The role of antibodies in inflammatory arthritis
Ann Duskin
Department of Medicine, Pennsylvania Hospital, Philadelphia, PA, USA.
Search for more papers by this authorRobert A. Eisenberg
Division of Rheumatology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Search for more papers by this authorAnn Duskin
Department of Medicine, Pennsylvania Hospital, Philadelphia, PA, USA.
Search for more papers by this authorRobert A. Eisenberg
Division of Rheumatology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Search for more papers by this authorAbstract
Summary: Inflammatory arthritis presents in a variety of diseases, from rheumatoid arthritis to hepatitis. Antibodies to autoantigens or to microbial constituents are commonly associated with these conditions. In some cases, the antibodies have diagnostic and prognostic relevance. It cannot as yet be determined definitively that any of them mediate joint damage, although the evidence from animal models indicates that this mechanism is likely. The purpose of this article is to give an overview of the spectrum of antibodies found in a variety of inflammatory arthritides. The relevant animal models are also discussed.
References
- 1 Lee AN, Beck CE, Hall M. Rheumatoid factor and anti-CCP autoantibodies in rheumatoid arthritis: a review. Clin Lab Sci 2008; 21: 15–18.
- 2 Nishimura K, et al. Meta-analysis: diagnostic accuracy of anti-cyclic citrullinated peptide antibody and rheumatoid factor for rheumatoid arthritis. Ann Intern Med 2007; 146: 797–808.
- 3 Vallbracht I, et al. Diagnostic and clinical value of anti-cyclic citrullinated peptide antibodies compared with rheumatoid factor isotypes in rheumatoid arthritis. Ann Rheum Dis 2004; 63: 1079–1084.
- 4 Pike RM, Sulkin SE, Coggeshall HC. Serological reactions in rheumatoid arthritis; factors affecting the agglutination of sensitized sheep erythrocytes in rheumatid-arthritis serum. J Immunol 1949; 63: 441–446.
- 5 Mewar D, Wilson AG. Autoantibodies in rheumatoid arthritis: a review. Biomed Pharmacother 2006; 60: 648–655.
- 6 Borque L, Olivan V, Iguaz F. Development and validation of an automated particle-enhanced nephelometric immunoassay method for the measurement of human plasma C1q. J Clin Lab Anal 1995; 9: 302–307.
- 7 Bas S, et al. Diagnostic tests for rheumatoid arthritis: comparison of anti-cyclic citrullinated peptide antibodies, anti-keratin antibodies and IgM rheumatoid factors. Rheumatology 2002; 41: 809–814.
- 8 Lutteri L, Malaise M, Chapelle JP. Comparison of second- and third-generation anti-cyclic citrullinated peptide antibodies assays for detecting rheumatoid arthritis. Clin Chim Acta 2007; 386: 76–81.
- 9 Vencovsky J, et al. Autoantibodies can be prognostic markers of an erosive disease in early rheumatoid arthritis. Ann Rheum Dis 2003; 62: 427–430.
- 10 Renaudineau Y, et al. Rheumatoid factor on a daily basis. Autoimmunity 2005; 38: 11–16.
- 11 Theofilopoulos AN, et al. IgM rheumatoid factor and low molecular weight IgM. An association with vasculitis. Arthritis Rheum 1974; 17: 272–284.
- 12 De Rycke L, et al. Rheumatoid factor, but not anti-cyclic citrullinated peptide antibodies, is modulated by infliximab treatment in rheumatoid arthritis. Ann Rheum Dis 2005; 64: 299–302.
- 13 Wener MH, et al. Absence of antibodies to cyclic citrullinated peptide in sera of patients with hepatitis C virus infection and cryoglobulinemia. Arthritis Rheum 2004; 50: 2305–2308.
- 14 Bombardieri M, et al. Role of anti-cyclic citrullinated peptide antibodies in discriminating patients with rheumatoid arthritis from patients with chronic hepatitis C infection-associated polyarticular involvement. Arthritis Res Ther 2004; 6: R137–R141.
- 15 Pawlotsky JM, et al. Extrahepatic immunologic manifestations in chronic hepatitis C and hepatitis C virus serotypes. Ann Intern Med 1995; 122: 169–173.
- 16 Charles ED, Dustin LB. Hepatitis C virus-induced cryoglobulinemia. Kidney Int 2009; 76: 818–824.
- 17 Lienesch D, et al. Absence of cyclic citrullinated peptide antibody in nonarthritic patients with chronic hepatitis C infection. J Rheumatol 2005; 32: 489–493.
- 18 Buskila D, et al. Musculoskeletal manifestations and autoantibody profile in 90 hepatitis C virus infected Israeli patients. Semin Arthritis Rheum 1998; 28: 107–113.
- 19 Jonsson R, et al. Local IgA and IgM rheumatoid factor production in autoimmune MRL/lpr mice. Autoimmunity 1991; 10: 7–14.
- 20 Horai R, et al. Development of chronic inflammatory arthropathy resembling rheumatoid arthritis in interleukin 1 receptor antagonist-deficient mice. J Exp Med 2000; 191: 313–320.
