Transcriptional regulation of bone and joint remodeling by NFAT
Despina Sitara
Department of Infectious Diseases and Immunology, Harvard School of Public Health, Boston, MA, USA.
Search for more papers by this authorAntonios O. Aliprantis
Department of Infectious Diseases and Immunology, Harvard School of Public Health, Boston, MA, USA.
Division of Rheumatology, Allergy and Immunology, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Arthritis Center, Boston, MA, USA.
Search for more papers by this authorDespina Sitara
Department of Infectious Diseases and Immunology, Harvard School of Public Health, Boston, MA, USA.
Search for more papers by this authorAntonios O. Aliprantis
Department of Infectious Diseases and Immunology, Harvard School of Public Health, Boston, MA, USA.
Division of Rheumatology, Allergy and Immunology, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Arthritis Center, Boston, MA, USA.
Search for more papers by this authorAbstract
Summary: Osteoporosis and arthritis are highly prevalent diseases and a significant cause of morbidity and mortality worldwide. These diseases result from aberrant tissue remodeling leading to weak, fracture-prone bones or painful, dysfunctional joints. The nuclear factor of activated T cells (NFAT) transcription factor family controls diverse biologic processes in vertebrates. Here, we review the scientific evidence that links NFAT-regulated gene transcription to bone and joint pathology. A particular emphasis is placed on the role of NFATs in bone resorption and formation by osteoclasts and osteoblasts, respectively. In addition, emerging data that connect NFATs with cartilage biology, angiogenesis, nociception, and neurogenic inflammation are explored. The goal of this article is to highlight the importance of tissue remodeling in musculoskeletal disease and situate NFAT-driven cellular responses within this context to inspire future research endeavors.
References
- 1 Harris ED Jr. The bone and joint decade: a catalyst for progress. Arthritis Rheum 2001; 44: 1969–1970.
- 2 Woolf AD, Pfleger B. Burden of major musculoskeletal conditions. Bull World Health Organ 2003; 81: 646–656.
- 3 Karsenty G, Wagner EF. Reaching a genetic and molecular understanding of skeletal development. Dev Cell 2002; 2: 389–406.
- 4 Boyce BF, Xing L. Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res Ther 2007; 9(Suppl): S1.
- 5 Phillips K, Aliprantis A, Coblyn J. Strategies for the prevention and treatment of osteoporosis in patients with rheumatoid arthritis. Drugs Aging 2006; 23: 773–779.
- 6 Ralston SH, De Crombrugghe B. Genetic regulation of bone mass and susceptibility to osteoporosis. Genes Dev 2006; 20: 2492–2506.
- 7 Simkin PA, Gardner GC. The musculoskeletal system and joint physiology. In: MC Hochberg, AJ Silman, JS Smolen, ME Weinblatt, MH Weisman eds. Rheumatology. 4th edn. Philadelphia: Elsevier, 2008: 33–43.
- 8 Noss EH, Brenner MB. The role and therapeutic implications of fibroblast-like synoviocytes in inflammation and cartilage erosion in rheumatoid arthritis. Immunol Rev 2008; 223: 252–270.
- 9 Goldring MB. Update on the biology of the chondrocyte and new approaches to treating cartilage diseases. Best Pract Res Clin Rheumatol 2006; 20: 1003–1025.
- 10 Goldring MB, Goldring SR. Osteoarthritis. J Cell Physiol 2007; 213: 626– 634.
- 11 Walsh NC, Crotti TN, Goldring SR, Gravallese EM. Rheumatic diseases: the effects of inflammation on bone. Immunol Rev 2005; 208: 228–251.
- 12 Shaw J, Utz P, Durand D, Toole J, Emmel E, Crabtree G. Identification of a putative regulator of early T cell activation genes. Science 1988; 241: 202–205.
- 13 Hogan PG, Chen L, Nardone J, Rao A. Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev 2003; 17: 2205–2232.
- 14 Graef IA, Gastier JM, Francke U, Crabtree GR. Evolutionary relationships among Rel domains indicate functional diversification by recombination. Proc Natl Acad Sci USA 2001; 98: 5740–5745.
- 15 Im SH, Rao A. Activation and deactivation of gene expression by Ca2+/calcineurin-NFAT-mediated signaling. Mol Cells 2004; 18: 1–9.
