Molecular aetiology and pathogenesis of basal cell carcinoma
C.M.L.J. Tilli
Research Institute of Growth & Development (GROW)
Dermatology
Molecular Cell Biology, University of Maastricht, The Netherlands
Search for more papers by this authorM.A.M. Van Steensel
Research Institute of Growth & Development (GROW)
Dermatology
Search for more papers by this authorG.A.M. Krekels
Research Institute of Growth & Development (GROW)
Dermatology
Search for more papers by this authorH.A.M. Neumann
Research Institute of Growth & Development (GROW)
Department of Dermatology & Venereology, Erasmus University Rotterdam, The Netherlands
Search for more papers by this authorF.C.S. Ramaekers
Research Institute of Growth & Development (GROW)
Molecular Cell Biology, University of Maastricht, The Netherlands
Search for more papers by this authorC.M.L.J. Tilli
Research Institute of Growth & Development (GROW)
Dermatology
Molecular Cell Biology, University of Maastricht, The Netherlands
Search for more papers by this authorM.A.M. Van Steensel
Research Institute of Growth & Development (GROW)
Dermatology
Search for more papers by this authorG.A.M. Krekels
Research Institute of Growth & Development (GROW)
Dermatology
Search for more papers by this authorH.A.M. Neumann
Research Institute of Growth & Development (GROW)
Department of Dermatology & Venereology, Erasmus University Rotterdam, The Netherlands
Search for more papers by this authorF.C.S. Ramaekers
Research Institute of Growth & Development (GROW)
Molecular Cell Biology, University of Maastricht, The Netherlands
Search for more papers by this authorConflicts of interest: None declared.
Summary
Recent insights into the cell biology of the epidermis and its appendages are transforming our understanding of the pathogenesis of basal cell carcinoma (BCC). The significant progress that has been made warrants a comprehensive review of the molecular and cellular pathology of BCC. The items addressed include environmental and genetic risk factors, the biology of the putative precursor cell(s), and the contribution of aberrations in processes such as apoptosis, cell proliferation, differentiation and signalling to carcinogenesis. Furthermore, established and novel treatment modalities are discussed with particular attention to future biological approaches.
References
- 1 Jacob A. Observations respecting an ulcer of peculiar character, which attacks the eyelids and other parts of the face. Dublin Hospital Rep 1824; 4: 232–9.
- 2
Marks R.
An overview of skin cancers: incidence and causation.
Cancer
1995; 75: 607–12.
10.1002/1097-0142(19950115)75:2+<607::AID-CNCR2820751402>3.0.CO;2-8 PubMed Web of Science® Google Scholar
- 3 Gloster HM, Brodland DG. The epidemiology of skin cancer. Dermatol Surg 1996; 22: 217–26.
- 4 Leffell DJ, Headington JT, Wong DS et al. Aggressive growth basal cell carcinoma in young adults. Arch Dermatol 1991; 127: 1663–7.
- 5 Von Domarus HV, Stevens PJ. Metastatic basal cell carcinoma: report of five cases and review of 170 cases in the literature. J Am Acad Dermatol 1984; 10: 1043–60.
- 6 Lo JS, Snow SN, Reizner GT. Metastatic basal cell carcinoma: report of twelve cases with a review of the literature. J Am Acad Dermatol 1991; 24: 715–9.
- 7 Tavin E, Persky MS, Jacobs J. Metastatic basal cell carcinoma of the head and neck. Laryngoscope 1995; 105: 814–17.
- 8 Wade TR, Ackerman AB. The many faces of basal cell carcinoma. J Dermatol Surg Oncol 1978; 4: 778–80.
- 9 Rippey JJ. Why classify basal cell carcinomas? Histopathology 1998; 32: 393–8.
- 10 Sexton M, Jones DB, Maloney ME. Histologic pattern analysis of basal cell carcinoma. J Am Acad Dermatol 1990; 23: 1118–26.
- 11 Miller SJ. Biology of basal cell carcinoma (Part 1). J Am Acad Dermatol 1991; 24: 1–13.
- 12
Jacobs GH,
Rippey JJ,
Altini M.
Prediction of aggressive behaviour in basal cell carcinoma.
Cancer
1982; 49: 533–7.
10.1002/1097-0142(19820201)49:3<533::AID-CNCR2820490322>3.0.CO;2-O CAS PubMed Web of Science® Google Scholar
- 13 Silverstone H, Gordon D. Regional studies in skin cancer. 2. Wet tropical and subtropical coasts of Queensland. Med J Aust 1996; 2: 733–40.
- 14 Gallagher RP, Hill GB, Bajdik CD et al. Sunlight exposure, pigmentary factors, and risk of nonmelanocytic skin cancer. I. Basal cell carcinoma. Arch Dermatol 1995; 131: 157–63.
- 15 Mithoefer AB, Supran S, Freeman RB. Risk factors associated with the development of skin cancer after liver transplantation. Liver Transpl 2002; 8: 939–44.
- 16 Corona R, Dogliotti E, D'Errico M et al. Risk factors for basal cell carcinoma in a Mediterranean population: role of recreational sun exposure early in life. Arch Dermatol 2001; 137: 1162–8.
- 17 Lear JT, Smith AG, Strange RD, Fryer AA. Patients with truncal basal cell carcinoma represent a high-risk group. Arch Dermatol 1998; 134: 373.
- 18 Grossman D, Leffell DJ. The molecular basis of nonmelanoma skin cancer: new understanding. Arch Dermatol 1997; 133: 1263–70.
- 19 Gallagher RP, Bajdik CD, Fincham S et al. Chemical exposures, medical history, and risk of squamous and basal cell carcinoma of the skin. Cancer Epidemiol Biomarkers Prev 1996; 5: 419–24.
- 20 Diepgen TL, Mahler V. The epidemiology of skin cancer. Br J Dermatol 2002; 146 (Suppl. 61): 1–6.
- 21 De Hertog SA, Wensveen CA, Bastiaens MT et al. Relation between smoking and skin cancer. J Clin Oncol 2001; 19: 231–8.
- 22 Boyd AS, Shyr Y, King LE Jr. Basal cell carcinoma in young women: an evaluation of the association of tanning bed use and smoking. J Am Acad Dermatol 2001; 46: 706–9.
- 23 Stern RS. Carcinogenic risk of psoralen plus ultraviolet radiation therapy: evidence in humans. Natl Cancer Inst Monogr 1984; 66: 211–6.
- 24 Katz KA, Marcil I, Stern RS. Incidence and risk factors associated with a second squamous cell carcinoma or basal cell carcinoma in psoralen + ultraviolet a light-treated psoriasis patients. J Invest Dermatol 2002; 118: 1038–43.
- 25 Lindelof B, Sigurgeirsson B, Tegner E et al. PUVA and cancer: a large-scale epidemiological study. Lancet 1991; 338: 91–3.
- 26
Stern RS,
Laird N.
The carcinogenic risk of treatments for severe psoriasis. Photochemotherapy Follow-Up Study.
Cancer
1994; 73: 2759–64.
10.1002/1097-0142(19940601)73:11<2759::AID-CNCR2820731118>3.0.CO;2-C CAS PubMed Web of Science® Google Scholar
- 27 Stern RS. PUVA Follow-up Study. The risk of melanoma in association with long-term exposure to PUVA. J Am Acad Dermatol 2001; 44: 755–61.
- 28 Barr BBB, McLaren K, Smith IW et al. Human papilloma virus infection and skin cancer in renal allograft recipients. Lancet 1989; 1: 124–9.