- 21 Taneja V, et al. CD4 and CD8 T cells in susceptibility/protection to collagen-induced arthritis in HLA-DQ8-transgenic mice: implications for rheumatoid arthritis. J Immunol 2002; 168: 5867–5875.
- 22 Izui S, Eisenberg RA. Circulating anti-DNA-rheumatoid factor complexes in MRL/1 mice. Clin Immunol Immunopathol 1980; 15: 536–551.
- 23 Tighe H, et al. Human immunoglobulin (IgG) induced deletion of IgM rheumatoid factor B cells in transgenic mice. J Exp Med 1995; 181: 599–606.
- 24 Borretzen M, et al. Differences in mutational patterns between rheumatoid factors in health and disease are related to variable heavy chain family and germ-line gene usage. Eur J Immunol 1997; 27: 735–741.
- 25 Mantovani L, Wilder RL, Casali P. Human rheumatoid B-1a (CD5+ B) cells make somatically hypermutated high affinity IgM rheumatoid factors. J Immunol 1993; 151: 473–488.
- 26 Shlomchik MJ, et al. Variable region sequences of murine IgM anti-IgG monoclonal autoantibodies (rheumatoid factors). A structural explanation for the high frequency of IgM anti-IgG B cells. J Exp Med 1986; 164: 407–427.
- 27 Vossenaar ER, et al. Citrullination of synovial proteins in murine models of rheumatoid arthritis. Arthritis Rheum 2003; 48: 2489–2500.
- 28 Masson-Bessiere C, et al. The major synovial targets of the rheumatoid arthritis-specific antifilaggrin autoantibodies are deiminated forms of the alpha- and beta-chains of fibrin. J Immunol 2001; 166: 4177–4184.
- 29 Makrygiannakis D, et al. Smoking increases peptidylarginine deiminase 2 enzyme expression in human lungs and increases citrullination in BAL cells. Ann Rheum Dis 2008; 67: 1488–1492.
- 30 Kuhn KA, et al. Antibodies against citrullinated proteins enhance tissue injury in experimental autoimmune arthritis. J Clin Invest 2006; 116: 961–973.
- 31 Nienhuis RL, Mandema E. A new serum factor in patients with rheumatoid arthritis; the antiperinuclear factor. Ann Rheum Dis 1964; 23: 302–305.
- 32 Young BJ, et al. Anti-keratin antibodies in rheumatoid arthritis. Br Med J 1979; 2: 97–99.
- 33 Sebbag M, et al. The antiperinuclear factor and the so-called antikeratin antibodies are the same rheumatoid arthritis-specific autoantibodies. J Clin Invest 1995; 95: 2672–2679.
- 34 Simon F, et al. Antibody avidity measurement and immune complex dissociation for serological diagnosis of vertically acquired HIV-1 infection. J Acquir Immune Defic Syndr 1993; 6: 201–207.
- 35 Schellekens GA, et al. Citrulline is an essential constituent of antigenic determinants recognized by rheumatoid arthritis-specific autoantibodies. J Clin Invest 1998; 101: 273–281.
- 36 Girbal-Neuhauser E, et al. The epitopes targeted by the rheumatoid arthritis-associated antifilaggrin autoantibodies are posttranslationally generated on various sites of (pro)filaggrin by deimination of arginine residues. J Immunol 1999; 162: 585–594.
- 37 Vincent C, et al. Subclass distribution of IgG antibodies to the rat oesophagus stratum corneum (so-called anti-keratin antibodies) in rheumatoid arthritis. Clin Exp Immunol 1990; 81: 83–89.
- 38 Manera C, et al. Clinical heterogeneity of rheumatoid arthritis and the antiperinuclear factor. J Rheumatol 1994; 21: 2021–2025.
- 39 Cordonnier C, et al. Diagnostic value of anti-RA33 antibody, antikeratin antibody, antiperinuclear factor and antinuclear antibody in early rheumatoid arthritis: comparison with rheumatoid factor. Br J Rheumatol 1996; 35: 620–624.
- 40 Janssens X, et al. The diagnostic significance of the antiperinuclear factor for rheumatoid arthritis. J Rheumatol 1988; 15: 1346–1350.
- 41 Vittecoq O, et al. Rheumatoid factors, anti-filaggrin antibodies and low in vitro interleukin-2 and interferon-gamma production are useful immunological markers for early diagnosis of community cases of rheumatoid arthritis. A preliminary study. Joint Bone Spine 2001; 68: 144–153.
- 42 Vossenaar ER, et al. Rheumatoid arthritis specific anti-Sa antibodies target citrullinated vimentin. Arthritis Res Ther 2004; 6: R142–R150.
- 43 Despres N, et al. The Sa system: a novel antigen-antibody system specific for rheumatoid arthritis. J Rheumatol 1994; 21: 1027–1033.
- 44 Hayem G, et al. Anti-Sa antibody is an accurate diagnostic and prognostic marker in adult rheumatoid arthritis. J Rheumatol 1999; 26: 7–13.
- 45 Escalona M, et al. Anti-Sa sera from patients with rheumatoid arthritis contain at least 2 different subpopulations of anti-Sa antibodies. J Rheumatol 2002; 29: 2053–2060.