- 16 Graef IA, Chen F, Crabtree GR. NFAT signaling in vertebrate development. Curr Opin Genet Dev 2001; 11: 505–512.
- 17 Wu H, Peisley A, Graef IA, Crabtree GR. NFAT signaling and the invention of vertebrates. Trends Cell Biol 2007; 17: 251–260.
- 18 Horsley V, Aliprantis AO, Polak L, Glimcher LH, Fuchs E. NFATc1 balances quiescence and proliferation of skin stem cells. Cell 2008; 132: 299–310.
- 19 Aliprantis AO, et al. NFATc1 in mice represses osteoprotegerin during osteoclastogenesis and dissociates systemic osteopenia from inflammation in cherubism. J Clin Invest 2008; 118: 3775–3789.
- 20 Firestein GS. Evolving concepts of rheumatoid arthritis. Nature 2003; 423: 356–361.
- 21 Services UDoHaH. Bone Health and Osteoporosis: A Report of the Surgeon General. Rockville, MD: US Department of Health and Human Services, Office of the Surgeon General, 2004.
- 22 Carlsten H. Immune responses and bone loss: the estrogen connection. Immunol Rev 2005; 208: 194–206.
- 23 Canalis E, Bilezikian JP, Angeli A, Giustina A. Perspectives on glucocorticoid-induced osteoporosis. Bone 2004; 34: 593–598.
- 24 Lian JB, et al. Regulatory controls for osteoblast growth and differentiation: role of Runx/Cbfa/AML factors. Crit Rev Eukaryot Gene Expr 2004; 14: 1–41.
- 25 Nakashima K, et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 2002; 108: 17–29.
- 26 Otto F, et al. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 1997; 89: 765–771.
- 27 Balcerzak M, et al. The roles of annexins and alkaline phosphatase in mineralization process. Acta Biochim Pol 2003; 50: 1019–1038.
- 28 Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature 2003; 423: 337–342.
- 29 Teitelbaum SL, Ross FP. Genetic regulation of osteoclast development and function. Nat Rev Genet 2003; 4: 638–649.
- 30 Tolar J, Teitelbaum SL, Orchard PJ. Osteopetrosis. N Engl J Med 2004; 351: 2839–2849.
- 31 Tanaka S, Nakamura K, Takahasi N, Suda T. Role of RANKL in physiological and pathological bone resorption and therapeutics targeting the RANKL-RANK signaling system. Immunol Rev 2005; 208: 30–49.
- 32 Wada T, Nakashima T, Hiroshi N, Penninger JM. RANKL-RANK signaling in osteoclastogenesis and bone disease. Trends Mol Med 2006; 12: 17–25.
- 33 Kong YY, et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 1999; 397: 315–323.
- 34 Fuller K, Wong B, Fox S, Choi Y, Chambers TJ. TRANCE is necessary and sufficient for osteoblast-mediated activation of bone resorption in osteoclasts. J Exp Med 1998; 188: 997–1001.
- 35 Takayanagi H, Sato K, Takaoka A, Taniguchi T. Interplay between interferon and other cytokine systems in bone metabolism. Immunol Rev 2005; 208: 181–193.
- 36 Wagner EF, Eferl R. Fos/AP-1 proteins in bone and the immune system. Immunol Rev 2005; 208: 126–140.
- 37 Rho J, Takami M, Choi Y. Osteoimmunology: interactions of the immune and skeletal systems. Mol Cells 2004; 17: 1–9.
- 38 Jimi E, Ghosh S. Role of nuclear factor-kappaB in the immune system and bone. Immunol Rev 2005; 208: 80–87.
- 39 Lorenzo J, Choi Y. Osteoimmunology. Immunol Rev 2005; 208: 5–6.
- 40 Xing L, Schwarz EM, Boyce BF. Osteoclast precursors, RANKL/RANK, and immunology. Immunol Rev 2005; 208: 19–29.
- 41 Simonet WS, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 1997; 89: 309–319.
- 42 Sims NA, Gooi JH. Bone remodeling: multiple cellular interactions required for coupling of bone formation and resorption. Semin Cell Dev Biol 2008; 19: 444–451.
- 43 Goldring SR. Bone and joint destruction in rheumatoid arthritis: what is really happening? J Rheumatol Suppl 2002; 65: 44–48.
- 44 Sweeney SE, Firestein GS. Rheumatoid arthritis: regulation of synovial inflammation. Int J Biochem Cell Biol 2004; 36: 372–378.