- 29 Pfister H, Ter Schegget J. Role of HPV in cutaneous premalignant and malignant tumors. Clin Dermatol 1997; 15: 335–47.
- 30 Weinstock MA, Coulter S, Bates J et al. Human papillomavirus and widespread cutaneous carcinoma after PUVA photochemotherapy. Arch Dermatol 1995; 131: 701–4.
- 31 Harwood CA, Proby CM. Human papillomaviruses and non-melanoma skin cancer. Curr Opin Infect Dis 2002; 15: 101–14.
- 32 Lear JT, Smith AG, Heagerty AHM et al. Truncal site and detoxifying enzyme polymorphisms significantly reduce time to presentation of further primary cutaneous basal cell carcinoma. Carcinogenesis 1997; 18: 1499–503.
- 33 Strange RC, Spiteri MA, Ramachandran S et al. Glutathione S-transferase family of enzymes. Mutat Res 2001; 482: 21–6.
- 34 Griffiths HR, Mistry P, Herbert KE et al. Molecular and cellular effect of ultraviolet light-induced genotoxicity. Crit Rev Clin Lab Sci 1998; 35: 189–237.
- 35 Ketterer B, Meyer DJ. Glutathione S-transferases: a possible role in the detoxification and repair of DNA and lipid hydroperoxides. Mutat Res 1989; 214: 33–40.
- 36 Hayes JD, Pulford DJ. The glutathione S-transferase supergene family: regulation of GST and the contribution of the enzyme to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol 1995; 30: 445–600.
- 37 Raza H, Awasthi YC, Zaim MT et al. Glutathione S-transferases in human and rodent skin: multiple forms and species-specific expression. J Invest Dermatol 1991; 96: 463–7.
- 38 Moscow JA, Townsend AJ, Goldsmith ME et al. Isolation of the human anionic glutathione S-transferase cDNA and the relation of its gene expression to estrogen-receptor content in primary breast cancer. Proc Natl Acad Sci USA 1998; 85: 6518–22.
- 39 Henderson CJ, Smith AG, Ure J et al. Increased skin tumorigenesis in mice lacking pi class glutathione S-transferases. Proc Natl Acad Sci USA 1998; 95: 5275–80.
- 40 Schadendorf D, Jurgovsky K, Kohlmus CM, Czarnetzki BM. Glutathione and related enzymes in tumor progression and metastases of human melanoma. J Invest Dermatol 1995; 105: 109–12.
- 41 Hanada K, Ishikawa H, Tamai K et al. Expression of glutathione S-transferase-pi in malignant skin tumors. J Dermatol Sci 1991; 2: 18–23.
- 42 Pemble S, Schroeder KR, Spencer SR et al. Human glutathione S-transferase theta (GSTT1): cDNA cloning and the characterization of a genetic polymorphism. Biochem J 1994; 300: 271–6.
- 43 Heagerty AHM, Fitzgerald D, Smith A et al. Glutathione S-transferase GSTM1 phenotypes and protection against cutaneous malignancy. Lancet 1994; 343: 266–8.
- 44 Heagerty A, Smith A, English J et al. Susceptibility to multiple cutaneous basal cell carcinomas: significant interaction between glutathione S-transferase GSTM1 genotypes, skin type and male gender. Br J Cancer 1996; 73: 44–8.
- 45 Kerb R, Brockmoller J, Reum T, Roots I. Deficiency of glutathione S-transferases T1 and M1 as heritable factors of increased cutaneous UV sensitivity. J Invest Dermatol 1997; 108: 229–32.
- 46 Lear JT, Heagerty AHM, Smith A et al. Multiple cutaneous basal cell carcinomas: glutathione S-transferase (GSTM1, GSTT1) and cytochrome P450 (CYP2D6, CYP1A1) polymorphisms influence tumour numbers and accrual. Carcinogenesis 1996; 17: 1891–6.
- 47 Yengi L, Inskip A, Gilford J et al. Polymorphism at the glutathione S-transferase locus GSTM3: interactions with cytochrome P450 and glutathione S-transferase genotypes as risk factors for multiple cutaneous basal cell carcinoma. Canc Res 1996; 56: 1974–7.
- 48 Ramachandran S, Fryer AA, Smith AG et al. Basal cell carcinomas: association of allelic variants with a high-risk subgroup of patients with the multiple presentation phenotype. Pharmacogenetics 2001; 11: 247–54.
- 49 Ramachandran S, Lear JT, Ramsay H et al. Presentation with multiple cutaneous basal cell carcinomas: association of glutathione S-transferase and cytochrome P450 genotypes with clinical phenotype. Cancer Epidemiol Biomarkers Prev 1999; 8: 61–7.
- 50 Ramachandran S, Hoban PR, Ichii-Jones F et al. Glutathione S-transferase GSTP1 and cyclin D1 genotypes: association with numbers of basal cell carcinomas in a patient subgroup at high-risk of multiple tumors. Pharmacogenetics 2000; 10: 545–56.
- 51 Milstone EB, Helwig EB. Basal cell carcinoma in children. Arch Dermatol 1973; 108: 523–7.
- 52 Cleaver JE. Defective repair replication of DNA in xeroderma pigmentosum. Nature 1968; 218: 652–6.
- 53 Sarasin A. The molecular pathways of ultraviolet-induced carcinogenesis. Mutat Res 1999; 428: 5–10.
- 54 Cleaver JE. Ultraviolet photobiology: its early roots and insights into DNA repair. DNA Repair (Amst) 2002; 1: 977–9.
- 55 Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature 2001; 411: 366–74.
- 56 Yu CE, Oshima J, Fu YH et al. Positional cloning of the Werner's syndrome gene. Science 1996; 272: 193–4.
- 57 Ellis NA, Groden J, Ye TZ et al. The Bloom's syndrome gene product is homologous to RecQ helicases. Cell 1995; 83: 655–66.
- 58 Kitao S, Shimamoto A, Goto M et al. Mutations in RECQL4 cause a subset of cases of Rothmund–Thomson syndrome. Nat Genet 1999; 22: 82–4.
- 59
Wang LL,
Levy ML,
Lewis RA et al.
Clinical manifestations in a cohort of 41 Rothmund–Thomson syndrome patients.
Am J Med Genet
2001; 102: 11–17.
10.1002/1096-8628(20010722)102:1<11::AID-AJMG1413>3.0.CO;2-A CAS PubMed Web of Science® Google Scholar
- 60 Malkin D, Li FP, Strong LC et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 1990; 250: 1233–8.
- 61 Knight SW, Heiss NS, Vulliamy TJ et al. X-linked dyskeratosis congenita is predominantly caused by missense mutations in the DKC1 gene. Am J Hum Genet 1999; 65: 50–8.
- 62 Vulliamy T, Marrone A, Goldman F et al. The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita. Nature 2001; 413: 432–5.
- 63 Katayama H, Brinkley WR, Sen S. The Aurora kinases: role in cell transformation and tumorigenesis. Cancer Metastasis Rev 2003; 22: 451–64.
- 64 Gorlin RJ. Nevoid basal cell carcinoma syndrome. Dermatol Clin 1995; 13: 113–25.
- 65 Harris CC. Molecular epidemiology of basal cell carcinoma. J Natl Cancer Inst 1996; 88: 315–17.
- 66 Hahn H, Wicking C, Zaphiropoulous PG et al. Mutation of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 1996; 85: 841–51.
- 67 Johnson RL, Rothman AL, Xie J et al. Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 1996; 272: 1668–71.
