Antibodies to citrullinated proteins: molecular interactions and arthritogenicity
Hüseyin Uysal
Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden.
Search for more papers by this authorKutty Selva Nandakumar
Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden.
Search for more papers by this authorChristoph Kessel
Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden.
Search for more papers by this authorSabrina Haag
Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden.
Search for more papers by this authorStefan Carlsen
Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden.
Search for more papers by this authorHarald Burkhardt
Division of Rheumatology, Johann Wolfgang Goethe-University Frankfurt am Main, Germany.
Search for more papers by this authorRikard Holmdahl
Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden.
Search for more papers by this authorHüseyin Uysal
Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden.
Search for more papers by this authorKutty Selva Nandakumar
Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden.
Search for more papers by this authorChristoph Kessel
Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden.
Search for more papers by this authorSabrina Haag
Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden.
Search for more papers by this authorStefan Carlsen
Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden.
Search for more papers by this authorHarald Burkhardt
Division of Rheumatology, Johann Wolfgang Goethe-University Frankfurt am Main, Germany.
Search for more papers by this authorRikard Holmdahl
Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden.
Search for more papers by this authorAbstract
Summary: The discovery of antibodies specific for citrullinated protein epitopes [anti-citrullinated protein antibodies (ACPAs)] is a hallmark for the diagnosis and prognosis of rheumatoid arthritis (RA) and will also be a useful tool for understanding the fundamental pathologic processes. There are several essential questions pertaining to ACPA that remain to be explored, such as understanding the early specificity of the underlying T-cell recognition, whether the production of ACPA is a primary or secondary process, and in the event of such antibodies being arthritogenic, whether they could possibly regulate the disease development. To answer these questions, animal models are needed, but unfortunately ACPA is not a prominent feature of any of the classical animal models of RA. However, we showed recently that ACPA can be isolated from animals susceptible to collagen-induced arthritis that are specific for citrullinated type II collagen (CII). The citrulline specificity could be visualized, and the specificity is determined primarily by a direct interaction with citrulline. We also demonstrated that these antibodies are specific for the citrullinated epitopes and are pathogenic in vivo. A new hypothesis to explain how inflammation in RA can be directed to cartilaginous joints and be self-perpetuating is suggested, which involves recognition of post-translational modifications (glycosylation and citrullination) on CII by T and B cells that can have both arthritogenic and regulatory consequences.
References
- 1 Uy R, Wold F. Posttranslational covalent modification of proteins. Science 1977; 198: 890–896.
- 2 Newkirk MM, et al. Advanced glycation end-product (AGE)-damaged IgG and IgM autoantibodies to IgG-AGE in patients with early synovitis. Arthritis Res Ther 2003; 5: R82–R90.
- 3 Engelhard VH, Altrich-Vanlith M, Ostankovitch M, Zarling AL. Post-translational modifications of naturally processed MHC-binding epitopes. Curr Opin Immunol 2006; 18: 92–97.
- 4 Aho K, Palosuo T, Raunio V, Puska P, Aromaa A, Salonen JT. When does rheumatoid disease start? Arthritis Rheum 1985; 28: 485–489.
- 5 Nienhuis RL, Mandema E. A new serum factor in patients with rheumatoid arthritis; the antiperinuclear factor. Ann Rheum Dis 1964; 23: 302–305.
- 6 Young BJ, Mallya RK, Leslie RD, Clark CJ, Hamblin TJ. Anti-keratin antibodies in rheumatoid arthritis. Br Med J 1979; 2: 97–99.
- 7 Sebbag M, et al. The antiperinuclear factor and the so-called antikeratin antibodies are the same rheumatoid arthritis-specific autoantibodies. J Clin Invest 1995; 95: 2672–2679.
- 8 Simon M, et al. The cytokeratin filament-aggregating protein filaggrin is the target of the so-called “antikeratin antibodies,” autoantibodies specific for rheumatoid arthritis. J Clin Invest 1993; 92: 1387–1393.
- 9 Simon M, et al. Monoclonal antibodies to human epidermal filaggrin, some not recognizing profilaggrin. J Invest Dermatol 1995; 105: 432–437.
- 10 Simon M, et al. The rheumatoid arthritis-associated autoantibodies to filaggrin label the fibrous matrix of the cornified cells but not the profilaggrin-containing keratohyalin granules in human epidermis. Clin Exp Immunol 1995; 100: 90–98.
- 11 Palosuo T, et al. Purification of filaggrin from human epidermis and measurement of antifilaggrin autoantibodies in sera from patients with rheumatoid arthritis by an enzyme-linked immunosorbent assay. Int J Allergy Immunol 1998; 115: 294–302.
- 12 Masson-Bessiere C, et al. In the rheumatoid pannus, anti-filaggrin autoantibodies are produced by local plasma cells and constitute a higher proportion of IgG than in synovial fluid and serum. Clin Exp Immunol 2000; 119: 544–552.
- 13 Schellekens GA, De Jong BA, Van Den Hoogen FH, Van De Putte LB, Van Venrooij WJ. Citrulline is an essential constituent of antigenic determinants recognized by rheumatoid arthritis-specific autoantibodies. J Clin Invest 1998; 101: 273–281.
- 14 Girbal-Neuhauser E, et al. The epitopes targeted by the rheumatoid arthritis-associated antifilaggrin autoantibodies are posttranslationally generated on various sites of (pro)filaggrin by deimination of arginine residues. J Immunol 1999; 162: 585–594.
- 15 Burkhardt H, Sehnert B, Bockermann R, Engström A, Kalden JR, Holmdahl R. Humoral immune response to citrullinated collagen type II determinants in early rheumatoid arthritis. Eur J Immunol 2005; 35: 1643–1652.
- 16 Masson-Bessiere C, et al. The major synovial targets of the rheumatoid arthritis-specific antifilaggrin autoantibodies are deiminated forms of the alpha- and beta-chains of fibrin. J Immunol 2001; 166: 4177–4184.
- 17
Chang X,
Yamada R,
Suzuki A,
Kochi Y,
Sawada T,
Yamamoto K.
Citrullination of fibronectin in rheumatoid arthritis synovial tissue.
Rheumatology (Oxford)
2005; 44: 1374–1382.
10.1093/rheumatology/kei023 Google Scholar
- 18 Vossenaar ER, Smeets TJ, Kraan MC, Raats JM, Van Venrooij WJ, Tak PP. The presence of citrullinated proteins is not specific for rheumatoid synovial tissue. Arthritis Rheum 2004; 50: 3485–3494.
- 19 Kinloch A, et al. Identification of citrullinated alpha-enolase as a candidate autoantigen in rheumatoid arthritis. Arthritis Res Ther 2005; 7: R1421–R1429.
- 20 Okazaki Y, et al. Identification of citrullinated eukaryotic translation initiation factor 4G1 as novel autoantigen in rheumatoid arthritis. Biochem Biophys Res Commun 2006; 341: 94–100.