- 46 Xu S, et al. Anti-Sa antibody in Chinese rheumatoid arthritis. Chin Med J 1998; 111: 204–207.
- 47 Goldbach-Mansky R, et al. Rheumatoid arthritis associated autoantibodies in patients with synovitis of recent onset. Arthritis Res 2000; 2: 236–243.
- 48 Avouac J, Gossec L, Dougados M. Diagnostic and predictive value of anti-cyclic citrullinated protein antibodies in rheumatoid arthritis: a systematic literature review. Ann Rheum Dis 2006; 65: 845–851.
- 49 Dos Anjos LM, et al. A comparative study of IgG second- and third-generation anti-cyclic citrullinated peptide (CCP) ELISAs and their combination with IgA third-generation CCP ELISA for the diagnosis of rheumatoid arthritis. Clin Rheumatol 2009; 28: 153–158.
- 50 Van Der Linden MP, et al. Value of anti-modified citrullinated vimentin and third-generation anti-cyclic citrullinated peptide compared with second-generation anti-cyclic citrullinated peptide and rheumatoid factor in predicting disease outcome in undifferentiated arthritis and rheumatoid arthritis. Arthritis Rheum 2009; 60: 2232–2241.
- 51 Rantapaa-Dahlqvist S, et al. Antibodies against cyclic citrullinated peptide and IgA rheumatoid factor predict the development of rheumatoid arthritis. Arthritis Rheum 2003; 48: 2741–2749.
- 52 Nielen MM, et al. Specific autoantibodies precede the symptoms of rheumatoid arthritis: a study of serial measurements in blood donors. Arthritis Rheum 2004; 50: 380–386.
- 53 Meyer O, et al. Anticitrullinated protein/peptide antibody assays in early rheumatoid arthritis for predicting five year radiographic damage. Ann Rheum Dis 2003; 62: 120–126.
- 54 Caspi D, et al. Synovial fluid levels of anti-cyclic citrullinated peptide antibodies and IgA rheumatoid factor in rheumatoid arthritis, psoriatic arthritis, and osteoarthritis. Arthritis Rheum 2006; 55: 53–56.
- 55 Gregersen PK, Silver J, Winchester RJ. The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum 1987; 30: 1205–1213.
- 56 Van Der Helm-van Mil AH, et al. The HLA-DRB1 shared epitope alleles are primarily a risk factor for anti-cyclic citrullinated peptide antibodies and are not an independent risk factor for development of rheumatoid arthritis. Arthritis Rheum 2006; 54: 1117–1121.
- 57 Hill JA, et al. Cutting edge: the conversion of arginine to citrulline allows for a high-affinity peptide interaction with the rheumatoid arthritis-associated HLA-DRB1*0401 MHC class II molecule. J Immunol 2003; 171: 538–541.
- 58 Hill JA, et al. Arthritis induced by posttranslationally modified (citrullinated) fibrinogen in DR4-IE transgenic mice. J Exp Med 2008; 205: 967–979.
- 59 Heliovaara M, et al. Smoking and risk of rheumatoid arthritis. J Rheumatol 1993; 20: 1830–1835.
- 60 Silman AJ, Newman J, MacGregor AJ. Cigarette smoking increases the risk of rheumatoid arthritis. Results from a nationwide study of disease-discordant twins. Arthritis Rheum 1996; 39: 732–735.
- 61 Linn-Rasker SP, et al. Smoking is a risk factor for anti-CCP antibodies only in rheumatoid arthritis patients who carry HLA-DRB1 shared epitope alleles. Ann Rheum Dis 2006; 65: 366–371.
- 62 Klareskog L, et al. A new model for an etiology of rheumatoid arthritis: smoking may trigger HLA-DR (shared epitope)-restricted immune reactions to autoantigens modified by citrullination. Arthritis Rheum 2006; 54: 38–46.
- 63 Bardin T, et al. HLA antigens and seronegative rheumatoid arthritis. Ann Rheum Dis 1985; 44: 50–53.
- 64 De Man YA, et al. Women with rheumatoid arthritis negative for anti-CCP and rheumatoid factor are more likely to improve during pregnancy, whereas in autoantibody positive women autoantibody levels are not influenced by pregnancy. Ann Rheum Dis 2009;doi:10.1136/ard.2008.104331.
- 65 Petkova SB, et al. Human antibodies induce arthritis in mice deficient in the low-affinity inhibitory IgG receptor Fc gamma RIIB. J Exp Med 2006; 203: 275–280.
- 66 Boire G, et al. Anti-Sa antibodies and antibodies against cyclic citrullinated peptide are not equivalent as predictors of severe outcomes in patients with recent-onset polyarthritis. Arthritis Res Ther 2005; 7: R592–R603.
- 67 Bukhari M, et al. The performance of anti-cyclic citrullinated peptide antibodies in predicting the severity of radiologic damage in inflammatory polyarthritis: results from the Norfolk Arthritis Register. Arthritis Rheum 2007; 56: 2929–2935.