- 68 Wicking C, McGlinn E. The role of hedgehog signalling in tumorigenesis. Cancer Lett 2001; 173: 1–7.
- 69 Kim M-Y, Park HJ, Baek S-C et al. Mutations of the p53 and PTCH gene in basal cell carcinomas: UV mutation signature and strand bias. J Dermatol Sci 2002; 29: 1–9.
- 70 Bodak N, Queille S, Avril MF et al. High levels of patched gene mutations in basal cell carcinomas from patients with xeroderma pigmentosum. Proc Natl Acad Sci USA 1999; 96: 5117–22.
- 71 Bale AE, Yu K-P. The hedgehog pathway and basal cell carcinomas. Hum Mol Genet 2001; 10: 757–62.
- 72 Wicking C, Smyth I, Bale A. The hedgehog signalling pathway in tumorigenesis and development. Oncogene 1999; 18: 7844–51.
- 73 Echelard Y, Epstein DJ, St-Jacques B et al. Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 1993; 75: 1417–30.
- 74 Johnson RL, Laufer E, Riddle RD et al. Ectopic expression of Sonic hedgehog alters dorsal–ventral patterning of somites. Cell 1994; 79: 1165–73.
- 75 Riddle RD, Johnson RL, Laufer E et al. Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 1993; 75: 1401–16.
- 76 Stone DM, Hynes M, Armanini M et al. The tumour-suppressor gene patched encodes a candidate receptor for Sonic hedgehog. Nature 1996; 384: 129–34.
- 77 Taipale J, Cooper MK, Maiti T et al. Patched acts catalytically to suppress the activity of Smoothened. Nature 2002; 418: 892–7.
- 78 Sprong H. Van Der Sluijs P, Van Meer G. How proteins move lipids and lipids move proteins. Nat Rev Mol Cell Biol 2001; 2: 504–13.
- 79 Stone DM, Murone M, Luoh S et al. Characterization of the human suppressor of fused, a negative regulator of the zinc-finger transcription factor Gli. J Cell Sci 1999; 112: 4437–48.
- 80 Cohen MM Jr, The hedgehog signaling network. Am J Med Genet 2003; 123A: 5–28.
- 81 Jamora C, DasGupta R, Kocieniewski P et al. Links between signal transduction, transcription and adhesion in epithelial bud development. Nature 2003; 422: 317–22.
- 82 Chan EF, Gat U, McNiff JM et al. A common human skin tumour is caused by activating mutations in beta-catenin. Nat Genet 1999; 21: 410–13.
- 83 Chan EF. Pilomatricomas contain activating mutations in beta-catenin. J Am Acad Dermatol 2000; 43: 701–2.
- 84 Lam CW, Xie J, To KF et al. A frequent activated smoothened mutation in sporadic basal cell carcinomas. Oncogene 1999; 18: 833–6.
- 85 Aszterbaum M, Epstein J, Oro A et al. Ultraviolet and ionizing radiation enhance the growth of BCCs and trichoblastomas in patched heterozygous knockout mice. Nat Med 1999; 5: 1285–91.
- 86 Xie J, Murone M, Luoh SM et al. Activating Smoothened mutations in sporadic basal cell carcinomas. Nature 1998; 391: 90–2.
- 87 Daya-Grosjean L, Sarasin A. UV-specific mutations of the human patched gene in basal cell carcinomas from normal individuals and xeroderma pigmentosum patients. Mut Res 2000; 450: 193–9.
- 88 Gailani MR, Stahle-Backdahl M, Leffell DJ et al. The role of the human homologue of Drosophila patched in sporadic basal cell carcinoma. Nat Genet 1996; 14: 78–81.
- 89 Zaphiropoulos PG, Unden AB, Rahnama F et al. PTCH2, a novel human patched gene, undergoing alternative splicing and up-regulate in basal cell carcinoma. Cancer Res 1999; 59: 787–92.
- 90 Smyth I, Narang MA, Evans T et al. Isolation and characterization of human patched 2 (PTCH2), a putative tumour suppressor gene in basal cell carcinoma and medulloblatoma on chromosome 1p32. Hum Mol Genet 1999; 8: 291–7.
- 91 Kovalenko A, Chable-Bessia C, Cantarella G et al. The tumour suppressor CYLD negatively regulates NF-kappaB signalling by deubiquitination. Nature 2003; 424: 801–5.
- 92 Brummelkamp TR, Nijman SM, Dirac AM et al. Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB. Nature 2003; 424: 797–801.
- 93 Trompouki E, Hatzivassiliou E, Tsichritzis T et al. CYLD is a deubiquitinating enzyme that negatively regulates NF-kappaB activation by TNFR family members. Nature 2003; 424: 793–6.
- 94 Yan M, Wang LC, Hymowitz SG et al. Two-amino acid molecular switch in an epithelial morphogen that regulates binding to two distinct receptors. Science 2000; 290: 523–7.
- 95 Sinha SK, Zachariah S, Quinones HI et al. Role of TRAF3 and -6 in the activation of the NF-kappa B and JNK pathways by X-linked ectodermal dysplasia receptor. J Biol Chem 2002; 277: 44953–61.
- 96 Yan M, Zhang Z, Brady JR et al. Identification of a novel death domain-containing adaptor molecule for ectodysplasin-A receptor that is mutated in crinkled mice. Curr Biol 2002; 12: 409–13.
- 97 Kumar A, Eby MT, Sinha S et al. The ectodermal dysplasia receptor activates the nuclear factor-kappaB, JNK, and cell death pathways and binds to ectodysplasin A. J Biol Chem 2001; 276: 2668–77.
- 98 Kere J, Srivastava AK, Montonen O et al. X-linked anhidrotic (hypohidrotic) ectodermal dysplasia is caused by mutation in a novel transmembrane protein. Nat Genet 1996; 13: 409–16.
- 99 Headon DJ, Emmal SA, Ferguson BM et al. Gene defect in ectodermal dysplasia implicates a death domain adapter in development. Nature 2001; 414: 913–6.
- 100 Naito A, Yoshida H, Nishioka E et al. TRAF6-deficient mice display hypohidrotic ectodermal dysplasia. Proc Natl Acad Sci USA 2002; 99: 8766–71.
- 101 Shindo M, Chaudhary PM. The ectodermal dysplasia receptor represses the Lef-1/beta-catenin-dependent transcription independent of NF-kappaB activation. Biochem Biophys Res Commun 2004; 315: 73–8.
- 102 Novak U, Cocks BG, Hamilton JA. A labile repressor acts through the NFkB-like binding sites of the human urokinase gene. Nucl Acids Res 1991; 19: 3389–93.
- 103 Bettencourt MS, Prieto VG, Shea CR. Trichoepithelioma a 19-year clinicopathologic re-evaluation. J Cutan Pathol 1999; 26: 398–404.
- 104 Michaelsson G, Olsson E, Westermark P. The Rombo syndrome: a familial disorder with vermiculate atrophoderma, milia, hypotrichosis, trichoepitheliomas, basal cell carcinomas and peripheral vasodilation with cyanosis. Acta Derm Venereol (Stockh) 1981; 61: 497–503.
- 105 Van Steensel MA, Jaspers NG, Steijlen PM. A case of Rombo syndrome. Br J Dermatol 2001; 144: 1215–8.
- 106 Vabres P, Lacombe D, Rabinowitz LG et al. The gene for Bazex–Dupre–Christol syndrome maps to chromosome Xq. J Invest Dermatol 1995; 105: 87–91.