- 21 Anzilotti C, Merlini G, Pratesi F, Tommasi C, Chimenti D, Migliorini P. Antibodies to viral citrullinated peptide in rheumatoid arthritis. J Rheumatol 2006; 33: 647–651.
- 22 Pratesi F, Tommasi C, Anzilotti C, Chimenti D, Migliorini P. Deiminated Epstein-Barr virus nuclear antigen 1 is a target of anti-citrullinated protein antibodies in rheumatoid arthritis. Arthritis Rheum 2006; 54: 733–741.
- 23 Schellekens GA, et al. The diagnostic properties of rheumatoid arthritis antibodies recognizing a cyclic citrullinated peptide. Arthritis Rheum 2000; 43: 155–163.
- 24 Dorow DS, Shi PT, Carbone FR, Minasian E, Todd PE, Leach SJ. Two large immunogenic and antigenic myoglobin peptides and the effects of cyclisation. Mol Immunol 1985; 22: 1255–1264.
- 25 Nishimura K, et al. Meta-analysis: diagnostic accuracy of anti-cyclic citrullinated peptide antibody and rheumatoid factor for rheumatoid arthritis. Ann Int Med 2007; 146: 797–808.
- 26 Perez ML, Gomara MJ, Ercilla G, Sanmarti R, Haro I. Antibodies to citrullinated human fibrinogen synthetic peptides in diagnosing rheumatoid arthritis. J Med Chem 2007; 50: 3573–3584.
- 27 Despres N, Boire G, Lopez-Longo FJ, Menard HA. The Sa system: a novel antigen-antibody system specific for rheumatoid arthritis. J Rheumatol 1994; 21: 1027–1033.
- 28 Hayem G, et al. Anti-Sa antibody is an accurate diagnostic and prognostic marker in adult rheumatoid arthritis. J Rheumatol 1999; 26: 7–13.
- 29 Vossenaar ER, et al. Expression and activity of citrullinating peptidylarginine deiminase enzymes in monocytes and macrophages. Ann Rheum Dis 2004; 63: 373–381.
- 30 Asaga H, Yamada M, Senshu T. Selective deimination of vimentin in calcium ionophore-induced apoptosis of mouse peritoneal macrophages. Biochem Biophys Res Commun 1998; 243: 641–646.
- 31 Moisan E, Girard D. Cell surface expression of intermediate filament proteins vimentin and lamin B1 in human neutrophil spontaneous apoptosis. J Leukoc Biol 2006; 79: 489–498.
- 32 Mor-Vaknin N, Punturieri A, Sitwala K, Markovitz DM. Vimentin is secreted by activated macrophages. Nat Cell Biol 2003; 5: 59–63.
- 33 Bang H, et al. Mutation and citrullination modifies vimentin to a novel autoantigen for rheumatoid arthritis. Arthritis Rheum 2007; 56: 2503–2511.
- 34 Mathsson L, et al. Antibodies against citrullinated vimentin in rheumatoid arthritis: higher sensitivity and extended prognostic value concerning future radiographic progression as compared with antibodies against cyclic citrullinated peptides. Arthritis Rheum 2008; 58: 36–45.
- 35 Ursum J, et al. Antibodies to mutated citrullinated vimentin and disease activity score in early arthritis: a cohort study. Arthritis Res Ther 2008; 10: R12.
- 36 Soos L, et al. Clinical evaluation of anti-mutated citrullinated vimentin by ELISA in rheumatoid arthritis. J Rheumatol 2007; 34: 1658–1663.
- 37 Aho K, Palosuo T, Heliovaara M, Knekt P, Alha P, Von Essen R. Antifilaggrin antibodies within “normal” range predict rheumatoid arthritis in a linear fashion. J Rheumatol 2000; 27: 2743–2746.
- 38 Kurki P, Aho K, Palosuo T, Heliovaara M. Immunopathology of rheumatoid arthritis. Antikeratin antibodies precede the clinical disease. Arthritis Rheum 1992; 35: 914–917.
- 39 Rantapaa-Dahlqvist S, et al. Antibodies against cyclic citrullinated peptide and IgA rheumatoid factor predict the development of rheumatoid arthritis. Arthritis Rheum 2003; 48: 2741–2749.
- 40 Nielen MM, et al. Specific autoantibodies precede the symptoms of rheumatoid arthritis: a study of serial measurements in blood donors. Arthritis Rheum 2004; 50: 380–386.
- 41 Vossenaar ER, Zendman AJ, Van Venrooij WJ, Pruijn GJ. PAD, a growing family of citrullinating enzymes: genes, features and involvement in disease. BioEssays 2003; 25: 1106–1118.
- 42 Foulquier C, et al. Peptidyl arginine deiminase type 2 (PAD-2) and PAD-4 but not PAD-1, PAD-3, and PAD-6 are expressed in rheumatoid arthritis synovium in close association with tissue inflammation. Arthritis Rheum 2007; 56: 3541–3553.
- 43 Asaga H, Nakashima K, Senshu T, Ishigami A, Yamada M. Immunocytochemical localization of peptidylarginine deiminase in human eosinophils and neutrophils. J Leukoc Biol 2001; 70: 46–51.
- 44 Nakashima K, Hagiwara T, Yamada M. Nuclear localization of peptidylarginine deiminase V and histone deimination in granulocytes. J Biol Chem 2002; 277: 49562–49568.
- 45 Chavanas S, et al. Comparative analysis of the mouse and human peptidylarginine deiminase gene clusters reveals highly conserved non-coding segments and a new human gene, PADI6. Gene 2004; 330: 19–27.
- 46 Wright PW, et al. ePAD, an oocyte and early embryo-abundant peptidylarginine deiminase-like protein that localizes to egg cytoplasmic sheets. Dev Biol 2003; 256: 73–88.
- 47 Senshu T, Kan S, Ogawa H, Manabe M, Asaga H. Preferential deimination of keratin K1 and filaggrin during the terminal differentiation of human epidermis. Biochem Biophys Res Commun 1996; 225: 712–719.
- 48 Pritzker LB, Nguyen TA, Moscarello MA. The developmental expression and activity of peptidylarginine deiminase in the mouse. Neurosci Lett 1999; 266: 161–164.
- 49 Esposito G, et al. Peptidylarginine deiminase (PAD) 6 is essential for oocyte cytoskeletal sheet formation and female fertility. Mol Cell Endocrinol 2007; 273: 25–31.
- 50 Rogers G, Winter B, McLaughlan C, Powell B, Nesci T. Peptidylarginine deiminase of the hair follicle: characterization, localization, and function in keratinizing tissues. J Invest Dermatol 1997; 108: 700–707.
- 51 Neeli I, Khan SN, Radic M. Histone deimination as a response to inflammatory stimuli in neutrophils. J Immunol 2008; 180: 1895–1902.
- 52 Wang Y, et al. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J Cell Biol 2009; 184: 205–213.
- 53 Cobb BA, Wang Q, Tzianabos AO, Kasper DL. Polysaccharide processing and presentation by the MHCII pathway. Cell 2004; 117: 677–687.
