Combination of KIT gene silencing and tocopherol succinate may offer improved therapeutic approaches for human mastocytosis
Irene Ruano
Centro de Biología Molecular Severo Ochoa (CSIC), Departamento de Biología Molecular (Universidad Autónoma de Madrid), Cantoblanco, Madrid, Spain
Search for more papers by this authorRicardo Gargini
Centro de Biología Molecular Severo Ochoa (CSIC), Departamento de Biología Molecular (Universidad Autónoma de Madrid), Cantoblanco, Madrid, Spain
Search for more papers by this authorMarta Izquierdo
Centro de Biología Molecular Severo Ochoa (CSIC), Departamento de Biología Molecular (Universidad Autónoma de Madrid), Cantoblanco, Madrid, Spain
Search for more papers by this authorIrene Ruano
Centro de Biología Molecular Severo Ochoa (CSIC), Departamento de Biología Molecular (Universidad Autónoma de Madrid), Cantoblanco, Madrid, Spain
Search for more papers by this authorRicardo Gargini
Centro de Biología Molecular Severo Ochoa (CSIC), Departamento de Biología Molecular (Universidad Autónoma de Madrid), Cantoblanco, Madrid, Spain
Search for more papers by this authorMarta Izquierdo
Centro de Biología Molecular Severo Ochoa (CSIC), Departamento de Biología Molecular (Universidad Autónoma de Madrid), Cantoblanco, Madrid, Spain
Search for more papers by this authorSummary
Gain-of-function mutations of kit tyrosine kinase receptor are associated with mastocytosis. Two subclones of the HMC1 mast leukaemia cell line were used; both express an identical KIT allele-specific regulatory type mutation (V560G), but differ in that one also expresses an enzymatic site type mutation (D816V) that confers on them resistance to imatinib mesylate tyrosine kinase inhibitor. In both cell lines, proliferation was suppressed and apoptosis induced by the combination of KIT gene silencing and α-tocopherol succinate (α-TOS), a derivate of α-tocopherol, also known as vitamin E. Furthermore, HMC1 cells with decreased kit levels by KIT silencing, failed to form tumours when xenotransplanted into immunocompromised mice and the animals were treated systemically with α-TOS. Targeting kit in the presence of α-TOS represents a new approach against proliferation of human mast leukaemia cell lines.
Supporting Information
Fig S1. Percentage of fragmented DNA in cells transfected with retroviruses carrying the DNA to be transcribed to shRNA against KIT (Tot, Mut) or control empty retrovirus vector (Co) in the absence or presence of α-TOS (15 μmol/l) and/or the general caspase inhibitor, z-VAD-fmk, at a concentration of 25 μmol/l.
Please note: Wiley-Blackwell are not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.
Filename | Description |
---|---|
BJH_7918_sm_FigS1.tif4.3 MB | Supporting info item |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Akin, C., Brockow, K., D’Ambrosio, C., Kirshenbaum, A.S., Ma, Y., Longley, B.J. & Metcalfe, D.D. (2003) Effects of tyrosine kinase inhibitor STI571 on human mast cells bearing wild-type or mutated KIT. Experimental Hematology, 31, 686–692.
- Ashman, L.K., Ferrao, P., Cole, S.R. & Cambareri, A.C. (1999) Effects of mutant c-Kit in early myeloid cells. Leukaemia & Lymphoma, 34, 451–461.
- Brummelkamp, T.R., Bernards, R. & Agami, R. (2002) Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell, 2, 243–247.
- Butterfield, J.H., Weiler, D., Dewald, G. & Gleich, G.J. (1988) Establishment of an immature mast cell line from a patient with mast cell leukemia. Leukemia Research, 12, 345–355.
- Capdeville, R., Buchdunger, E., Zimmermann, J. & Matter, A. (2002) Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug. Nature Reviews. Drug discovery, 1, 493–502.
- Clarke, A.R., Purdie, C.A., Harrison, D.J., Morris, R.G., Bird, C.C., Hooper, M.L. & Wyllie, A.H. (1993) Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature, 362, 849–852.