- 107 Kastan MB, Onkyekwere O, Sidransky D et al. Participation of p53 protein in the cellular response to DNA damage. Cancer Res 1991; 51: 6304–11.
- 108 Katayama H, Sasai K, Kawai H et al. Phosphorylation by aurora kinase A induces Mdm2-mediated destabilization and inhibition of p53. Nat Genet 2004; 36: 55–62.
- 109 Hollstein M, Sidransky D, Vogelstein B et al. p53 mutations in human cancers. Science 1991; 253: 49–53.
- 110 Siliciano JD, Canman CE, Taya Y et al. DNA damage induces phosphorylation of the amino terminus of p53. Genes Dev 1997; 11: 3471–81.
- 111 Caspari T. How to activate p53. Curr Biol 2000; 10: 315–7.
- 112 Kubbutat MHG, Jones SN, Vousden KH. Regulation of p53 stability by Mdm2. Nature 1997; 387: 299–303.
- 113 Haupt Y, Maya R, Kazaz AN et al. Mdm2 promotes the rapid degradation of p53. Nature 1997; 387: 296–9.
- 114 Unger T, Juven-Gershon T, Moallem E et al. Critical role for Ser20 of human p53 in the negative regulation of p53 by Mdm2. EMBO J 1999; 18: 1805–14.
- 115 Vogt Sionov RV, Haupt Y. The cellular response to p53: the decision between life and death. Oncogene 1999; 18: 6145–57.
- 116 Ronen D, Schwartz D, Teitz Y et al. Induction of HL-60 cells to undergo apoptosis is determined by high levels of wild-type p53 protein whereas differentiation of the cells is mediated by lower p53 levels. Cell Growth Different 1996; 7: 21–30.
- 117 Miyashita T, Reed JC. Tumour suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 1995; 80: 293–9.
- 118 Merchant AK, Loney TL, Maybaum J. Expression of wild-type p53 stimulates an increase in both bax and bcl-xl protein content in HT-29 cells. Oncogene 1996; 13: 2631–7.
- 119 Hall PA, McKee PH, Dover R et al. High levels of p53 protein in UV-irradiated normal human skin. Oncogene 1993; 8: 203–7.
- 120 Auepemkiate S, Boonyaphiphat P, Thongsuksai P. P53 expression related to the aggressive infiltrative histopathological feature of basal cell carcinoma. Histopathology 2002; 40: 568–73.
- 121 Demirkan NC, Colakoglu N, Duzcan E. Value of p53 protein in biological behavior of basal cell carcinoma and in normal epithelia adjacent to carcinomas. Pathol Oncol Res 2000; 6: 272–4.
- 122 Fukasawa K, Choi T, Kuriyama R et al. Abnormal centrosome amplification in the absence of p53. Science 1996; 271: 1744–7.
- 123 Pritchard BN, Youngberg GA. Atypical mitotic figures in basal cell carcinoma. A review of 208 cases. Am J Dermatopathol 1993; 15: 549–52.
- 124 Rosenstein BS, Phelps RG, Weinstock MA et al. p53 mutations in basal cell carcinomas arising in routine users of sunscreen. Photochem Photobiol 1999; 70: 798–806.
- 125 Ziegler A, Leffell DJ, Kunala S et al. Mutation hotspots due to sunlight in the p53 gene of nonmelanoma skin cancers. Proc Natl Acad Sci USA 1993; 90: 4216–20.
- 126 Knudson AGJ. Hereditary cancer, oncogenes and antioncogenes. Cancer Res 1985; 45: 1437–43.
- 127 Wikonkal NM, Brash DE. Ultraviolet radiation induced signature mutations in photocarcinogenesis. J Invest Dermatol Symp Proc 1999; 4: 6–10.
- 128 Parsa R, Yang A, McKeon F et al. Association of p63 with proliferative potential in normal and neoplastic human keratinocytes. J Invest Dermatol 1999; 113: 1099–105.
- 129 Wang TY, Chen BF, Yang YC et al. Histologic and immunophenotypic classification of cervical carcinomas by expression of the p53 homologue p63: a study of 250 cases. Hum Pathol 2001; 32: 479–86.
- 130 Quade BJ, Yang A, Wang Y et al. Expression of the p53 homologue p63 in early cervical neoplasia. Gynecol Oncol 2001; 80: 24–9.
- 131 Di Como CJ, Urist MJ, Babayan I et al. p63 expression profiles in human normal and tumor tissues. Clin Cancer Res 2002; 8: 494–501.
- 132 Mills AA, Zheng B, Wang XJ et al. P63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 1999; 398: 708–13.
- 133 Osada M, Ohba C, Kawahara C et al. Cloning and functional analysis of human p51, which structurally and functionally resembles p53. Nat Med 1998; 4: 839–43.
- 134 Little NA, Jochemsen AG. Molecules in focus: p63. Int J Biochem Cell Biol 2002; 34: 6–9.
- 135 Pellegrini G, Dellambra E, Golisano O et al. P63 identifies keratinocyte stem cells. Proc Natl Acad Sci USA 2001; 98: 3156–61.
- 136 Koster MI, Huntzinger KA, Roop DR. Epidermal differentiation: transgenic/knockout mouse models reveal genes involved in stem cell fate decisions and commitment to differentiation. J Invest Dermatol Symp Proc 2002; 7: 41–5.
- 137 Dellavalle RP, Walsh P, Marchbank A et al. CUSP/p63 expression in basal cell carcinoma. Exp Dermatol 2002; 11: 203–8.
- 138 Liefer KM, Koster MI, Wang XJ et al. Down-regulation of p63 is required for epidermal UV-B-induced apoptosis. Cancer Res 2000; 60: 4016–20.
- 139 Penn I. Effect of immunosuppression on pre-existing cancers. Transplantation 1993; 55: 742–7.
- 140 Espana A, Redondo P, Fernandez AL et al. Skin cancer in heart transplant recipients. J Am Acad Dermatol 1995; 32: 458–65.
- 141 Ferrandiz C, Fuente MJ, Ribera M et al. Epidermal dysplasia and neoplasia in kidney transplant recipients. J Am Acad Dermatol 1995; 33: 590–6.
- 142 Otley CC, Pittelkow MR. Skin cancer in liver transplant recipients. Liver Transpl 2000; 6: 253–62.
- 143 Ondrus D, Pribylincova V, Breza J et al. The incidence of tumors in renal transplant recipients with long-term immunosuppressive therapy. Int Urol Nephrol 1999; 31: 417–22.
- 144
Barrett WI,
First MR,
Aron BS,
Penn I.
Clinical course of malignancies in renal transplant recipients.
Cancer
1993; 72: 2186–9.
10.1002/1097-0142(19931001)72:7<2186::AID-CNCR2820720720>3.0.CO;2-2 CAS PubMed Web of Science® Google Scholar
- 145 Ong CS, Keogh AM, Kossard S et al. Skin cancer in Australian heart transplant recipients. J Am Acad Dermatol 1999; 40: 27–34.
- 146 Hartevelt MM, Bouwes Bavinck JN, Kootte AMM et al. Incidence of skin cancer after renal transplantation in The Netherlands. Transplantation 1990; 49: 506–9.
- 147 Euvrard S, Kanitakis J, Pouteil-Noble C et al. Comparative epidemiologic study of premalignant and malignant epithelial cutaneous lesions developing after kidney and heart transplantation. J Am Acad Dermatol 1995; 33: 222–9.
- 148 De Berker D, Ibbotson S, Simpson NB et al. Reduced experimental contact sensitivity in squamous cell but not basal cell carcinomas of skin. Lancet 1995; 345: 425–6.