- 54 Raijmakers R, et al. Methylation of arginine residues interferes with citrullination by peptidylarginine deiminases in vitro. J Mol Biol 2007; 367: 1118–1129.
- 55 Nakayama-Hamada M, et al. Comparison of enzymatic properties between hPADI2 and hPADI4. Biochem Biophys Res Commun 2005; 327: 192–200.
- 56 Arita K, Hashimoto H, Shimizu T, Nakashima K, Yamada M, Sato M. Structural basis for Ca(2+)-induced activation of human PAD4. Nat Struct Mol Biol 2004; 11: 777–783.
- 57 Arita K, Shimizu T, Hashimoto H, Hidaka Y, Yamada M, Sato M. Structural basis for histone N-terminal recognition by human peptidylarginine deiminase 4. Proc Natl Acad Sci USA 2006; 103: 5291–5296.
- 58 Lewis RS. Calcium signaling mechanisms in T lymphocytes. Annu Rev Immunol 2001; 19: 497–521.
- 59 Kearney PL, et al. Kinetic characterization of protein arginine deiminase 4: a transcriptional corepressor implicated in the onset and progression of rheumatoid arthritis. Biochemistry 2005; 44: 10570–10582.
- 60 Stensland ME, Pollmann S, Molberg O, Sollid LM, Fleckenstein B. Primary sequence, together with other factors, influence peptide deimination by peptidylarginine deiminase-4. Biol Chem 2009; 390: 99–107.
- 61 Schwab BL, et al. Cleavage of plasma membrane calcium pumps by caspases: a link between apoptosis and necrosis. Cell Death Differ 2002; 9: 818–831.
- 62 Wood DD, et al. Myelin localization of peptidylarginine deiminases 2 and 4: comparison of PAD2 and PAD4 activities. Lab Invest 2008; 88: 354–364.
- 63 Proost P, et al. Citrullination of CXCL8 by peptidylarginine deiminase alters receptor usage, prevents proteolysis, and dampens tissue inflammation. J Exp Med 2008; 205: 2085–2097.
- 64 Struyf S, et al. Citrullination of CXCL12 differentially reduces CXCR4 and CXCR7 binding with loss of inflammatory and anti-HIV-1 activity via CXCR4. J Immunol 2009; 182: 666–674.
- 65 Loos T, et al. Citrullination of CXCL10 and CXCL11 by peptidylarginine deiminase: a naturally occurring posttranslational modification of chemokines and new dimension of immunoregulation. Blood 2008; 112: 2648–2656.
- 66 Stim J, Shaykh M, Anwar F, Ansari A, Arruda JA, Dunea G. Factors determining hemoglobin carbamylation in renal failure. Kidney Int 1995; 48: 1605–1610.
- 67 Wang Z, et al. Protein carbamylation links inflammation, smoking, uremia and atherogenesis. Nat Med 2007; 13: 1176–1184.
- 68 Tarkowski A, Klareskog L, Carlsten H, Herberts P, Koopman WJ. Secretion of antibodies to types I and II collagen by synovial tissue cells in patients with rheumatoid arthritis. Arthritis Rheum 1989; 32: 1087–1092.
- 69 Terato K, et al. Specificity of antibodies to type II collagen in rheumatoid arthritis. Arthritis Rheum 1990; 33: 1493–1500.
- 70 Cook AD, Gray R, Ramshaw J, Mackay IR, Rowley MJ. Antibodies against the CB10 fragment of type II collagen in rheumatoid arthritis. Arthritis Res Ther 2004; 6: R477–R483.
- 71 Cook AD, Rowley MJ, Mackay IR, Gough A, Emery P. Antibodies to type II collagen in early rheumatoid arthritis. Correlation with disease progression. Arthritis Rheum 1996; 39: 1720–1727.
- 72
Kraetsch HG, et al.
Cartilage-specific autoimmunity in rheumatoid arthritis: characterization of a triple helical B cell epitope in the integrin- binding-domain of collagen type II.
Eur J Immunol
2001; 31: 1666–1673.
10.1002/1521-4141(200106)31:6<1666::AID-IMMU1666>3.0.CO;2-T CAS PubMed Web of Science® Google Scholar
- 73 Burkhardt H, et al. Epitope-specific recognition of type II collagen by rheumatoid arthritis antibodies is shared with recognition by antibodies that are arthritogenic in collagen-induced arthritis in the mouse. Arthritis Rheum 2002; 46: 2339–2348.
- 74 Nandakumar KS, et al. Arthritogenic antibodies specific for a major type II collagen triple-helical epitope bind and destabilize cartilage independent of inflammation. Arthritis Rheum 2008; 58: 184–196.
- 75 Cook AD, et al. Antibodies to type II collagen and HLA disease susceptibility markers in rheumatoid arthritis. Arthritis Rheum 1999; 42: 2569–2576.
- 76 Engvall E, Rouslahti E, Miller EJ. Affinity of fibronectin to collagens of different genetic types and to fibirnogen. J Exp Med 1978; 148: 1584–1595.
- 77 Bajtner E, Nandakumar KS, Engström Å, Holmdahl R. Chronic development of collagen-induced arthritis is associated with arthritogenic antibodies against specific epitopes on type II collagen. Arthritis Res Ther 2005; 7: R1148–R1157.
- 78 Mo JA, Scheynius A, Nilsson S, Holmdahl R. Germline-encoded IgG antibodies bind mouse cartilage in vivo: epitope- and idiotype-specific binding and inhibition. Scand J Immunol 1994; 39: 122–130.
- 79 Mo JA, Bona CA, Holmdahl R. Variable region gene selection of immunoglobulin G-expressing B cells with specificity for a defined epitope on type II collagen. Eur J Immunol 1993; 23: 2503–2510.
- 80 Holmdahl R, Andersson M, Jansson L. A method for the analysis of a large number of specific and multispecific B cell hybridomas derived from primary immunized lymph nodes. Hybridoma 1987; 6: 197–204.
- 81 Holmdahl R, et al. Origin of the autoreactive anti type II collagen response. II. Specificities, isotypes and usage of V gene families of anti type II collagen autoantibodies. J Immunol 1989; 142: 881–886.
- 82 Wernhoff P, Unger C, Bajtner E, Burkhardt H, Holmdahl R. Identification of conformation-dependent epitopes and V gene selection in the B cell response to type II collagen in the DA rat. Int Immunol 2001; 13: 909–919.
- 83 Schulte S, et al. Arthritis-related B cell epitopes in collagen II are conformation- dependent and sterically privileged in accessible sites of cartilage collagen fibrils. J Biol Chem 1998; 273: 1551–1561.
- 84 Holmdahl R, Rubin K, Klareskog L, Larsson E, Wigzell H. Characterization of the antibody response in mice with type II collagen-induced arthritis, using monoclonal anti-type II collagen antibodies. Arthritis Rheum 1986; 29: 400–410.