- 45 Gravallese EM. Bone destruction in arthritis. Ann Rheum Dis 2002; 61(Suppl): ii84–ii86.
- 46 Pettit AR, et al. TRANCE/RANKL knockout mice are protected from bone erosion in a serum transfer model of arthritis. Am J Pathol 2001; 159: 1689–1699.
- 47 Gravallese EM, et al. Synovial tissue in rheumatoid arthritis is a source of osteoclast differentiation factor. Arthritis Rheum 2000; 43: 250–258.
- 48 Diarra D, et al. Dickkopf-1 is a master regulator of joint remodeling. Nat Med 2007; 13: 156–163.
- 49 Kitahara K, Kawai S. Cyclosporine and tacrolimus for the treatment of rheumatoid arthritis. Curr Opin Rheumatol 2007; 19: 238–245.
- 50 Felson DT. Clinical practice. Osteoarthritis of the knee. N Engl J Med 2006; 354: 841–848.
- 51 Pessler F, Dai L, Cron RQ, Schumacher HR. NFAT transcription factors--new players in the pathogenesis of inflammatory arthropathies? Autoimmun Rev 2006; 5: 106–110.
- 52 Buch MH, Vital EM, Emery P. Abatacept in the treatment of rheumatoid arthritis. Arthritis Res Ther 2008; 10(Suppl): S5.
- 53 Macian F. NFAT proteins: key regulators of T-cell development and function. Nat Rev Immunol 2005; 5: 472–484.
- 54 Yoo SA, et al. Calcineurin is expressed and plays a critical role in inflammatory arthritis. J Immunol 2006; 177: 2681–2690.
- 55 Cho ML, et al. Cyclosporine differentially regulates interleukin-10, interleukin-15, and tumor necrosis factor a production by rheumatoid synoviocytes. Arthritis Rheum 2002; 46: 42–51.
- 56 Masuda K, et al. Molecular profile of synovial fibroblasts in rheumatoid arthritis depends on the stage of proliferation. Arthritis Res 2002; 4: R8.
- 57 Gerth AJ, Pham CT, Peng SL. Regulation of the symmetry and intensity of immune complex-mediated synovitis by nuclear factor of activated T cells. Arthritis Rheum 2004; 50: 3392–3395.
- 58 Ji H, et al. Arthritis critically dependent on innate immune system players. Immunity 2002; 16: 157–168.
- 59 Lee DM, Friend DS, Gurish MF, Benoist C, Mathis D, Brenner MB. Mast cells: a cellular link between autoantibodies and inflammatory arthritis. Science 2002; 297: 1689–1692.
- 60 Kim ND, Chou RC, Seung E, Tager AM, Luster AD. A unique requirement for the leukotriene B4 receptor BLT1 for neutrophil recruitment in inflammatory arthritis. J Exp Med 2006; 203: 829–835.
- 61 Chen M, et al. Neutrophil-derived leukotriene B4 is required for inflammatory arthritis. J Exp Med 2006; 203: 837–842.
- 62 Takayanagi H, et al. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 2002; 3: 889–901.
- 63 Takayanagi H. The role of NFAT in osteoclast formation. Ann NY Acad Sci 2007; 1116: 227–237.
- 64 Shinohara M, et al. Tyrosine kinases Btk and Tec regulate osteoclast differentiation by linking RANK and ITAM signals. Cell 2008; 132: 794–806.
- 65 Asagiri M, et al. Autoamplification of NFATc1 expression determines its essential role in bone homeostasis. J Exp Med 2005; 202: 1261–1269.
- 66 Ishida N, et al. Large scale gene expression analysis of osteoclastogenesis in vitro and elucidation of NFAT2 as a key regulator. J Biol Chem 2002; 277: 41147–41156.
- 67 Sun L, et al. Evidence that calcineurin is required for the genesis of bone-resorbing osteoclasts. Am J Physiol Renal Physiol 2007; 292: F285–F291.
- 68 Day CJ, et al. Gene array identification of osteoclast genes: differential inhibition of osteoclastogenesis by cyclosporin A and granulocyte macrophage colony stimulating factor. J Cell Biochem 2004; 91: 303–315.