- 149 Franceschi S, Dal Maso L, Arniani S et al. Risk of cancer other than Kaposi's sarcoma and non-Hodgkin's lymphoma in persons with AIDS in Italy. Cancer AIDS Registry Linkage Study. Br J Cancer 1998; 78: 966–70.
- 150 Ragni MV, Belle SH, Jaffe RA et al. Acquired immunodeficiency syndrome-associated non-Hodgkin's lymphomas and other malignancies in patients with hemophilia. Blood 1993; 81: 1889–97.
- 151 Lobo DV, Chu P, Grekin RC et al. Nonmelanoma skin cancers and infection with the human immunodeficiency virus. Arch Dermatol 1992; 128: 623–7.
- 152 Steigleder GK. [Metastasizing basalioma in AIDS]. Z Hautkr 1987; 62: 661 (German).
- 153 Sitz KV, Keppen M, Johnson DF. Metastatic basal cell carcinoma in acquired immunodeficiency syndrome-related complex. Jama 1987; 257: 340–3.
- 154 Benacerraf B. Role of MHC gene products in immune regulation. Science 1981; 212: 1229–38.
- 155 Dausset J, Colombani J, Hors J. Major histocompatibility complex and cancer, with special reference to human familiar tumors (Hodgkin's disease and other malignancies). Cancer Surv 1982; 1: 119–47.
- 156 Ruiter DJ, Bergman W, Welvaart K et al. Immunohistochemical analysis of malignant melanomas and nevocellular nevi with monoclonal antibodies to distinct monomorphic determinants of HLA-antigens. Cancer Res 1984; 44: 3930–4.
- 157 Myskowsky PL, Safai B, Good RA. Decreased lymphocyte blastogenic response in patients with multiple basal cell carcinomas. J Am Acad Dermatol 1981; 4: 711–4.
- 158 Cabrera T, Garrido V, Concha A et al. HLA molecules in basal cell carcinoma of the skin. Immunobiol 1992; 185: 440–52.
- 159 Garcia-Plata D, Mozos E, Sierra MA et al. HLA expression in basal cell carcinomas. Inv Met 1991; 11: 166–73.
- 160 Bouwes Bavinck JN, Bastiaens MT, Marugg ME et al. Further evidence for an association of HLA-DR7 with basal cell carcinoma on the tropical island of Saba. Arch Dermatol 2000; 136: 1019–22.
- 161 Rompel R, Petres J, Kaupert K et al. HLA phenotype and multiple basal cell carcinomas. Dermatology 1994; 189: 222–4.
- 162 Rompel R, Petres J, Kaupert K et al. Human leukocyte antigens and multiple basal cell carinomas. Rec Res Canc Res 1995; 139: 297–302.
- 163 Czarnecki D, Lewis A, Nicholson I et al. HLA-DR1 is not a sign of poor prognosis for the development of multiple basal cell carcinomas. J Am Acad Dermatol 1992; 26: 717–9.
- 164 Bavinck JN, Kootte AMM, Van der Woude FJ et al. HLA-A11-associated resistance to skin cancer in renal transplant recipients. N Engl J Med 1990; 323: 1350.
- 165 Bouwes Bavinck JN, Claas FHJ, Hardie DR et al. Relation between HLA antigens and skin cancer in renal transplant recipients in Queensland. Australia J Invest Dermatol 1997; 108: 708–11.
- 166 Galloway DA, McDougall JK. Human papillomaviruses and carcinomas. Adv Virus Res 1989; 37: 125–71.
- 167 Shamanin V, Zur Hausen H, Lavergne D et al. Human papillomavirus infections in nonmelanoma skin cancers from renal transplant recipients and nonimmunosuppressed patients. J Natl Cancer Inst 1996; 88: 802–11.
- 168 Zackheim HS. Origin of the human basal cell epithelioma. J Invest Dermatol 1963; 40: 283–97.
- 169 Krueger K, Blume-Peytavi U, Orfanos CE. Basal cell carcinoma possibly originates from the outer root sheath and/or the bulge region of the vellus hair follicle. Arch Dermatol Res 1999; 291: 253–9.
- 170 Lacour JP. Carcinogens of basal cell carcinomas. genetics and molecular mechanisms. Br J Dermatol 2002; 146: 17–9.
- 171 Owens DM, Watt FM. Contribution of stem cells and differentiated cells to epidermal tumours. Nat Rev Cancer 2003; 3: 444–51.
- 172 Potten CS, Morris RJ. Epithelial stem cells in vivo. J Cell Sci Suppl 1988; 10: 45–62.
- 173 Reya T, Morrison SJ, Clarke MF et al. Stem cells, cancer, and cancer stem cells. Nature 2001; 414: 105–11.
- 174 Miller SJ, Sun TT, Lavker RM. Hair follicles, stem cells and skin cancer. J Invest Dermatol 1993; 100: 288S–94S.
- 175 Brash DE, Rudolph JA, Simon JA et al. A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc Natl Acad Sci USA 1991; 88: 10124–8.
- 176 Taylor G, Lehrer MS, Jensen PJ et al. Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell 2000; 102: 451–61.
- 177 Cotsarelis G, Sun TT, Lavker RM. Label-retaining cells reside in the bulge of the pilosebaceous unit: implications for follicular stem cells, hair cycle and skin carcinogenesis. Cell 1990; 61: 1329–37.
- 178 Alonso L, Fuchs E. Stem cells of the skin epithelium. Proc Natl Acad Sci USA 2003; 100 (Suppl. 1): 11830–5.
- 179 Tumbar T, Guasch G, Greco V et al. Defining the epithelial stem cell niche in skin. Science 2004; 303: 359–63.
- 180 Zackheim HS. Comparative cutaneous carcinogenesis in the rat. Differential response to the application of anthracene, methylcholanthrene and dimethylbenzanthracene. Oncology 1964; 17: 236.
- 181 Kore-eda S, Horiguchi Y, Ueda M et al. Basal cell carcinoma cells resemble follicular matrix cells rather than follicular bulge cells: immunohistochemical and ultrastructural comparative studies. Am J Dermatopathol 1998; 20: 362–9.
- 182 Walsh N, Ackerman AB. Infundibulocystic basal cell carcinoma: a newly described variant. Modern Pathol 1990; 3: 599–608.
- 183 Asada M, Schaart F-M, De Almeida HL et al. Solid basal cell epithelioma (BCE) possibly originates from the outer root sheath of the hair follicle. Acta Derm Venereol (Stockh) 1993; 73: 286–92.
- 184 Gho CG, Braun JE, Tilli CM et al. Human follicular stem cells: their presence in plucked hair and follicular cell culture. Br J Dermatol 2004; 150: 860–8.
- 185 Miller SJ, Wei ZG, Wilson C et al. Mouse skin is particularly susceptible to tumor initiation during early anagen of the hair cycle: possible involvement of hair follicle stem cells. J Invest Dermatol 1993; 101: 591–4.
- 186 Bernemann T-M, Podda M, Wolter M et al. Expression of the basal cell adhesion molecule (B-CAM) in normal and diseased human skin. J Cutan Pathol 2000; 27: 108–11.
- 187 Kanitakis J, Bourchany D, Faure M et al. Expression of the hair stem cell-specific keratin 15 in pilar tumors of the skin. Eur J Dermatol 1999; 9: 363–5.
- 188 Howell JB, Mehregan AH. Pursuit of the pits in the nevoid basal cell carcinoma syndrome. Arch Dermatol 1970; 102: 586–97.