- 85 Burkhardt H, et al. Association between protein tyrosine phosphatase 22 variant R620W in conjunction with the HLA-DRB1 shared epitope and humoral autoimmunity to an immunodominant epitope of cartilage-specific type II collagen in early rheumatoid arthritis. Arthritis Rheum 2006; 54: 82–89.
- 86 Yamada H, Dzhambazov B, Bockermann R, Blom T, Holmdahl R. A transient post-translationally modified form of cartilage type II collagen is ignored by self-reactive T cells. J Immunol 2004; 173: 4729–4735.
- 87 Dzhambazov B, et al. The major T cell epitope on type II collagen is glycosylated in normal cartilage but modified by arthritis in both rats and humans. Eur J Immunol 2005; 35: 357–366.
- 88 Slatter DA, Paul RG, Murray M, Bailey AJ. Reactions of lipid-derived malondialdehyde with collagen. J Biol Chem 1999; 274: 19661–19669.
- 89 Daumer KM, Khan AU, Steinbeck MJ. Chlorination of pyridinium compounds. Possible role of hypochlorite, N- chloramines, and chlorine in the oxidation of pyridinoline cross-links of articular cartilage collagen type II during acute inflammation. J Biol Chem 2000; 275: 34681–34692.
- 90 Uysal H, et al. Structure and pathogenicity of antibodies specific for citrullinated collagen type II in experimental arthritis. J Exp Med 2009; 206: 449–462.
- 91 Klareskog L, Johnell O, Hulth A, Holmdahl R, Rubin K. Reactivity of monoclonal anti-type II collagen antibodies with cartilage and synovial tissue in rheumatoid arthritis and osteoarthritis. Arthritis Rheum 1986; 29: 730–738.
- 92 Tsark EC, Wang W, Teng YC, Arkfeld D, Dodge GR, Kovats S. Differential MHC class II-mediated presentation of rheumatoid arthritis autoantigens by human dendritic cells and macrophages. J Immunol 2002; 169: 6625–6633.
- 93 Holmdahl R, Mo JA, Jonsson R, Karlström K, Scheynius A. Multiple epitopes on cartilage type II collagen are accessible for antibody binding in vivo. Autoimmunity 1991; 10: 27–34.
- 94 Boiers U, Lanig H, Sehnert B, Holmdahl R, Burkhardt H. Collagen type II is recognized by a pathogenic antibody through germline encoded structures. Eur J Immunol 2008; 38: 2784–2795.
- 95 Vossenaar ER, et al. Citrullination of synovial proteins in murine models of rheumatoid arthritis. Arthritis Rheum 2003; 48: 2489–2500.
- 96 Kuhn KA, et al. Antibodies against citrullinated proteins enhance tissue injury in experimental autoimmune arthritis. J Clin Invest 2006; 116: 961–973.
- 97 Kidd BA, et al. Epitope spreading to citrullinated antigens in mouse models of autoimmune arthritis and demyelination. Arthritis Res Ther 2008; 10: R119.
- 98 Nicholas AP, et al. Immunohistochemical localization of citrullinated proteins in adult rat brain. J Comp Neurol 2003; 459: 251–266.
- 99 Johannesson M, et al. Identification of epistasis through a partial advanced intercross reveals three arthritis loci within the Cia5 QTL in mice. Genes Immun 2005; 6: 175–185.
- 100 Moscarello MA, Wood DD, Ackerley C, Boulias C. Myelin in multiple-sclerosis is developmentally immature. J Clin Invest 1994; 94: 146–154.
- 101 Raijmakers R, Vogelzangs J, Croxford JL, Wesseling P, Van Venrooij WJ, Pruijn GJM. Citrullination of central nervous system proteins during the development of experimental autoimmune encephalomyelitis. J Comp Neurol 2005; 486: 243–253.
- 102
Ishigami A, et al.
Abnormal accumulation of citrullinated proteins catalyzed by peptidylarginine deiminase in hippocampal extracts from patients with Alzheimer’s disease.
J Neurosci Res
2005; 80: 120–128.
10.1002/jnr.20431 Google Scholar
- 103 Chapuy-Regaud S, et al. Fibrin deimination in synovial tissue is not specific for rheumatoid arthritis but commonly occurs during synovitides. J Immunol 2005; 174: 5057–5064.
- 104 Makrygiannakis D, et al. Citrullination is an inflammation-dependent process. Ann Rheum Dis 2006; 65: 1219–1222.
- 105 Suzuki A, et al. Functional haplotypes of PADI4, encoding citrullinating enzyme peptidylarginine deiminase 4, are associated with rheumatoid arthritis. Nat Genet 2003; 34: 395–402.
- 106 Kang CP, Lee HS, Ju H, Cho H, Kang C, Bae SC. A functional haplotype of the PADI4 gene associated with increased rheumatoid arthritis susceptibility in Koreans. Arthritis Rheum 2006; 54: 90–96.
- 107 Barton A, et al. A functional haplotype of the PADI4 gene associated with rheumatoid arthritis in a Japanese population is not associated in a United Kingdom population. Arthritis Rheum 2004; 50: 1117–1121.
- 108 Caponi L, et al. A family based study shows no association between rheumatoid arthritis and the PADI4 gene in a white French population. Ann Rheum Dis 2005; 64: 587–593.
- 109 Martinez A, et al. PADI4 polymorphisms are not associated with rheumatoid arthritis in the Spanish population. Rheumatology (Oxford) 2005; 44: 1263–1266.
- 110 Hoppe B, et al. Influence of peptidylarginine deiminase type 4 genotype and shared epitope on clinical characteristics and autoantibody profile of rheumatoid arthritis. Ann Rheum Dis 2009; 68: 898–903.
- 111 Huffmeier U, Boiers U, Lascorz J, Reis A, Burkhardt H. Loss-of-function mutations in the filaggrin gene: no contribution to disease susceptibility, but to autoantibody formation against citrullinated peptides in early rheumatoid arthritis. Ann Rheum Dis 2008; 67: 131–133.
- 112 Van Gaalen FA, et al. Association between HLA class II genes and autoantibodies to cyclic citrullinated peptides (CCPs) influences the severity of rheumatoid arthritis. Arthritis Rheum 2004; 50: 2113–2121.
- 113 Irigoyen P, et al. Regulation of anti-cyclic citrullinated peptide antibodies in rheumatoid arthritis: contrasting effects of HLA-DR3 and the shared epitope alleles. Arthritis Rheum 2005; 52: 3813–3818.
- 114 Huizinga TW, et al. Refining the complex rheumatoid arthritis phenotype based on specificity of the HLA-DRB1 shared epitope for antibodies to citrullinated proteins. Arthritis Rheum 2005; 52: 3433–3438.
- 115 Van Der Helm-van Mil AH, Verpoort KN, Breedveld FC, Huizinga TW, Toes RE, De Vries RR. The HLA-DRB1 shared epitope alleles are primarily a risk factor for anti-cyclic citrullinated peptide antibodies and are not an independent risk factor for development of rheumatoid arthritis. Arthritis Rheum 2006; 54: 1117–1121.
