Volume 17, Issue 3 pp. 289-306
Full Access

The origins of plastids

T. CAVALIER-SMITH F.L.S.

T. CAVALIER-SMITH F.L.S.

Department of Biophysics, King's College, London University, 26–29 Drury Lane, London WC2B 5RL

Search for more papers by this author
First published: May 1982
Citations: 34

Abstract

A new theory of plastid origins is presented in which only two symbiotic events are needed to explain the origin of the six fundamentally different types of plastid, which all probably originated in anteriorly biciliated phagotrophic cells. Four of them can be derived directly from a single endosymbiotic cyanophyte by the independent loss of different cyanophyte characters and the evolution of new characters in the immediate descendants of this primary endosymbiosis. Retention of the phagosomal membrane as well as the prokaryotic plasma and outer membrane could produce the dinozoan and euglenid plastids with three envelope membranes, whereas the loss of the phagosomal membrane could produce the two-membraned envelopes characteristic of the Biliphyta and Verdiplantae*. The phycobilins were retained essentially unaltered in the Biliphyta, but are modified or lost in the other lines. In the ancestor of the Euglenozoa and Verdiplantae they were replaced by chlorophyll b. In the ancestor of algae possessing chlorophyll c they were modified to the cryptophyte type, concomitantly with the evolution of chlorophyll c2: one line of descent from this ancestor produced the dinozoan plastid by the complete loss of phycobilins, while the other was incorporated by endosymbiosis into another phagotrophic bibiliate to produce the cryptophyte plastid. The latter evolved into the chromophyte plastid by the loss of phycobilins and the evolution of chlorophyll c2. The conversion of the endosymbiont into a plastid depended on the evolution of a system to transport proteins into it. I argue that this occurred by the modification of the pre-existing mitochondrial transport system, and that the major modifications needed to adjust this to plastids with more than two envelope membranes led to evolution of a new tubular or disc-like morphology for the mitochondrial cristae of these groups. This new cristal morphology is maintained by stabilizing selection even in species that have secondarily lost plastids.

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.