- 189 Baserga R. The biology of cell reproduction. Cambridge, MA: Harvard University Press, 1985.
- 190 Tsao H. Genetics of nonmelanoma skin cancer. Arch Dermatol 2001; 137: 1486–92.
- 191 Hockenbery D, Nunez G, Milliman C et al. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 1990; 348: 334–6.
- 192 Hunter T. Cooperation between oncogenes. Cell 1991; 64: 249–70.
- 193 Anderson E, Howell T. Breast cancer: oncogenes and suppressor genes. Ann Oncol 1990; 1: 242–3.
- 194 Varmus HE. The molecular genetics of cellular oncogenes. Annu Rev Genet 1984; 18: 553–612.
- 195 Suarez HG. Activated oncogenes in human tumors. Anticancer Res 1989; 9: 1331–43.
- 196 Chen YC, Chen PJ, Yeh SH et al. Deletion of the human retinoblastoma gene in primary leukemias. Blood 1990; 76: 2060–4.
- 197 Klein G. Genes that can antagonize tumor development. Faseb J 1993; 7: 821–5.
- 198 Marshall CJ. Tumor suppressor genes. Cell 1991; 64: 313–26.
- 199 Vogelstein B, Kinzler KW. The multistep nature of cancer. Trends Genet 1993; 9: 138–41.
- 200 Rees JL, Healy E. Molecular genetic approaches to non-melanoma and melanoma skin cancer. Clin Exp Dermatol 1996; 21: 253–62.
- 201 Abdelsayed RA, Guijarro-Rojas M, Ibrahim NA et al. Immunohistochemical evaluation of basal cell carcinoma and trichepithelioma using Bcl-2, Ki67, PCNA and p53. J Cutan Pathol 2000; 27: 169–75.
- 202 Baum H-P, Meurer I, Unteregger G. Ki-67 antigen expression and growth pattern of basal cell carcinomas. Arch Dermatol Res 1993; 285: 291–5.
- 203 Horlock NM, Wilson GD, Daley FM et al. Cellular proliferation characteristics of basal cell carcinoma: relationship to clinical subtype and histopathology. Eur J Surg Oncol 1997; 23: 247–52.
- 204 Naeyaert JM, Pauwels C, Geerts ML et al. CD-34 and Ki-67 staining patterns of basaloid follicular hamartoma are different from those in fibroepithelioma of Pinkus and other variants of basal cell carcinoma. J Cutan Pathol 2001; 28: 538–41.
- 205 Chang CH, Tsai RK, Chen GS et al. Expression of bcl-2, p53 and Ki−67 in arsenical skin cancers. J Cutan Pathol 1998; 25: 457–62.
- 206 Tilli CMLJ, Stavast-Kooy AJW, Ramaekers FCS et al. Bax expression and growth behavior of basal cell carcinomas. J Cutan Pathol 2002; 29: 79–87.
- 207 Kazantseva IA, Khlebnikova AN, Babaev VR. Immunohistochemical study of primary and recurrent basal cell and metatypical carcinomas of the skin. Am J Dermatopathol 1996; 18: 35–42.
- 208 Toth DP, Guenther LC, Shum DT. Proliferating cell nuclear antigen (PCNA); prognostic value in the clinical recurrence of primary basal cell carcinoma. J Dermatol Sci 1996; 11: 36–40.
- 209 Grimwood RE, Ferris CF, Mercill DB et al. Proliferating cells of human basal cell carcinoma are located on the periphery of tumor nodules. J Invest Dermatol 1986; 86: 191–4.
- 210
Coates PJ,
Hobbs RC,
Crocker J et al.
Identification of the antigen recognized by the monoclonal antibody BU31 as lamins A and C.
J Pathol
1996; 178: 21–9.
10.1002/(SICI)1096-9896(199601)178:1<21::AID-PATH439>3.0.CO;2-Q CAS PubMed Web of Science® Google Scholar
- 211 Lin F, Worman HJ. Structural organization of the human gene encoding nuclear lamin A and nuclear lamin C. J Biol Chem 1993; 268: 16321–6.
- 212 Machiels BM, Zorenc AHG, Endert JM et al. An alternative splicing product of the lamin A/C gene lacks exon 10. J Biol Chem 1996; 271: 9249–53.
- 213 Replogle-Schwab R, Pienta KJ, Getzenberg RH. The utilization of nuclear matrix proteins for cancer diagnosis. Crit Rev Eukaryot Gene Expr 1996; 6: 103–13.
- 214 Roeber RA, Weber K, Osborn M. Differential timing of nuclear lamin A/C expression in the various organs of the mouse embryo and the young animal: a developmental study. Development 1989; 105: 365–78.
- 215 Venables RS, McLean S, Luny D et al. Expression of individual lamins in basal cell carcinomas of the skin. Br J Cancer 2001; 84: 512–9.
- 216 Broers JLV, Machiels BM, Kuijpers HJH et al. A- and B-type lamins are differentially expressed in normal human tissues. Histochem Cell Biol 1997; 107: 505–17.
- 217 Oguchi M, Sagara J, Matsumoto K et al. Expression of lamins depends on epidermal differentiation and transformation. Br J Dermatol 2002; 147: 853–8.
- 218 Tilli CM, Ramaekers FC, Broers JL et al. Lamin expression in normal human skin, actinic keratosis, squamous cell carcinoma and basal cell carcinoma. Br J Dermatol 2003; 148: 102–9.
- 219 Heenen M, Achten G, Galand P. Autoradiographic analysis of cell kinetics in human normal epidermis and basal cell carcinoma. Cancer Res 1973; 33: 123–7.
- 220 Kerr JF, Wyllie AH, Currie AR. Apoptosis a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972; 26: 239–57.
- 221 Mooney EE, Ruis Peris JM, O'Neill A, Sweeney EC. Apoptotic and mitotic indices in malignant melanoma and basal cell carcinoma. J Clin Pathol 1995; 48: 242–4.
- 222 Wyllie AH, Kerr JFR, Currie AR. Cell death: the significance of apoptosis. Int Rev Cytol 1980; 68: 251–306.
- 223 Raff MC, Durand B, Gao FB. Cell number control and timing in animal development: the oligodendrocyte cell lineage. Int J Dev Biol 1998; 42: 263–7.
- 224 McDonnell TJ, Marin MC, Hsu B et al. The bcl-2 oncogene: apoptosis and neoplasia. Radiat Res 1993; 136: 307–12.
- 225 Majno G, Joris I. Apoptosis oncosis and necrosis. An overview of cell death. Am J Pathol 1995; 146: 3–15.
- 226 Zimmermann KC, Bonzon C, Green DR. The machinery of programmed cell death. Pharmacol Ther 2001; 92: 57–70.
- 227 Peter ME, Krammer PH. Mechanism of CD95 (APO-1/Fas) -mediated apoptosis. Curr Opin Immunol 1998; 10: 545–51.
- 228 Suda T, Takahashi T, Golstein P et al. Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell 1993; 75: 1169–78.
- 229 Nagata S, Golstein P. The Fas death factor. Science 1995; 267: 1449–56.
- 230 Cory S. Regulation of lymphocyte survival by the bcl-2 gene family. Annu Rev Immunol 1995; 13: 513–43.
- 231 Gross A, McDonnell TJ, Korsmeyer SJ. Bcl-2 family members and the mitochondria in apoptosis. Genes Dev 1999; 13: 1899–911.