- 116 Van Der Helm-van Mil AH, Verpoort KN, Le Cessie S, Huizinga TW, De Vries RR, Toes RE. The HLA-DRB1 shared epitope alleles differ in the interaction with smoking and predisposition to antibodies to cyclic citrullinated peptide. Arthritis Rheum 2007; 56: 425–432.
- 117 Klareskog L, et al. A new model for an etiology of rheumatoid arthritis: smoking may trigger HLA-DR (shared epitope)-restricted immune reactions to autoantigens modified by citrullination. Arthritis Rheum 2006; 54: 38–46.
- 118 Rantapaa-Dahlqvist S, Boman K, Tarkowski A, Hallmans G. Up regulation of monocyte chemoattractant protein-1 expression in anti-citrulline antibody and immunoglobulin M rheumatoid factor positive subjects precedes onset of inflammatory response and development of overt rheumatoid arthritis. Ann Rheum Dis 2007; 66: 121–123.
- 119 Johansson M, Arlestig L, Hallmans G, Rantapaa-Dahlqvist S. PTPN22 polymorphism and anti-cyclic citrullinated peptide antibodies in combination strongly predicts future onset of rheumatoid arthritis and has a specificity of 100% for the disease. Arthritis Res Ther 2006; 8: R19.
- 120 Kokkonen H, Johansson M, Innala L, Jidell E, Rantapaa-Dahlqvist S. The PTPN22 1858C/T polymorphism is associated with anti-cyclic citrullinated peptide antibody-positive early rheumatoid arthritis in northern Sweden. Arthritis Res Ther 2007; 9: R56.
- 121 Plenge RM, et al. Two independent alleles at 6q23 associated with risk of rheumatoid arthritis. Nat Genet 2007; 39: 1477–1482.
- 122 Plenge RM, et al. Replication of putative candidate-gene associations with rheumatoid arthritis in >4,000 samples from North America and Sweden: association of susceptibility with PTPN22, CTLA4, and PADI4. Am J Hum Genet 2005; 77: 1044–1060.
- 123 Kallberg H, et al. Gene-gene and gene-environment interactions involving HLA-DRB1, PTPN22, and smoking in two subsets of rheumatoid arthritis. Am J Hum Genet 2007; 80: 867–875.
- 124 Verpoort KN, Van Dongen H, Allaart CF, Toes RE, Breedveld FC, Huizinga TW. Undifferentiated arthritis--disease course assessed in several inception cohorts. Clin Exp Rheumatol 2004; 22: S12–S17.
- 125 Meyer O, et al. Anticitrullinated protein/peptide antibody assays in early rheumatoid arthritis for predicting five year radiographic damage. Ann Rheum Dis 2003; 62: 120–126.
- 126 Kroot EJ, et al. The prognostic value of anti-cyclic citrullinated peptide antibody in patients with recent-onset rheumatoid arthritis. Arthritis Rheum 2000; 43: 1831–1835.
- 127 Rönnelid J, et al. Longitudinal analysis of citrullinated protein/peptide antibodies (anti-CP) during 5 year follow up in early rheumatoid arthritis: anti-CP status predicts worse disease activity and greater radiological progression. Ann Rheum Dis 2005; 64: 1744–1749.
- 128 Pedersen M, et al. Strong combined gene-environment effects in anti-cyclic citrullinated peptide-positive rheumatoid arthritis: a nationwide case-control study in Denmark. Arthritis Rheum 2007; 56: 1446–1453.
- 129 Katz J, Goultschin J, Benoliel R, Brautbar C. Human leukocyte antigen (HLA) DR4. Positive association with rapidly progressing periodontitis. J Periodontol 1987; 58: 607–610.
- 130 Marotte H, Farge P, Gaudin P, Alexandre C, Mougin B, Miossec P. The association between periodontal disease and joint destruction in rheumatoid arthritis extends the link between the HLA-DR shared epitope and severity of bone destruction. Ann Rheum Dis 2006; 65: 905–909.
- 131 Klareskog L, Ronnelid J, Lundberg K, Padyukov L, Alfredsson L. Immunity to citrullinated proteins in rheumatoid arthritis. Annu Rev Immunol 2008; 26: 651–675.
- 132 Hill JA, et al. Arthritis induced by posttranslationally modified (citrullinated) fibrinogen in DR4-IE transgenic mice. J Exp Med 2008; 204: 967–979.
- 133 Hill JA, Southwood S, Sette A, Jevnikar AM, Bell DA, Cairns E. Cutting edge: the conversion of arginine to citrulline allows for a high-affinity peptide interaction with the rheumatoid arthritis-associated HLA-DRB1*0401 MHC class II molecule. J Immunol 2003; 171: 538–541.
- 134 Molberg O, et al. Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut-derived T cells in celiac disease. Nature Med 1998; 4: 713–717.
- 135 Choi EKK, Gatenby PA, McGill NW, Bateman JF, Cole WG, York JR. Autoantibodies to type II collagen: occurrence in rheumatoid arthritis, other arthritides, autoimmune connective tissue diseases, and chronic inflammatory syndromes. Ann Rheum Dis 1988; 47: 313–322.
- 136 Nandakumar KS, Svensson L, Holmdahl R. Collagen type II specific monoclonal antibody induced arthritis (CAIA) in mice. Description of the disease and the influence of age, sex, and genes. Am J Pathol 2003; 163: 1827–1837.
- 137 Bäcklund J, et al. Predominant selection of T cells specific for glycosylated collagen type II peptide (263-270) in humanized transgenic mice and in rheumatoid arthritis. Proc Natl Acad Sci USA 2002; 99: 9960–9965.
- 138 Rowley MJ, Nandakumar KS, Holmdahl R. The role of collagen antibodies in mediating arthritis. Mod Rheumatol 2008; 18: 429–441.
- 139 Flick MJ, et al. Fibrin(ogen) exacerbates inflammatory joint disease through a mechanism linked to the integrin alphaMbeta2 binding motif. J Clin Invest 2007; 117: 3224–3235.
- 140 Lundberg K, et al. Citrullinated proteins have increased immunogenicity and arthritogenicity and their presence in arthritic joints correlates with disease severity. Arthritis Res Ther 2005; 7: R458–R467.
- 141 Duplan V, et al. In the rat, citrullinated autologous fibrinogen is immunogenic but the induced autoimmune response is not arthritogenic. Clin Exp Immunol 2006; 145: 502–512.
- 142 Rubin B, Sonderstrup G. Citrullination of self-proteins and autoimmunity. Scand J Immunol 2004; 60: 112–120.
- 143 Terato K, Hasty KA, Reife RA, Cremer MA, Kang AH, Stuart JM. Induction of arthritis with monoclonal antibodies to collagen. J Immunol 1992; 148: 2103–2108.
- 144 Wooley PH, Luthra HS, Huse AR, Stuart JM, David CS. Passive transfer of arthritis to mice by injection of human anti-type II collagen antibody. Mayo Clinic Proc 1984; 59: 737–743.