- 68 Ingegnoli F, et al. Use of antibodies recognizing cyclic citrullinated peptide in the differential diagnosis of joint involvement in systemic sclerosis. Clin Rheumatol 2007; 26: 510–514.
- 69 Santiago M, et al. A comparison of the frequency of antibodies to cyclic citrullinated peptides using a third generation anti-CCP assay (CCP3) in systemic sclerosis, primary biliary cirrhosis and rheumatoid arthritis. Clin Rheumatol 2008; 27: 77–83.
- 70 Bogliolo L, et al. Antibodies to cyclic citrullinated peptides in psoriatic arthritis. J Rheumatol 2005; 32: 511–515.
- 71 Vander Cruyssen B, et al. Anti-citrullinated peptide antibodies may occur in patients with psoriatic arthritis. Ann Rheum Dis 2005; 64: 1145–1149.
- 72 Alenius GM, Berglin E, Rantapaa Dahlqvist S. Antibodies against cyclic citrullinated peptide (CCP) in psoriatic patients with or without joint inflammation. Ann Rheum Dis 2006; 65: 398–400.
- 73 Inanc N, et al. Anti-CCP antibodies in rheumatoid arthritis and psoriatic arthritis. Clin Rheumatol 2007; 26: 17–23.
- 74 Korendowych E, et al. The clinical and genetic associations of anti-cyclic citrullinated peptide antibodies in psoriatic arthritis. Rheumatology 2005; 44: 1056–1060.
- 75 Marchesoni A, et al. Antibodies to cyclic citrullinated peptides in psoriatic arthritis: do classification criteria affect study results? J Rheumatol 2006; 33: 435. author reply 436–437.
- 76 Pasquetti P, Morozzi G, Galeazzi M. Very low prevalence of anti-CCP antibodies in rheumatoid factor-negative psoriatic polyarthritis. Rheumatology 2009; 48: 315–316.
- 77 Chan MT, et al. Associations of erosive arthritis with anti-cyclic citrullinated peptide antibodies and MHC Class II alleles in systemic lupus erythematosus. J Rheumatol 2008; 35: 77–83.
- 78 Zhao Y, et al. What can we learn from the presence of anti-cyclic citrullinated peptide antibodies in systemic lupus erythematosus? Joint Bone Spine 2009; 76: 501–507.
- 79 Qing YF, et al. The detecting and clinical value of anti-cyclic citrullinated peptide antibodies in patients with systemic lupus erythematosus. Lupus 2009; 18: 713–717.
- 80 Mediwake R, et al. Use of anti-citrullinated peptide and anti-RA33 antibodies in distinguishing erosive arthritis in patients with systemic lupus erythematosus and rheumatoid arthritis. Ann Rheum Dis 2001; 60: 67–68.
- 81 Damian-Abrego GN, Cabiedes J, Cabral AR. Anti-citrullinated peptide antibodies in lupus patients with or without deforming arthropathy. Lupus 2008; 17: 300–304.
- 82 Fernandez A, et al. Lupus arthropathy: a case series of patients with rhupus. Clin Rheumatol 2006; 25: 164–167.
- 83 Simon JA, et al. Clinical and immunogenetic characterization of Mexican patients with ‘rhupus’. Lupus 2002; 11: 287–292.
- 84 Panush RS, et al. ‘Rhupus’ syndrome. Arch Intern Med 1988; 148: 1633–1636.
- 85 Amezcua-Guerra LM, et al. Presence of antibodies against cyclic citrullinated peptides in patients with ‘rhupus’: a cross-sectional study. Arthritis Res Ther 2006; 8: R144.
- 86 Kasapcopur O, et al. Diagnostic accuracy of anti-cyclic citrullinated peptide antibodies in juvenile idiopathic arthritis. Ann Rheum Dis 2004; 63: 1687–1689.
- 87 Avcin T, et al. Prevalence and clinical significance of anti-cyclic citrullinated peptide antibodies in juvenile idiopathic arthritis. Ann Rheum Dis 2002; 61: 608–611.
- 88 Kwok JS, et al. Anti-cyclic citrullinated peptide: diagnostic and prognostic values in juvenile idiopathic arthritis and rheumatoid arthritis in a Chinese population. Scand J Rheumatol 2005; 34: 359–366.
- 89 Habib HM, Mosaad YM, Youssef HM. Anti-cyclic citrullinated peptide antibodies in patients with juvenile idiopathic arthritis. Immunol Invest 2008; 37: 849–857.
- 90 Riccio A, et al. Anti-cyclic citrullinated peptide antibodies in patients affected by HCV-related arthritis. J Biol Regul Homeost Agents 2008; 22: 57–61.
- 91 Mathsson L, et al. Antibodies against citrullinated vimentin in rheumatoid arthritis: higher sensitivity and extended prognostic value concerning future radiographic progression as compared with antibodies against cyclic citrullinated peptides. Arthritis Rheum 2008; 58: 36–45.
- 92 Mutlu N, et al. Comparative performance analysis of 4 different anti-citrullinated protein assays in the diagnosis of rheumatoid arthritis. J Rheumatol 2009; 36: 491–500.