- 232 Tsujimoto Y, Finger LR, Yunis J et al. Cloning of the chromosome breakpoint of neoplastic B cells with the t (14: 18) chromosome translocation. Science 1984 226: 1097–9.
- 233 Cleary ML, Smith SD, Sklar J. Cloning and structural analysis of cDNAs for Bcl-2 and a hybrid bcl-2/immunoglobulin transcript resulting from the t(14:18) translocation. Cell 1986 47: 19–28.
- 234 Boise LH, Gonzalez-Garcia M, Postema CE et al. Bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 1993; 74: 597–608.
- 235 Korsmeyer SJ. Bcl-2 initiates a new category of oncogenes: regulators of cell death. Blood 1992; 80: 879–86.
- 236 Chiou SK, Rao L, White E. Bcl-2 blocks p53-dependent apoptosis. Mol Cell Biol 1994; 14: 2556–63.
- 237 Alnemri ES, Fernandes TF, Haldar S et al. Involvement of BCL-2 in glucocorticoid-induced apoptosis of human pre-B-leukemias. Cancer Res 1992; 52: 491–5.
- 238 Bissonnette RP, Echeverri F, Mahboubi A et al. Apoptotic cell death induced by c-myc is inhibited by bcl-2. Nature 1992; 359: 552–4.
- 239 Krajewski S, Tanaka S, Takayama S et al. Investigation of the subcellular distribution of the bcl-2 oncoprotein: residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes. Cancer Res 1993; 53: 4701–14.
- 240 Ito T, Deng X, Carr B. Bcl-2 phosphorylation required for anti-apoptosis function. J Biol Chem 1997; 272: 11671–3.
- 241 Adams JA, Cory S. The Bcl-2 protein family: arbiters of cell survival. Science 1998; 281: 1322–5.
- 242 Reed JC, Zha H, Aime-Sempe C et al. Structure–function analysis of Bcl-2 family proteins. Regulators of programmed cell death. Adv Exp Med Biol 1996; 406: 99–112.
- 243 Sato T, Hanada M, Bodrug S et al. Interactions among members of the Bcl-2 protein family analyzed with a yeast two-hybrid system. Proc Natl Acad Sci USA 1994; 91: 9238–42.
- 244 Oltvai ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 1993; 74: 609–19.
- 245 Alnemri ES, Livingston DJ, Nicholson DW et al. Human ICE/CED-3 protease nomenclature. Cell 1996; 87: 171.
- 246 Nicholson DW, Thornberry NA. Caspases killer proteases. Trends Biochem Sci 1997; 22: 299–306.
- 247 Van de Craen M, Van Loo G, Pype S et al. Identification of a new caspase homologue: caspase-14. Cell Death Differ 1998; 5: 838–46.
- 248 Stennicke HR, Salvesen GS. Properties of the caspases. Biochim Biophys Acta 1998; 1387: 17–31.
- 249 Enari M, Sakahira H, Yokomaya H et al. A caspase-activated DNAse that degrades DNA during apoptosis, and its inhibitor CAD. Nature 1998; 391: 43–50.
- 250 Liu X, Zou H, Slaughter C et al. DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 1997; 89: 175–84.
- 251 Takahashi A, Alnemri ES, Lazebnik YA et al. Cleavage of lamin A by Mch2alpha but not CPP32: multiple interleukin 1beta-converting enzyme-related proteases with distinct substrate recognition properties are active in apoptosis. Proc Natl Acad Sci USA 1996; 93: 8395–400.
- 252 Orth K, Chinnaiyan AM, Garg M et al. The CED-3/ICE-like protease Mch2 is activated during apoptosis and and cleaves the death substrate lamin A. J Biol Chem 1996; 271: 16443–6.
- 253 Ku NO, Omary MB. Effect of mutation and phosphorylation of type I keratins on their caspase-mediated degradation. J Biol Chem 2001; 276: 26792–8.
- 254 Martin SJ, Finucane DM, Amarante-Mendes GP et al. Phosphatidylserine externalization during CD-95-induced apoptosis of cells and cytoplasts requires ICE/CED-3 protease activity. J Biol Chem 1996; 271: 28753–6.
- 255 Casiano CA, Martin SJ, Green DR, Tan EM. Selective cleavage of nuclear autoantigens during CD95 (Fas/APO-1)-mediated T cell apoptosis. J Exp Med 1996; 184: 765–70.
- 256 Deveraux QL, Takahashi R, Salvesen GS et al. X-linked IAP is a direct inhibitor of cell-death proteases. Nature 1997; 388: 300–4.
- 257 Roy N, Deveraux QL, Takahashi R et al. The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases. EMBO J 1997; 16: 6914–25.
- 258 Polakowska RR, Piacentini M, Bartlett R et al. Apoptosis in human skin development: morphogenesis, periderm, and stem cells. Dev Dyn 1994; 199: 176–88.
- 259 Weil M, Raff MC, Braga VM. Caspase activation in the terminal differentiation of human epidermal keratinocytes. Curr Biol 1999; 9: 361–4.
- 260 Tyrrell RMUV activation of mammalian stress proteins. EXS 1996; 77: 255–71.
- 261 Wikonkal NM, Berg RJW, Van Haselen CW et al. Bcl-2 versus p53 protein expression and apoptotic rate in human nonmelanoma skin cancers. Arch Dermatol 1997; 133: 599–602.
- 262 Bolshakov S, Walker CM, Strom SS et al. p53 mutations in human aggressive and nonaggressive basal and squamous cell carcinomas. Clin Cancer Res 2003; 9: 228–34.
- 263 Staibano S, Lo Muzio L, Pannone G et al. Interaction between bcl-2 and P53 in neoplastic progression of basal cell carcinoma of the head and neck. Anticancer Res 2001; 21: 3757–64.
- 264
Delehedde M,
Cho SH,
Sarkiss M et al.
Altered expression of bcl-2 family member proteins in nonmelanoma skin cancer.
Cancer
1999; 85: 1514–22.
10.1002/(SICI)1097-0142(19990401)85:7<1514::AID-CNCR12>3.0.CO;2-Q CAS PubMed Web of Science® Google Scholar
- 265 Cerroni L, Kerl H. Aberrant bcl-2 protein expression provides a possible mechanism of neoplastic cell growth in cutaneous basal cell carcinoma. J Cutan Pathol 1994; 21: 398–403.
- 266 Verhaegh MEJM, Sanders CJG, Arends JW et al. Expression of the apoptosis-suppressing protein bcl-2 in non-melanoma skin cancer. Br J Dermatol 1995; 132: 740–4.
- 267 Rodriguez-Villanueva J, Colome MI, Brisbay S et al. The expression and localization of bcl-2 protein in normal skin and in non-melanoma skin cancers. Path Res Pract 1995; 191: 391–8.
- 268 Morales-Ducret JCR, Van de Rijn M, LeBrun DP et al. Bcl-2 expression in primary malignancies of the skin. Arch Dermatol 1995; 131: 909–12.
- 269 Grossman D, McNiff JM, Li F et al. Expression of the apoptosis inhibitor, survivin, in nonmelanoma skin cancer and gene targeting in a keratinocyte cell line. Lab Invest 1999; 79: 1121–6.
- 270 Hill LL, Ouhtit A, Loughlin SM et al. Fas ligand: a sensor for DNA damage critical in skin cancer etiology. Science 1999; 285: 898–900.
- 271 Filipowicz E, Adegboyega P, Sanchez RL et al. Expression of CD95 (fas) in sun-exposed human skin and cutaneous carcinomas. Cancer 2002; 94: 814–9.