- 145 Petkova SB, Konstantinov KN, Sproule TJ, Lyons BL, Awwami MA, Roopenian DC. Human antibodies induce arthritis in mice deficient in the low-affinity inhibitory IgG receptor Fc gamma RIIB. J Exp Med 2006; 203: 275–280.
- 146 Stuart JM, Dixon FJ. Serum transfer of collagen induced arthritis in mice. J Exp Med 1983; 158: 378–392.
- 147 Holmdahl R, Jansson L, Larsson A, Jonsson R. Arthritis in DBA/1 mice induced with passively transferred type II collagen immune serum. Immunohistopathology and serum levels of anti-type II collagen auto-antibodies. Scand J Immunol 1990; 31: 147–157.
- 148 Stuart JM, Cremer MA, Townes AS, Kang AH. Type II collagen induced arthritis in rats. Passive transfer with serum and evidence that IgG anticollagen antibodies can cause arthritis. J Exp Med 1982; 155: 1–16.
- 149 Nandakumar KS, et al. Induction of arthritis by single monoclonal IgG anti-collagen type II antibodies and enhancement of arthritis in mice lacking inhibitory FcgammaRIIB. Eur J Immunol 2003; 33: 2269–2277.
- 150 Nandakumar KS, Holmdahl R. Efficient promotion of collagen antibody induced arthritis (CAIA) using four monoclonal antibodies specific for the major epitopes recognized in both collagen induced arthritis and rheumatoid arthritis. J Immunol Methods 2005; 304: 126–136.
- 151 Nandakumar KS, Bäcklund J, Vestberg M, Holmdahl R. Collagen type II (CII)-specific antibodies induce arthritis in the absence of T or B cells but the arthritis progression is enhanced by CII-reactive T cells. Arthritis Res Ther 2004; 6: R544–R550.
- 152 Kagari T, Doi H, Shimozato T. The importance of IL-1 beta and TNF-alpha, and the noninvolvement of IL-6, in the development of monoclonal antibody-induced arthritis. J Immunol 2002; 169: 1459–1466.
- 153 Nandakumar KS, Johansson B, Björck L, Holmdahl R. Blocking of experimental arthritis by cleavage of IgG antibodies in vivo. Arthritis Rheum 2007; 56: 3253–3260.
- 154 Adkison AM, Raptis SZ, Kelley DG, Pham CT. Dipeptidyl peptidase I activates neutrophil-derived serine proteases and regulates the development of acute experimental arthritis. J Clin Invest 2002; 109: 363–371.
- 155 Mullazehi M, Mathsson L, Lampa J, Ronnelid J. Surface-bound anti-type II collagen-containing immune complexes induce production of tumor necrosis factor alpha, interleukin-1beta, and interleukin-8 from peripheral blood monocytes via Fc gamma receptor IIA: a potential pathophysiologic mechanism for humoral anti-type II collagen immunity in arthritis. Arthritis Rheum 2006; 54: 1759–1771.
- 156 Mullazehi M, Mathsson L, Lampa J, Ronnelid J. High anti-collagen type-II antibody levels and induction of proinflammatory cytokines by anti-collagen antibody-containing immune complexes in vitro characterise a distinct rheumatoid arthritis phenotype associated with acute inflammation at the time of disease onset. Ann Rheum Dis 2007; 66: 537–541.
- 157 Watson WC, Townes AS. Genetic susceptibility to murine collagen II autoimmune arthritis. Proposed relationship to the IgG2 autoantibody subclass response, complement C5, major histocompatibility complex (MHC) and non-MHC loci. J Exp Med 1985; 162: 1878–1891.
- 158 Wang Y, Rollins SA, Madri JA, Matis LA. Anti-C5 monoclonal antibody therapy prevents collagen-induced arthritis and ameliorates established disease. Proc Natl Acad Sci USA 1995; 92: 8955–8959.
- 159 Wang Y, Kristan J, Hao L, Lenkoski CS, Shen Y, Matis LA. A role for complement in antibody-mediated inflammation: C5-deficient DBA/1 mice are resistant to collagen-induced arthritis. J Immunol 2000; 164: 4340–4347.
- 160
Johansson ÅCM, et al.
Genetic control of collagen-induced arthritis in a cross with NOD and C57BL/10 mice is dependent on gene regions encoding complement factor 5 and FcgammaRIIb and is not associated with loci controlling diabetes.
Eur J Immunol
2001; 31: 1847–1856.
10.1002/1521-4141(200106)31:6<1847::AID-IMMU1847>3.0.CO;2-F CAS PubMed Web of Science® Google Scholar
- 161 Hietala MA, Jonsson IM, Tarkowski A, Kleinau S, Pekna M. Complement deficiency ameliorates collagen-induced arthritis in mice. J Immunol 2002; 169: 454–459.
- 162 Banda NK, et al. Mechanisms of effects of complement inhibition in murine collagen-induced arthritis. Arthritis Rheum 2002; 46: 3065–3075.
- 163 Morgan K, Clague RB, Shaw MJ, Firth SA, Twose TM, Holt PJL. Native type II collagen-induced arthritis in the rat. The effect of complement depletion by cobra venom factor. Arthritis Rheum 1981; 24: 1356–1362.
- 164 Goodfellow RM, Williams AS, Levin JL, Williams BD, Morgan BP. Soluble complement receptor one (sCR1) inhibits the development and progression of rat collagen-induced arthritis. Clin Exp Immunol 2000; 119: 210–216.
- 165 Banda NK, Kraus DM, Muggli M, Bendele A, Holers VM, Arend WP. Prevention of collagen-induced arthritis in mice transgenic for the complement inhibitor complement receptor 1-related gene/protein y. J Immunol 2003; 171: 2109–2115.
- 166
Mizuno M, et al.
Membrane complement regulators protect against the development of type II collagen-induced arthritis in rats.
Arthritis Rheum
2001; 44: 2425–2434.
10.1002/1529-0131(200110)44:10<2425::AID-ART407>3.0.CO;2-4 CAS PubMed Web of Science® Google Scholar
- 167 Banda NK, et al. Alternative complement pathway activation is essential for inflammation and joint destruction in the passive transfer model of collagen-induced arthritis. J Immunol 2006; 177: 1904–1912.
- 168 Banda NK, Takahashi K, Wood AK, Holers VM, Arend WP. Pathogenic complement activation in collagen antibody-induced arthritis in mice requires amplification by the alternative pathway. J Immunol 2007; 179: 4101–4109.
- 169 Banda NK, et al. Initiation of the alternative pathway of murine complement by immune complexes is dependent on N-glycans in IgG antibodies. Arthritis Rheum 2008; 58: 3081–3089.
- 170 Hietala MA, Nandakumar KS, Persson L, Fahlen S, Holmdahl R, Pekna M. Complement activation by both classical and alternative pathways is critical for the effector phase of arthritis. Eur J Immunol 2004; 34: 1208–1216.