- 93 Saulot V, et al. Presence of autoantibodies to the glycolytic enzyme alpha-enolase in sera from patients with early rheumatoid arthritis. Arthritis Rheum 2002; 46: 1196–1201.
- 94 Kinloch A, et al. Identification of citrullinated alpha-enolase as a candidate autoantigen in rheumatoid arthritis. Arthritis Res Ther 2005; 7: R1421–R1429.
- 95 Kinloch A, et al. Synovial fluid is a site of citrullination of autoantigens in inflammatory arthritis. Arthritis Rheum 2008; 58: 2287–2295.
- 96 Lundberg K, et al. Antibodies to citrullinated alpha-enolase peptide 1 are specific for rheumatoid arthritis and cross-react with bacterial enolase. Arthritis Rheum 2008; 58: 3009–3019.
- 97 Albert LJ, Inman RD. Molecular mimicry and autoimmunity. N Engl J Med 1999; 341: 2068–2074.
- 98 Bernstein RM, et al. Anti-Jo-1 antibody: a marker for myositis with interstitial lung disease. Br Med J 1984; 289: 151–152.
- 99 Targoff IN. Update on myositis-specific and myositis-associated autoantibodies. Curr Opin Rheumatol 2000; 12: 475–481.
- 100 Mielnik P, et al. Clinical features and prognosis of patients with idiopathic inflammatory myopathies and anti-Jo-1 antibodies. Autoimmunity 2006; 39: 243–247.
- 101 Schmidt WA, et al. Clinical and serological aspects of patients with anti-Jo-1 antibodies--an evolving spectrum of disease manifestations. Clin Rheumatol 2000; 19: 371–377.
- 102 Miller FW, et al. Origin and regulation of a disease-specific autoantibody response. Antigenic epitopes, spectrotype stability, and isotype restriction of anti-Jo-1 autoantibodies. J Clin Invest 1990; 85: 468–475.
- 103 Yoshida S, et al. The precipitating antibody to an acidic nuclear protein antigen, the Jo-1, in connective tissue diseases. A marker for a subset of polymyositis with interstitial pulmonary fibrosis. Arthritis Rheum 1983; 26: 604–611.
- 104 Stone KB, et al. Anti-Jo-1 antibody levels correlate with disease activity in idiopathic inflammatory myopathy. Arthritis Rheum 2007; 56: 3125–3131.
- 105 Hoffman IE, et al. Specific antinuclear antibodies are associated with clinical features in systemic lupus erythematosus. Ann Rheum Dis 2004; 63: 1155–1158.
- 106 Hassfeld W, et al. Demonstration of a new antinuclear antibody (anti-RA33) that is highly specific for rheumatoid arthritis. Arthritis Rheum 1989; 32: 1515–1520.
- 107 Nell-Duxneuner V, et al. Autoantibody profiling in patients with very early rheumatoid arthritis - a follow-up study. Ann Rheum Dis 2009;doi:10.1136/ard.2008.100677.
- 108 Hassfeld W, et al. Autoimmune response to the spliceosome. An immunologic link between rheumatoid arthritis, mixed connective tissue disease, and systemic lupus erythematosus. Arthritis Rheum 1995; 38: 777–785.
- 109 Skriner K, et al. Anti-A2/RA33 autoantibodies are directed to the RNA binding region of the A2 protein of the heterogeneous nuclear ribonucleoprotein complex. Differential epitope recognition in rheumatoid arthritis, systemic lupus erythematosus, and mixed connective tissue disease. J Clin Invest 1997; 100: 127–135.
- 110 Gabay C, Prieur AM, Meyer O. Occurrence of antiperinuclear, antikeratin, and anti-RA 33 antibodies in juvenile chronic arthritis. Ann Rheum Dis 1993; 52: 785–789.
- 111 Tomoum HY, Mostafa GA, El-Shahat EM. Autoantibody to heterogeneous nuclear ribonucleoprotein-A2 (RA33) in juvenile idiopathic arthritis: clinical significance. Pediatr Int 2009; 51: 188–192.
- 112 Hayer S, et al. Aberrant expression of the autoantigen heterogeneous nuclear ribonucleoprotein-A2 (RA33) and spontaneous formation of rheumatoid arthritis-associated anti-RA33 autoantibodies in TNF-alpha transgenic mice. J Immunol 2005; 175: 8327–8336.
- 113 Hoffmann MH, et al. The rheumatoid arthritis-associated autoantigen hnRNP-A2 (RA33) is a major stimulator of autoimmunity in rats with pristane-induced arthritis. J Immunol 2007; 179: 7568–7576.
- 114 Monach PA, et al. Circulating C3 is necessary and sufficient for induction of autoantibody-mediated arthritis in a mouse model. Arthritis Rheum 2007; 56: 2968–2974.
- 115 Matsumoto I, et al. Arthritis provoked by linked T and B cell recognition of a glycolytic enzyme. Science 1999; 286: 1732–1735.
- 116 Schubert D, et al. Immunization with glucose-6-phosphate isomerase induces T cell-dependent peripheral polyarthritis in genetically unaltered mice. J Immunol 2004; 172: 4503–4509.