- Dalen, H. & Neuzil, J. (2003) Alpha-tocopheryl succinate sensitises a T lymphoma cell line to TRAIL-induced apoptosis by suppressing NF-kappaB activation. British Journal of Cancer, 88, 153–158.
- Duursma, A.M. & Agami, R. (2003) Ras interference as cancer therapy. Seminars in Cancer Biology, 13, 267–273.
- Escribano, L., Akin, C., Castells, M., Orfao, A. & Metcalfe, D.D. (2002) Mastocytosis: current concepts in diagnosis and treatment. Annals of Hematology, 81, 677–690.
- Garcia-Montero, A.C., Jara-Acevedo, M., Teodosio, C., Sanchez, M.L., Nunez, R., Prados, A., Aldanondo, I., Sanchez, L., Dominguez, M., Botana, L.M., Sanchez-Jimenez, F., Sotlar, K., Almeida, J., Escribano, L. & Orfao, A. (2006) KIT mutation in mast cells and other bone marrow hematopoietic cell lineages in systemic mast cell disorders: a prospective study of the Spanish Network on Mastocytosis (REMA) in a series of 113 patients. Blood, 108, 2366–2372.
- Haller, F., Detken, S., Schulten, H.J., Happel, N., Gunawan, B., Kuhlgatz, J. & Fuzesi, L. (2007) Surgical management after neoadjuvant imatinib therapy in gastrointestinal stromal tumours (GISTs) with respect to imatinib resistance caused by secondary KIT mutations. Annals of Surgical Oncology, 14, 526–532.
- Hartmann, K., Wardelmann, E., Ma, Y., Merkelbach-Bruse, S., Preussner, L.M., Woolery, C., Baldus, S.E., Heinicke, T., Thiele, J., Buettner, R. & Longley, B.J. (2005) Novel germline mutation of KIT associated with familial gastrointestinal stromal tumors and mastocytosis. Gastroenterology, 129, 1042–1046.
- Hines, S.J., Organ, C., Kornstein, M.J. & Krystal, G.W. (1995) Coexpression of the c-kit and stem cell factor genes in breast carcinomas. Cell Growth and Differentiation, 6, 769–779.
- Hirota, S., Isozaki, K., Moriyama, Y., Hashimoto, K., Nishida, T., Ishiguro, S., Kawano, K., Hanada, M., Kurata, A., Takeda, M., Muhammad Tunio, G., Matsuzawa, Y., Kanakura, Y., Shinomura, Y. & Kitamura, Y. (1998) Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science, 279, 577–580.
- Inoue, M., Kyo, S., Fujito, M., Enomoto, T. & Kondoh, G. (1994) Coexpression of c-kit receptor and the stem cell factor receptor in gynecological tumors. Cancer Research, 54, 3049–3053.
- Jaattela, M., Wissing, D., Kokholm, K., Kallunki, T. & Egeblad, M. (1998) Hsp70 exerts its anti-apoptotic function downstream of caspase-3-like proteases. EMBO Journal, 17, 6124–6134.
- Johnson, F.M., Krug, L.M., Tran, H.T., Shoaf, S., Prieto, V.G., Tamboli, P., Peeples, B., Patel, J. & Glisson, B.S. (2006) Phase I studies of imatinib mesylate combined with cisplatin and irinotecan in patients with small cell lung carcinoma. Cancer, 106, 366–374.
- Kempna, P., Reiter, E., Arock, M., Azzi, A. & Zingg, J.M. (2004) Inhibition of HMC-1 mast cell proliferation by vitamin E: involvement of the protein kinase B pathway. Journal of Biological Chemistry, 279, 50700–50709.
- Kim, D.H. & Rossi, J.J. (2007) Strategies for silencing human disease using RNA interference. Nature Reviews. Genetics, 8, 173–184.
- Krystal, G.W., Hines, S.J. & Organ, C.P. (1996) Autocrine growth of small cell lung cancer mediated by co-expression of c-kit ans stem cell factor. Cancer Research, 56, 370–376.
- Lim, S.J., Lee, Y.J., Park, D.H., Lee, E., Choi, M.K., Park, W., Chun, K.H., Choi, H.G. & Cho, J.S. (2007) Alpha-tocopheryl succinate sensitizes human colon cancer cells to exisulind-induced apoptosis. Apoptosis, 12, 423–431.