- 171 Kagari T, Tanaka D, Doi H, Shimozato T. Essential role of Fc gamma receptors in anti-type II collagen antibody-induced arthritis. J Immunol 2003; 170: 4318–4324.
- 172 Amirahmadi SF, et al. An arthritogenic monoclonal antibody to type II collagen, CII-C1, impairs cartilage formation by cultured chondrocytes. Immunol Cell Biol 2004; 82: 427–434.
- 173 Gray RE, Seng N, Mackay IR, Rowley MJ. Measurement of antibodies to collagen II by inhibition of collagen fibril formation in vitro. J Immunol Methods 2004; 285: 55–61.
- 174 Amirahmadi SF, et al. Arthritogenic anti-type II collagen antibodies are pathogenic for cartilage-derived chondrocytes independent of inflammatory cells. Arthritis Rheum 2005; 52: 1897–1906.
- 175 Crombie DE, et al. Destructive effects of murine arthritogenic antibodies to type II collagen on cartilage explants in vitro. Arthritis Res Ther 2005; 7: R927–R937.
- 176 Nandakumar KS, Holmdahl R. Collagen antibody induced arthritis. Methods Mol Med 2007; 136: 215–223.
- 177 Malmström V, Michaëlsson E, Burkhardt H, Mattsson R, Vuorio E, Holmdahl R. Systemic versus cartilage-specific expression of a type II collagen-specific T-cell epitope determines the level of tolerance and susceptibility to arthritis. Proc Natl Acad Sci USA 1996; 93: 4480–4485.
- 178 Michaëlsson E, Malmström V, Reis S, Burkhardt H, Engström Å, Holmdahl R. T cell recognition of carbohydrates on type II collagen. J Exp Med 1994; 30: 745–749.
- 179 Olofsson P, Holmberg J, Tordsson J, Lu S, Åkerström B, Holmdahl R. Positional identification of Ncf1 as a gene that regulates arthritis severity in rats. Nat Genet 2003; 33: 25–32.
- 180 Hagenow K, et al. Ncf1-associated reduced oxidative burst promotes IL-33R+ T cell mediated adjuvant-free arthritis in mice. J Immunol 2009; 183: 874–881.
- 181 Hultqvist M, Backlund J, Bauer K, Gelderman KA, Holmdahl R. Lack of reactive oxygen species breaks T cell tolerance to collagen type II and allows development of arthritis in mice. J Immunol 2007; 179: 1431–1437.
- 182 Padyukov L, Silva C, Stolt P, Alfredsson L, Klareskog L. A gene-environment interaction between smoking and shared epitope genes in HLA-DR provides a high risk of seropositive rheumatoid arthritis. Arthritis Rheum 2004; 50: 3085–3092.
- 183 Gelderman KA, Hultqvist M, Holmberg J, Olofsson P, Holmdahl R. T cell surface redox levels determine T cell reactivity and arthritis susceptibility. Proc Natl Acad Sci USA 2006; 103: 12831–12836.
- 184 Vassilopoulos D, Calabrese LH. Virally associated arthritis 2008: clinical, epidemiologic, and pathophysiologic considerations. Arthritis Res Ther 2008; 10: 215.
- 185 Rosenstein ED, Greenwald RA, Kushner LJ, Weissmann G. Hypothesis: the humoral immune response to oral bacteria provides a stimulus for the development of rheumatoid arthritis. Inflammation 2004; 28: 311–318.
- 186 Travis J, Pike R, Imamura T, Potempa J. Porphyromonas gingivalis proteinases as virulence factors in the development of periodontitis. J Periodontal Res 1997; 32: 120–125.
- 187 Mikuls TR, et al. Antibody responses to Porphyromonas gingivalis (P. gingivalis) in subjects with rheumatoid arthritis and periodontitis. Int Immunopharmacol 2009; 9: 38–42.
- 188 Shi J, Sun X, Zhao Y, Zhao J, Li Z. Prevalence and significance of antibodies to citrullinated human papilloma virus-47 E2345-362 in rheumatoid arthritis. J Autoimmun 2008; 31: 131–135.
- 189 McCluskey J, et al. Determinant spreading: lessons from animal models and human disease. Immunol Rev 1998; 164: 209–229.
- 190 Holmberg J, Tuncel J, Yamada H, Lu S, Olofsson P, Holmdahl R. Pristane, a non-antigenic adjuvant, induces MHC class II-restricted, arthritogenic T cells in the rat. J Immunol 2006; 176: 1172–1179.
- 191 Hoffmann MH, et al. The rheumatoid arthritis-associated autoantigen hnRNP-A2 (RA33) is a major stimulator of autoimmunity in rats with pristane-induced arthritis. J Immunol 2007; 179: 7568–7576.
- 192 Wernhoff P, Olofsson P, Holmdahl R. The genetic control of rheumatoid factor production in a rat model for rheumatoid arthritis. Arthritis Rheum 2003; 48: 3584–3596.
- 193 Rintisch C, Ameri J, Olofsson P, Luthman H, Holmdahl R. Positional cloning of the Igl genes controlling rheumatoid factor production and allergic bronchitis in rats. Proc Natl Acad Sci USA 2008; 105: 14005–14010.
- 194 Sakaguchi N, et al. Altered thymic T-cell selection due to a mutation of the ZAP-70 gene causes autoimmune arthritis in mice. Nature 2003; 426: 454–460.
- 195 Andersson EC, et al. Definition of MHC and T cell receptor contacts in the HLA-DR4 restricted immunodominant epitope in type II collagen and characterization of collagen-induced arthritis in HLA-DR4 and human CD4 transgenic mice. Proc Natl Acad Sci USA 1998; 95: 7574–7579.
- 196 Leandro MJ, Cambridge G, Ehrenstein MR, Edwards JC. Reconstitution of peripheral blood B cells after depletion with rituximab in patients with rheumatoid arthritis. Arthritis Rheum 2006; 54: 613–620.
- 197 Anolik JH, et al. Rituximab improves peripheral B cell abnormalities in human systemic lupus erythematosus. Arthritis Rheum 2004; 50: 3580–3590.
- 198 Szodoray P, et al. Apoptotic effect of rituximab on peripheral blood B cells in rheumatoid arthritis. Scand J Immunol 2004; 60: 209–218.
- 199 Thurlings RM, Vos K, Wijbrandts CA, Zwinderman AH, Gerlag DM, Tak PP. Synovial tissue response to rituximab: mechanism of action and identification of biomarkers of response. Ann Rheum Dis 2008; 67: 917–925.
- 200 Kavanaugh A, et al. Assessment of rituximab’s immunomodulatory synovial effects (ARISE trial). 1: clinical and synovial biomarker results. Ann Rheum Dis 2008; 67: 402–408.
- 201 Cambridge G, et al. Serologic changes following B lymphocyte depletion therapy for rheumatoid arthritis. Arthritis Rheum 2003; 48: 2146–2154.
- 202 Manz RA, Radbruch A. Plasma cells for a lifetime? Eur J Immunol 2002; 32: 923–927.