- 117 Matsumoto I, et al. How antibodies to a ubiquitous cytoplasmic enzyme may provoke joint-specific autoimmune disease. Nat Immunol 2002; 3: 360–365.
- 118 Schaller M, Burton DR, Ditzel HJ. Autoantibodies to GPI in rheumatoid arthritis: linkage between an animal model and human disease. Nat Immunol 2001; 2: 746–753.
- 119 Kassahn D, et al. Few human autoimmune sera detect GPI. Nat Immunol 2002; 3: 411–412. author reply 412–413.
- 120 Schubert D, et al. Autoantibodies to GPI and creatine kinase in RA. Nat Immunol 2002; 3: 411. author reply 412–413.
- 121 Herve CA, Wait R, Venables PJ. Glucose-6-phosphate isomerase is not a specific autoantigen in rheumatoid arthritis. Rheumatology 2003; 42: 986–988.
- 122 Matsumoto I, et al. Low prevalence of antibodies to glucose-6-phosphate isomerase in patients with rheumatoid arthritis and a spectrum of other chronic autoimmune disorders. Arthritis Rheum 2003; 48: 944–954.
- 123 Jouen F, et al. Diagnostic and prognostic values of anti glucose-6-phosphate isomerase antibodies in community-recruited patients with very early arthritis. Clin Exp Immunol 2004; 137: 606–611.
- 124 Kim JY, et al. Detection of antibodies against glucose 6-phosphate isomerase in synovial fluid of rheumatoid arthritis using surface plasmon resonance (BIAcore). Exp Mol Med 2003; 35: 310–316.
- 125 Cha HS, et al. Autoantibodies to glucose-6-phosphate isomerase are elevated in the synovial fluid of rheumatoid arthritis patients. Scand J Rheumatol 2004; 33: 179–184.
- 126 Van Gaalen FA, et al. Association of autoantibodies to glucose-6-phosphate isomerase with extraarticular complications in rheumatoid arthritis. Arthritis Rheum 2004; 50: 395–399.
- 127 Schaller M, et al. Raised levels of anti-glucose-6-phosphate isomerase IgG in serum and synovial fluid from patients with inflammatory arthritis. Ann Rheum Dis 2005; 64: 743–749.
- 128 Goeb V, et al. Diagnostic and prognostic usefulness of antibodies to citrullinated peptides. Joint Bone Spine 2009; 76: 343–349.
- 129 Cook AD, et al. Antibodies against the CB10 fragment of type II collagen in rheumatoid arthritis. Arthritis Res Ther 2004; 6: R477–R483.
- 130 Stuart JM, et al. Incidence and specificity of antibodies to types I, II, III, IV, and V collagen in rheumatoid arthritis and other rheumatic diseases as measured by 125I-radioimmunoassay. Arthritis Rheum 1983; 26: 832–840.
- 131 Andriopoulos NA, et al. Antibodies to human native and denatured collagens in synovial fluids of patients with rheumatoid arthritis. Clin Immunol Immunopathol 1976; 6: 209–212.
- 132 Cook AD, et al. Antibodies to type II collagen and HLA disease susceptibility markers in rheumatoid arthritis. Arthritis Rheum 1999; 42: 2569–2576.
- 133 Cook AD, et al. IgG subclasses of antibodies to type II collagen in rheumatoid arthritis differ from those in systemic lupus erythematosus and other connective tissue diseases. J Rheumatol 1997; 24: 2090–2096.
- 134 Raza K, et al. Anti-collagen type II antibodies in patients with very early synovitis. Ann Rheum Dis 2008; 67: 1354–1355.
- 135 Collier DH, et al. Anticollagen antibodies and immune response gene products in rheumatoid arthritis. Arthritis Rheum 1984; 27: 1201–1209.
- 136 Cho YG, et al. Type II collagen autoimmunity in a mouse model of human rheumatoid arthritis. Autoimmun Rev 2007; 7: 65–70.
- 137 Nandakumar KS, et al. Induction of arthritis by single monoclonal IgG anti-collagen type II antibodies and enhancement of arthritis in mice lacking inhibitory FcgammaRIIB. Eur J Immunol 2003; 33: 2269–2277.
- 138 Nandakumar KS, et al. Collagen type II (CII)-specific antibodies induce arthritis in the absence of T or B cells but the arthritis progression is enhanced by CII-reactive T cells. Arthritis Res Ther 2004; 6: R544–R550.
- 139 Backlund J, et al. Predominant selection of T cells specific for the glycosylated collagen type II epitope (263-270) in humanized transgenic mice and in rheumatoid arthritis. Proc Natl Acad Sci USA 2002; 99: 9960–9965.
- 140 Meuwissen SG, et al. Ankylosing spondylitis and inflammatory bowel disease. I. Prevalence of inflammatory bowel disease in patients suffering from ankylosing spondylitis. Ann Rheum Dis 1978; 37: 30–32.
- 141 De Vos M, et al. Ileocolonoscopy in seronegative spondylarthropathy. Gastroenterology 1989; 96: 339–344.
