SF mRNA is normal in Diamond Blackfan anemia (DBA). Blood, 78, 95a. (Abstract 369).
- Socolovsky, M., Nam, H., Fleming, M.D., Haase, V.H., Brugnara, C. & Lodish, H.F. (2001) Ineffective erythropoiesis in Stat5a(−/−)5b(−/−) mice due to decreased survival of early erythroblasts. Blood, 98, 3261–3273.
- Stephenson, J.R., Axelrad, A.A., McLeod, D.L. & Shreeve, M.M. (1971) Induction of colonies of hemoglobin-synthesizing cells by erythropoietin in vitro. Proceedings of the National Academy of Sciences of the United States of America, 68, 1542–1546.
- Todaro, G.J., Lazar, G.K. & Green, H. (1965) The initiation of cell division in a contact-inhibited mammalian cell line. Journal of Cellular Physiology, 66, 325–333.
- Vegiopoulos, A., Garcia, P., Emambokus, N. & Frampton, J. (2006) Coordination of erythropoiesis by the transcription factor c-Myb. Blood, 107, 4703–4710.
- Volarevic, S., Stewart, M.J., Ledermann, B., Zilberman, F., Terracciano, L., Montini, E., Grompe, M., Kozma, S.C. & Thomas, G. (2000) Proliferation, but not growth, blocked by conditional deletion of 40S ribosomal protein S6. Science, 288, 2045–2047.
- Ward, G.A. & Plagemann, P.G. (1969) Fluctuations of DNA-dependent RNA polymerase and synthesis of macromolecules during the growth cycle of Novikoff rat hepatoma cells in suspension culture. Journal of Cellular Physiology, 73, 213–231.
- Wessely, O., Deiner, E.M., Beug, H. & Von Lindern, M. (1997) The glucocorticoid receptor is a key regulator of the decision between self-renewal and differentiation in erythroid progenitors. EMBO Journal, 16, 267–280.
- Willig, T.-N., Niemeyer, C., Leblanc, T., Tiemann, C., Robert, A., Budde, J., Lambiliotte, A., Kohne, E., Souillet, G., Stephan, J.L., Girot, R., Bordigoni, P., Cornu, G., Blanche, S., Guillard, J.M. & Tchernia, G. (1999) Diamond Blackfan anemia: clinical and epidemiological studies with identification of new long-term prognosis factors from the analysis of a registry of 234 patients. Pediatric Research, 46, 553–561.
- Ying, G.G., Proost, P., Van Damme, J., Bruschi, M., Introna, M. & Golay, J. (2000) Nucleolin, a novel partner for the Myb transcription factor family that regulates their activity. Journal of Biological Chemistry, 275, 4152–4158.
- Zhang, J., Socolovsky, M., Gross, A.W. & Lodish, H.F. (2003a) Role of Ras signaling in erythroid differentiation of mouse fetal liver cells: functional analysis by a flow cytometry-based novel culture system. Blood, 102, 3938–3946.
- Zhang, Y., Wolf, G.W., Bhat, K., Jin, A., Allio, T., Burkhart, W.A. & Xiong, Y. (2003b) Ribosomal protein L11 negatively regulates oncoprotein MDM2 and mediates a p53-dependent ribosomal-stress checkpoint pathway. Molecular and Cellular Biology, 23, 8902–8912.