- 203 Alarcon-Segovia D, et al. LJP 394 for the prevention of renal flare in patients with systemic lupus erythematosus: results from a randomized, double-blind, placebo-controlled study. Arthritis Rheum 2003; 48: 442–454.
- 204 Alessandri C, et al. Decrease of anti-cyclic citrullinated peptide antibodies and rheumatoid factor following anti-TNFalpha therapy (infliximab) in rheumatoid arthritis is associated with clinical improvement. Ann Rheum Dis 2004; 63: 1218–1221.
- 205 Atzeni F, et al. Adalimumab clinical efficacy is associated with rheumatoid factor and anti-cyclic citrullinated peptide antibody titer reduction: a one-year prospective study. Arthritis Res Ther 2006; 8: R3.
- 206 Bobbio-Pallavicini F, Alpini C, Caporali R, Avalle S, Bugatti S, Montecucco C. Autoantibody profile in rheumatoid arthritis during long-term infliximab treatment. Arthritis Res Ther 2004; 6: R264–R272.
- 207 Smeets TJ, Kraan MC, Van Loon ME, Tak PP. Tumor necrosis factor alpha blockade reduces the synovial cell infiltrate early after initiation of treatment, but apparently not by induction of apoptosis in synovial tissue. Arthritis Rheum 2003; 48: 2155–2162.
- 208 Knuckley B, Luo Y, Thompson PR. Profiling protein arginine deiminase 4 (PAD4): a novel screen to identify PAD4 inhibitors. Bioorg Med Chem 2008; 16: 739–745.
- 209 Alano CC, Kauppinen TM, Valls AV, Swanson RA. Minocycline inhibits poly(ADP-ribose) polymerase-1 at nanomolar concentrations. Proc Natl Acad Sci USA 2006; 103: 9685–9690.
- 210 Luo Y, Knuckley B, Lee YH, Stallcup MR, Thompson PR. A fluoroacetamidine-based inactivator of protein arginine deiminase 4: design, synthesis, and in vitro and in vivo evaluation. J Am Chem Soc 2006; 128: 1092–1093.
- 211 Hagiwara T, Nakashima K, Hirano H, Senshu T, Yamada M. Deimination of arginine residues in nucleophosmin/B23 and histones in HL-60 granulocytes. Biochem Biophys Res Commun 2002; 290: 979–983.
- 212 Dzhambazov B, Nandakumar KS, Kihlberg J, Fugger L, Holmdahl R, Vestberg M. Therapeutic vaccination of active arthritis with a glycosylated collagen type II peptide in complex with MHC class II molecules. J Immunol 2006; 176: 1525–1533.
- 213 Myers LK, Sakurai Y, Rosloniec EF, Stuart JM, Kang AH. An analog peptide that suppresses collagen-induced arthritis. Am J Med Sci 2004; 327: 212–216.
- 214 Piaggio E, et al. Multimerized T cell epitopes protect from experimental autoimmune diabetes by inducing dominant tolerance. Proc Natl Acad Sci USA 2007; 104: 9393–9398.
- 215 Zamvil SS, Mitchell DJ, Moore AC, Kitamura K, Steinman L, Rothbard JB. T-cell epitope of the autoantigen myelin basic protein that induces encephalomyelitis. Nature 1986; 324: 258–260.
- 216
Corthay A, et al.
Epitope glycosylation plays a critical role for T cell recognition of type II collagen in collagen-induced arthritis.
Eur J Immunol
1998; 28: 2580–2590.
10.1002/(SICI)1521-4141(199808)28:08<2580::AID-IMMU2580>3.0.CO;2-X CAS PubMed Web of Science® Google Scholar
- 217 Brahms H, Raymackers J, Union A, De Keyser F, Meheus L, Luhrmann R. The C-terminal RG dipeptide repeats of the spliceosomal Sm proteins D1 and D3 contain symmetrical dimethylarginines, which form a major B-cell epitope for anti-Sm autoantibodies. J Biol Chem 2000; 275: 17122–17129.
- 218 Pritzker LB, Joshi S, Harauz G, Moscarello MA. Deimination of myelin basic protein. 2. Effect of methylation of MBP on its deimination by peptidylarginine deiminase. Biochemistry 2000; 39: 5382–5388.
- 219 Van Stipdonk MJ, et al. T cells discriminate between differentially phosphorylated forms of alphaB-crystallin, a major central nervous system myelin antigen. Int Immunol 1998; 10: 943–950.
- 220 Neugebauer KM, Merrill JT, Wener MH, Lahita RG, Roth MB. SR proteins are autoantigens in patients with systemic lupus erythematosus. Importance of phosphoepitopes. Arthritis Rheum 2000; 43: 1768–1778.
- 221 Kraus LM, Kraus AP Jr. Carbamoylation of amino acids and proteins in uremia. Kidney Int Suppl 2001; 78: S102–S107.
- 222 Stark GR. On the reversible reaction of cyanate with sulfhydryl groups and the determination of Nh2-terminal cysteine and cystine in proteins. J Biol Chem 1964; 239: 1411–1414.
- 223 Arlandson M, et al. Eosinophil peroxidase oxidation of thiocyanate. Characterization of major reaction products and a potential sulfhydryl-targeted cytotoxicity system. J Biol Chem 2001; 276: 215–224.
- 224 Mamula MJ, et al. Isoaspartyl post-translational modification triggers autoimmune responses to self-proteins. J Biol Chem 1999; 274: 22321–22327.
- 225 Young AL, Carter WG, Doyle HA, Mamula MJ, Aswad DW. Structural integrity of histone H2B in vivo requires the activity of protein L-isoaspartate O-methyltransferase, a putative protein repair enzyme. J Biol Chem 2001; 276: 37161–37165.
- 226 Cao L, Sun D, Whitaker JN. Citrullinated myelin basic protein induces experimental autoimmune encephalomyelitis in Lewis rats through a diverse T cell repertoire. J Neuroimmunol 1998; 88: 21–29.
- 227 Tarcsa E, Marekov LN, Mei G, Melino G, Lee SC, Steinert PM. Protein unfolding by peptidylarginine deiminase. Substrate specificity and structural relationships of the natural substrates trichohyalin and filaggrin. J Biol Chem 1996; 271: 30709–30716.
- 228 D’Souza CA, Moscarello MA. Differences in susceptibility of MBP charge isomers to digestion by stromelysin-1 (MMP-3) and release of an immunodominant epitope. Neurochem Res 2006; 31: 1045–1054.
- 229 Beniac DR, Wood DD, Palaniyar N, Ottensmeyer FP, Moscarello MA, Harauz G. Cryoelectron microscopy of protein-lipid complexes of human myelin basic protein charge isomers differing in degree of citrullination. J Struct Biol 2000; 129: 80–95.
- 230 Nakayama-Hamada M, Suzuki A, Furukawa H, Yamada R, Yamamoto K. Citrullinated fibrinogen inhibits thrombin-catalysed fibrin polymerization. J Biochem 2008; 144: 393–398.