- 142 Mielants H, et al. Ileocolonoscopic findings in seronegative spondylarthropathies. Br J Rheumatol 1988; 27(Suppl): 95–105.
- 143 Leirisalo-Repo M. Enteropathic arthritis, Whipple’s disease, juvenile spondyloarthropathy, and uveitis. Curr Opin Rheumatol 1994; 6: 385–390.
- 144 Greenstein AJ, Janowitz HD, Sachar DB. The extra-intestinal complications of Crohn’s disease and ulcerative colitis: a study of 700 patients. Medicine 1976; 55: 401–412.
- 145 Palm O, et al. The prevalence and incidence of peripheral arthritis in patients with inflammatory bowel disease, a prospective population-based study (the IBSEN study). Rheumatology 2001; 40: 1256–1261.
- 146 Atzeni F, et al. Combined therapeutic approach: inflammatory bowel diseases and peripheral or axial arthritis. World J Gastroenterol 2009; 15: 2469–2471.
- 147 Aydin SZ, et al. Anti-Saccharomyces cerevisiae antibodies (ASCA) in spondyloarthropathies: a reassessment. Rheumatology 2008; 47: 142–144.
- 148 Hoffman IE, et al. Anti-saccharomyces cerevisiae IgA antibodies are raised in ankylosing spondylitis and undifferentiated spondyloarthropathy. Ann Rheum Dis 2003; 62: 455–459.
- 149 Torok HP, et al. Inflammatory bowel disease-specific autoantibodies in HLA-B27-associated spondyloarthropathies: increased prevalence of ASCA and pANCA. Digestion 2004; 70: 49–54.
- 150 Riente L, et al. Antibodies to tissue transglutaminase and Saccharomyces cerevisiae in ankylosing spondylitis and psoriatic arthritis. J Rheumatol 2004; 31: 920–924.
- 151 Lakatos PL, et al. Pancreatic autoantibodies are associated with reactivity to microbial antibodies, penetrating disease behavior, perianal disease, and extraintestinal manifestations, but not with NOD2/CARD15 or TLR4 genotype in a Hungarian IBD cohort. Inflamm Bowel Dis 2009; 15: 365–374.
- 152 Ewing C, et al. Antibody activity in ankylosing spondylitis sera to two sites on HLA B27.1 at the MHC groove region (within sequence 65-85), and to a Klebsiella pneumoniae nitrogenase reductase peptide (within sequence 181-199). J Exp Med 1990; 171: 1635–1647.
- 153 Ebringer A, et al. A possible link between Crohn’s disease and ankylosing spondylitis via Klebsiella infections. Clin Rheumatol 2007; 26: 289–297.
- 154 Frauendorf E, et al. HLA-B27-restricted T cells from patients with ankylosing spondylitis recognize peptides from B*2705 that are similar to bacteria-derived peptides. Clin Exp Immunol 2003; 134: 351–359.
- 155 Tiwana H, et al. Antibody responses to gut bacteria in ankylosing spondylitis, rheumatoid arthritis, Crohn’s disease and ulcerative colitis. Rheumatol Int 1997; 17: 11–16.
- 156 Sahly H, et al. Serum antibodies to Klebsiella capsular polysaccharides in ankylosing spondylitis. Arthritis Rheum 1994; 37: 754–759.
- 157 Rashid T, Ebringer A. Ankylosing spondylitis is linked to Klebsiella--the evidence. Clin Rheumatol 2007; 26: 858–864.
- 158 Schwimmbeck PL, Yu DT, Oldstone MB. Autoantibodies to HLA B27 in the sera of HLA B27 patients with ankylosing spondylitis and Reiter’s syndrome. Molecular mimicry with Klebsiella pneumoniae as potential mechanism of autoimmune disease. J Exp Med 1987; 166: 173–181.
- 159 Ebringer R, et al. Ankylosing spondylitis: klebsiella and HL-A B27. Rheumatol Rehabil 1977; 16: 190–196.
- 160 Trull AK, et al. IgA antibodies to Klebsiella pneumoniae in ankylosing spondylitis. Scand J Rheumatol 1983; 12: 249–253.
- 161 Eastmond CJ, et al. Frequency of faecal Klebsiella aerogenes in patients with ankylosing spondylitis and controls with respect to individual features of the disease. Ann Rheum Dis 1980; 39: 118–123.
- 162 Maki-Ikola O, et al. IgM, IgG and IgA class enterobacterial antibodies in serum and synovial fluid in patients with ankylosing spondylitis and rheumatoid arthritis. Br J Rheumatol 1997; 36: 1051–1053.
- 163 Wilson C, et al. Cytotoxicity responses to peptide antigens in rheumatoid arthritis and ankylosing spondylitis. J Rheumatol 2003; 30: 972–978.
- 164 Fielder M, et al. Molecular mimicry and ankylosing spondylitis: possible role of a novel sequence in pullulanase of Klebsiella pneumoniae. FEBS Lett 1995; 369: 243–248.
- 165 Sieper J, Kingsley GH, Marker-Hermann E. Aetiological agents and immune mechanisms in enterogenic reactive arthritis. Baillieres Clin Rheumatol 1996; 10: 105–121.