- Longley, B.J., Reguera, M.J. & Ma, Y. (2001) Classes of c-KIT activating mutations: proposed mechanisms of action and implications for disease classification and therapy. Leukemia Research, 25, 571–576.
- Ma, Y., Longley, B.J., Wang, X., Blount, J.L., Langley, K. & Caughey, G.H. (1999) Clustering of activating mutations in c-KIT’s juxtamembrane coding region in canine mast cell neoplasms. Journal of Investigative Dermatology, 112, 165–170.
- Martinez, L.A., Naguibneva, I., Lehrmann, H., Vervisch, A., Tchenio, T., Lozano, G. & Harel-Bellan, A. (2002) Synthetic small inhibiting RNAs: efficient tools to inactivate oncogenic mutations and restore p53 pathways. Proceedings of the National Academy of Sciences of the United States of America, 99, 14849–14854.
- McLean, S.R., Gana-Weisz, M., Hartzoulakis, B., Frow, R., Whelan, J., Selwood, D. & Boshoff, C. (2005) Imatinib binding and cKIT inhibition is abrogated by the cKIT kinase domain I missense mutation Val654Ala. Molecular Cancer Therapeutics, 4, 2008–2015.
- Mol, C.D., Dougan, D.R., Schneider, T.R., Skene, R.J., Kraus, M.L., Scheibe, D.N., Snell, G.P., Zou, H., Sang, B.C. & Wilson, K.P. (2004) Structural basis for the autoinhibition and STI-571 inhibition of c-Kit tyrosine kinase. Journal of Biological Chemistry, 279, 31655–31663.
- Neuzil, J., Kagedal, K., Andera, L., Weber, C. & Brunk, U.T. (2002) Vitamin E analogs: a new class of multiple action agents with anti-neoplastic and anti-atherogenic activity. Apoptosis, 7, 179–187.
- Neuzil, J., Tomasetti, M., Zhao, Y., Dong, L.F., Birringer, M., Wang, X.F., Low, P., Wu, K., Salvatore, B.A. & Ralph, S.J. (2007) Vitamin E analogs, a novel group of “mitocans,” as anticancer agents: the importance of being redox-silent. Molecular Pharmacology, 71, 1185–1199.
- Olivieri, A. & Manzione, L. (2007) Dasatinib: a new step in molecular target therapy. Annals of Oncology, 18(Suppl. 6), vi42–vi46.
- Orfao, A., Garcia-Montero, A.C., Sanchez, L. & Escribano, L. (2007) Recent advances in the understanding of mastocytosis: the role of KIT mutations. British Journal of Haematology, 138, 12–30.
- Perez-Soler, R. (2007) Erlotinib: recent clinical results and ongoing studies in non small cell lung cancer. Clinical Cancer Research, 13, s4589–s4592.
- Prasad, K.N., Hernandez, C., Edwards-Prasad, J., Nelson, J., Borus, T. & Robinson, W.A. (1994) Modification of the effect of tamoxifen, cis-platin, DTIC, and interferon-alpha 2b on human melanoma cells in culture by a mixture of vitamins. Nutrition and Cancer, 22, 233–245.
- Quintas-Cardama, A., Aribi, A., Cortes, J., Giles, F.J., Kantarjian, H. & Verstovsek, S. (2006) Novel approaches in the treatment of systemic mastocytosis. Cancer, 107, 1429–1439.
- Raoul, C., Abbas-Terki, T., Bensadoun, J.C., Guillot, S., Haase, G., Szulc, J., Henderson, C.E. & Aebischer, P. (2005) Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset and progression in a mouse model of ALS. Nature Medicine, 11, 423–428.
- Rosato, R.R., Almenara, J.A. & Grant, S. (2003) The histone deacetylase inhibitor MS-275 promotes differentiation or apoptosis in human leukemia cells through a process regulated by generation of reactive oxygen species and induction of p21CIP1/WAF1 1. Cancer Research, 63, 3637–3645.