- 272 Gutierrez-Steil C, Wrone-Smith T, Sun X et al. Sunlight-induced basal cell carcinoma tumor cells and ultraviolet-B-irradiated psoriatic plaques express Fas ligand (CD95L). J Clin Invest 1998; 101: 33–9.
- 273 Albright SD 3rd. Treatment of skin cancer using multiple modalities. J Am Acad Dermatol 1982; 7: 143–71.
- 274 Telfer NR, Colver GB, Bowers PW, Guidelines for the management of basal cell carcinomas. British Association of Dermatologists. Br J Dermatol 1999; 141: 415–23.
- 275 Thissen MRTM, Schroeter CA, Neumann HAM. Effective photodynamic therapy with 5-aminolevulinic acid for nodular basal cell carcinomas using a preceding debulking technique. Br J Dermatol 2000; 142: 338–9.
- 276 Miller BH, Shavin JS, Cognetta A et al. Nonsurgical treatment of basal cell carcinomas with intralesional 5-fluorouracil/epinephrine injectable gel. J Am Acad Dermatol 1997; 36: 72–7.
- 277 Park AJ, Strick M, Watson JD. Basal cell carcinomas: do they need to be followed up? J R Coll Surg Edinb 1994; 39: 109–11.
- 278 Van Der Meer GT, Willemse F, Marck KW. [Low 5-year recurrence rate after surgical excision of 126 basal cell carcinomas with frozen section analysis upon indication]. Ned Tijdschr Geneeskd 2001; 145: 1409–13. (Dutch).
- 279 Fisher DE. Apoptosis in cancer therapy: crossing the threshold. Cell 1994; 78: 539–42.
- 280 Jee SH, Shen SC, Chiu HC et al. Overexpression of interleukin-6 in human basal cell carcinoma cell lines increases anti-apoptoticactivity and tumorigenic potency. Oncogene 2001; 20: 198–208.
- 281 Jee SH, Shen SC, Tseng CR et al. Curcumin induces a p53-independent apoptosis in human basal cell carcinoma cells. J Invest Dermatol 1998; 111: 656–61.
- 282 Huang Z. Bcl-2 family proteins as targets for anticancer drug design. Oncogene 2000; 19: 6627–31.
- 283 Rodriguez-Villanueva J, McDonnell TJ, Induction of apoptotic cell death in non-melanoma skin cancer by interferon-alpha. Int J Cancer 1995; 61: 110–4.
- 284 Buechner SA, Wernli M, Harr T et al. Regression of basal cell carcinoma by intralesional interferon-alpha treatment is mediated by CD95 (APO-1/FAS)-CD95 ligand-induced suicide. J Clin Invest 1997; 100: 2691–6.
- 285 Romagosa R, Saap L, Givens M et al. A pilot study to evaluate the treatment of basal cell carcinoma with 5-fluorouracil using phosphatidyl choline as a transepidermal carrier. Dermatol Surg 2000; 26: 338–40.
- 286 Brash DE, Ponten J. Skin precancer. Cancer Surveys 1998; 32: 69–113.
- 287 Nakaseko H, Kobayashi M, Akita Y et al. Histological changes and involvement of apoptosis after photodynamic therapy for actinic keratoses. Br J Dermatol 2003; 148: 122–7.
- 288 Kalka K, Merk H, Mukhtar H. Photodynamic therapy in dermatology. J Am Acad Dermatol 2000; 42: 389–413.
- 289 Hoffman EJ. Cancer and the Search for Selective Biochemical Inhibitors. Boca Raton, FL. CRC Press. 1999.
- 290 Levin C, Maibach H. Exploration of ‘alternative’ and ‘natural’ drugs in dermatology. Arch Dermatol 2002; 138: 207–11.
- 291 Elmets CA, Singh D, Tubesing K et al. Cutaneous photoprotection from ultraviolet injury by green tea polyphenols. J Am Acad Dermatol 2001; 44: 425–32.
- 292 Zhao J, Jin X, Yaping E et al. Photoprotective effects of black tea extracts against UVB-induced phototoxicity in skin. Photochem Photobiol 1999; 70: 637–44.
- 293 Lu YP, Lou YR, Xie JG et al. Inhibitory effect of black tea on the growth of established skin tumors in mice: effects on tumor size, apoptosis, mitosis and bromodeoxyuridine incorporation into DNA. Carcinogenesis 1997; 18: 2163–9.
- 294 Apitz-Castro R, Ledezma E, Escalante J et al. Reversible prevention of platelet activation by (E,Z)-4,5,9-trithiadodeca-1,6,11-triene 9-oxide (ajoene) in dogs under extracorporeal circulation. Arzneimittelforschung 1988; 38: 901–4.
- 295 Dirsch VM, Gerbes AL, Vollmar AM. Ajoene a compound of garlic, induces apoptosis in human promyeloleukemic cells, accompanied by generation of reactive oxygen species and activation of nuclear factor kappaB. Mol Pharmacol 1998; 53: 402–7.
- 296 Tilli CM, Stavast-Kooy AJ, Vuerstaek JD et al. The garlic-derived organosulfur component ajoene decreases basal cell carcinoma tumor size by inducing apoptosis. Arch Dermatol Res 2003; 295: 117–23.
- 297 Taipale J, Chen JK, Cooper MK et al. Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature 2000; 406: 1005–9.
- 298 Chen JK, Taipale J, Young KE et al. Small molecule modulation of Smoothened activity. Proc Natl Acad Sci USA 2002; 99: 14071–6.
- 299 Tas S, Avci O. Induction of the differentiation and apoptosis of tumor cells in vivo with efficiency and selectivity. Eur J Dermatol 2004; 14: 96–102.
- 300 Lotan R. Retinoids in cancer prevention. Faseb J 1996; 10: 1031–9.
- 301 Van Heusden J, Van Ginckel R, Bruwiere H et al. Inhibition of all-TRANS-retinoic acid metabolism by R116010 induces antitumour activity. Br J Cancer 2002; 86: 605–11.
- 302 Goss PE, Strasser K, Marques R et al. Liarozole fumarate (R85246): in the treatment of ER negative, tamoxifen refractory or chemotherapy resistant postmenopausal metastatic breast cancer. Breast Cancer Res Treat 2000; 64: 177–88.
- 303 Cowen E, Mercurio MG, Gaspari AA. An open case series of patients with basal cell carcinoma treated with topical 5% imiquimod cream. J Am Acad Dermatol 2002; 47: S240–8.
- 304 Chen TM, Rosen T, Orengo I. Treatment of large superficial basal cell carcinoma with 5% imiquimod: a case report and review of the literature. Dermatol Surg 2002; 28: 344–6.
- 305 Drehs MM, Cook-Bolden F, Tanzi EL et al. Successful treatment of multiple superficial basal cell carcinomas with topical imiquimod: case report and review of the literature. Dermatol Surg 2002; 28: 427–9.
- 306 Geisse JK, Rich P, Pandya A et al. Imiquimod 5% cream for the treatment of superficial basal cell carcinoma: a double-blind, randomized, vehicle-controlled study. J Am Acad Dermatol 2002; 47: 390–8.
- 307 Callahan CA, Oro AE. Monstrous attempts at adnexogenesis: regulating hair follicle progenitors through Sonic hedgehog signaling. Curr Opin Genet Dev 2001; 11: 541–6.
- 308 Saldanha G, Fletcher A, Slater DN. Basal cell carcinoma: a dermatopathological and molecular biological update. Br J Dermatol 2003; 148: 195–202.