- 166 Koehler L, Zeidler H, Hudson AP. Aetiological agents: their molecular biology and phagocyte-host interaction. Baillieres Clin Rheumatol 1998; 12: 589–609.
- 167 Wollenhaupt J, Schnarr S, Kuipers JG. Bacterial antigens in reactive arthritis and spondarthritis. Rational use of laboratory testing in diagnosis and follow-up. Baillieres Clin Rheumatol 1998; 12: 627–647.
- 168 Granfors K, et al. Yersinia antigens in synovial-fluid cells from patients with reactive arthritis. N Engl J Med 1989; 320: 216–221.
- 169 Wuorela M, Granfors K. Infectious agents as triggers of reactive arthritis. Am J Med Sci 1998; 316: 264–270.
- 170 Lapadula G, Covelli M, Numo R. Antibacterial antibody pattern in seronegative spondyloarthropathies (SNSA). Clin Exp Rheumatol 1988; 6: 385–390.
- 171 Toivanen A, et al. Association of persisting IgA response with yersinia triggered reactive arthritis: a study on 104 patients. Ann Rheum Dis 1987; 46: 898–901.
- 172 Granfors K, Toivanen A. IgA-anti-yersinia antibodies in yersinia triggered reactive arthritis. Ann Rheum Dis 1986; 45: 561–565.
- 173 Granfors K., et al. Persistence of Yersinia antigens in peripheral blood cells from patients with Yersinia enterocolitica O:3 infection with or without reactive arthritis. Arthritis Rheum 1998; 41: 855–862.
- 174 Taylor-Robinson D, et al. Detection of Chlamydia trachomatis DNA in joints of reactive arthritis patients by polymerase chain reaction. Lancet 1992; 340(8811): 81–82.
- 175 Bas S, et al. Importance of species-specific antigens in the serodiagnosis of Chlamydia trachomatis reactive arthritis. Rheumatology 2002; 41: 1017–1720.
- 176 Granfors K, et al. Salmonella lipopolysaccharide in synovial cells from patients with reactive arthritis. Lancet 1990; 335: 685–688.
- 177 Gerard HC, et al. Molecular biology of infectious agents in chronic arthritis. Rheum Dis Clin North Am 2009; 35: 1–19.
- 178 Finch M, et al. Epidemic Reiter’s syndrome following an outbreak of shigellosis. Eur J Epidemiol 1986; 2: 26–30.
- 179 Leirisalo-Repo M, Suoranta H. Ten-year follow-up study of patients with Yersinia arthritis. Arthritis Rheum 1988; 31: 533–537.
- 180 Herrlinger JD, Asmussen JU. Long term prognosis in yersinia arthritis: clinical and serological findings. Ann Rheum Dis 1992; 51: 1332–1334.
- 181 Simon DG, et al. Reiter’s syndrome following epidemic shigellosis. J Rheumatol 1981; 8: 969–973.
- 182 Bowness P. HLA B27 in health and disease: a double-edged sword? Rheumatology 2002; 41: 857–868.
- 183 Lubrano E, et al. The arthritis of coeliac disease: prevalence and pattern in 200 adult patients. Br J Rheumatol 1996; 35: 1314–1318.
- 184 Briani C, Samaroo D, Alaedini A. Celiac disease: from gluten to autoimmunity. Autoimmun Rev 2008; 7: 644–650.
- 185 Lindfors K, Kaukinen K, Maki M. A role for anti-transglutaminase 2 autoantibodies in the pathogenesis of coeliac disease? Amino Acids 2009; 36: 685–691.
- 186 Lepore L, et al. Anti-alpha-gliadin antibodies are not predictive of celiac disease in juvenile chronic arthritis. Acta Paediatr 1993; 82: 569–573.
- 187 Kallikorm R, Uibo O, Uibo R. Coeliac disease in spondyloarthropathy: usefulness of serological screening. Clin Rheumatol 2000; 19: 118–122.
- 188 Lindqvist U, et al. IgA antibodies to gliadin and coeliac disease in psoriatic arthritis. Rheumatology 2002; 41: 31–37.
- 189 Togrol RE, et al. The significance of coeliac disease antibodies in patients with ankylosing spondylitis: a case-controlled study. J Int Med Res 2009; 37: 220–226.
- 190 Spadaro A, et al. (Anti-tissue transglutaminase antibodies in inflammatory and degenerative arthropathies). Reumatismo 2002; 54: 344–350.
- 191 Dockerty JL, Williamson L, Wordsworth BP. Endomysial antibodies in psoriatic arthritis patients. Rheumatology 2002; 41: 1195–1196.
- 192 Kia KF, et al. Prevalence of antigliadin antibodies in patients with psoriasis is not elevated compared with controls. Am J Clin Dermatol 2007; 8: 301–305.
- 193 Meyer O. Is the celiac disease model relevant to rheumatoid arthritis? Joint Bone Spine 2004; 71: 4–6.
- 194 Eisenberg R, Looney RJ. The therapeutic potential of anti-CD20 “what do B-cells do?”. Clin Immunol 2005; 117: 207–213.