- Roucou, X., Montessuit, S., Antonsson, B. & Martinou, J.C. (2002) Bax oligomerization in mitochondrial membranes requires tBid (caspase-8-cleaved Bid) and a mitochondrial protein. Biochemical Journal, 368, 915–921.
- Ruano, I. & Izquierdo, M. (2009) Selective RNAi-mediated inhibition of mutated c-kit. Journal of RNAi and Gene Silencing, 5, 339–344.
- Simbulan-Rosenthal, C.M., Rosenthal, D.S., Iyer, S., Boulares, H. & Smulson, M.E. (1999) Involvement of PARP and poly(ADP-ribosyl)ation in the early stages of apoptosis and DNA replication. Molecular and Cellular Biochemistry, 193, 137–148.
- Tomasetti, M., Rippo, M.R., Alleva, R., Moretti, S., Andera, L., Neuzil, J. & Procopio, A. (2004) Alpha-tocopheryl succinate and TRAIL selectively synergise in induction of apoptosis in human malignant mesothelioma cells. British Journal of Cancer, 90, 1644–1653.
- Tomasetti, M., Andera, L., Alleva, R., Borghi, B., Neuzil, J. & Procopio, A. (2006) Alpha-tocopheryl succinate induces DR4 and DR5 expression by a p53-dependent route: implication for sensitisation of resistant cancer cells to TRAIL apoptosis. FEBS Letters, 580, 1925–1931.
- Uriarte, S.M., Joshi-Barve, S., Song, Z., Sahoo, R., Gobejishvili, L., Jala, V.R., Haribabu, B., McClain, C. & Barve, S. (2005) Akt inhibition upregulates FasL, downregulates c-FLIPs and induces caspase-8-dependent cell death in Jurkat T lymphocytes. Cell Death and Differentiation, 12, 233–242.
- Valent, P., Akin, C., Sperr, W.R., Mayerhofer, M., Födinger, M., Fritsche-Polanz, R., Sotlar, K., Escribano, L., Arock, M., Horny, H.P. & Metcalfe, D.D. (2005) Mastocytosis: pathology, genetics, and current options for therapy. Leukaemia & Lymphoma, 46, 35–48.
- Vitali, R., Cesi, V., Nicotra, M.R., Donfrancesco, A., McDowell, H.P., Mannarino, O., Natali, P.G., Raschella, G. & Dominici, C. (2003) c-Kit is preferentially expressed in MYCN-amplified neuroblastoma and its effect on cell proliferation is inhibited by STI-571. International Journal of Cancer, 106, 147–152.
- Weber, T., Lu, M., Andera, L., Lahm, H., Gellert, N., Fariss, M.W., Korinek, V., Sattler, W., Ucker, D.S., Terman, A., Schroder, A., Erl, W., Brunk, U.T., Coffey, R.J., Weber, C. & Neuzil, J. (2002) Vitamin E succinate is a potent novel antineoplastic agent with high selectivity and cooperativity with tumor necrosis factor-related apoptosis-inducing ligand (Apo2 ligand) in vivo. Clinical Cancer Research, 8, 863–869.
- Xu, Z.W., Friess, H., Buchler, M.W. & Solioz, M. (2002) Overexpression of Bax sensitizes human pancreatic cancer cells to apoptosis induced by chemotherapeutic agents. Cancer Chemotherapy and Pharmacology, 49, 504–510.
- Yu, W., Israel, K., Liao, Q.Y., Aldaz, C.M., Sanders, B.G. & Kline, K. (1999) Vitamin E succinate (VES) induces Fas sensitivity in human breast cancer cells: role for Mr 43,000 Fas in VES-triggered apoptosis. Cancer Research, 59, 953–961.
- Zermati, Y., De Sepulveda, P., Feger, F., Letard, S., Kersual, J., Casteran, N., Gorochov, G., Dy, M., Ribadeau Dumas, A., Dorgham, K., Parizot, C., Bieche, Y., Vidaud, M., Lortholary, O., Arock, M., Hermine, O. & Dubreuil, P. (2003) Effect of tyrosine kinase inhibitor STI571 on the kinase activity of wild-type and various mutated c-kit receptors found in mast cell neoplasms. Oncogene, 22, 660–664.