- 69 Kuroda Y, Hisatsune C, Nakamura T, Matsuo K, Mikoshiba K. Osteoblasts induce Ca2 + oscillation-independent NFATc1 activation during osteoclastogenesis. Proc Natl Acad Sci USA 2008; 105: 8643–8648.
- 70 Ranger AM, et al. The transcription factor NF-ATc is essential for cardiac valve formation. Nature 1998; 392: 186–190.
- 71 Winslow MM, et al. Calcineurin/NFAT signaling in osteoblasts regulates bone mass. Dev Cell 2006; 10: 771–782.
- 72 Ueki Y, et al. Increased myeloid cell responses to M-CSF and RANKL cause bone loss and inflammation in SH3BP2 “cherubism” mice. Cell 2007; 128: 71–83.
- 73 Ueki Y, et al. Mutations in the gene encoding c-Abl-binding protein SH3BP2 cause cherubism. Nat Genet 2001; 28: 125–126.
- 74 Weitzmann MN, Pacifici R. The role of T lymphocytes in bone metabolism. Immunol Rev 2005; 208: 154–168.
- 75 Asagiri M, Takayanagi H. The molecular understanding of osteoclast differentiation. Bone 2007; 40: 251–264.
- 76 Peng SL, Gerth AJ, Ranger AM, Glimcher LH. NFATc1 and NFATc2 together control both T and B cell activation and differentiation. Immunity 2001; 14: 13–20.
- 77 Kaminuma O, et al. Differential contribution of NFATc2 and NFATc1 to TNF-alpha gene expression in T cells. J Immunol 2008; 180: 319–326.
- 78 Lietman SA, Yin L, Levine MA. SH3BP2 is an activator of NFAT activity and osteoclastogenesis. Biochem Biophys Res Commun 2008; 371: 644–648.
- 79 Crotti TN, Flannery M, Walsh NC, Fleming JD, Goldring SR, McHugh KP. NFATc1 regulation of the human beta3 integrin promoter in osteoclast differentiation. Gene 2006; 372: 92–102.
- 80 Kim K, et al. Nuclear factor of activated T cells c1 induces osteoclast-associated receptor gene expression during tumor necrosis factor-related activation-induced cytokine-mediated osteoclastogenesis. J Biol Chem 2005; 280: 35209–35216.
- 81 Sharma SM, et al. MITF and PU.1 recruit p38 MAPK and NFATc1 to target genes during osteoclast differentiation. J Biol Chem 2007; 282: 15921–15929.
- 82 Shen Z, Crotti TN, Flannery MR, Matsuzaki K, Goldring SR, McHugh KP. A novel promoter regulates calcitonin receptor gene expression in human osteoclasts. Biochim Biophys Acta 2007; 1769: 659–667.
- 83 Mizuno A, et al. Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochem Biophys Res Commun 1998; 247: 610–615.
- 84 Glass DA 2nd, et al. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell 2005; 8: 751–764.
- 85 Rousselle AV, Heymann D. Osteoclastic acidification pathways during bone resorption. Bone 2002; 30: 533–540.
- 86 Wu J, Glimcher LH, Aliprantis AO. HCO3-/Cl- anion exchanger SLC4A2 is required for proper osteoclast differentiation and function. Proc Natl Acad Sci USA 2008; 105: 16934–16939.
- 87 Alper SL. Molecular physiology of SLC4 anion exchangers. Exp Physiol 2006; 91: 153–161.
- 88 Wang Z, Schultheis PJ, Shull GE. Three N-terminal variants of the AE2 Cl-/HCO3- exchanger are encoded by mRNAs transcribed from alternative promoters. J Biol Chem 1996; 271: 7835–7843.
- 89 Gawenis LR, et al. Mice with a targeted disruption of the AE2 Cl-/HCO3- exchanger are achlorhydric. J Biol Chem 2004; 279: 30531–30539.
- 90 Josephsen K, et al. Targeted disruption of the Cl-/HCO3- exchanger Ae2 results in osteopetrosis in mice. Proc Natl Acad Sci USA 2009; 106: 1638–1641.
- 91 Sun L, et al. Calcineurin regulates bone formation by the osteoblast. Proc Natl Acad Sci USA 2005; 102: 17130–17135.
- 92 Yeo H, et al. Conditional disruption of calcineurin B1 in osteoblasts increases bone formation and reduces bone resorption. J Biol Chem 2007; 282: 35318–35327.
- 93 Yeo H, Beck LH, McDonald JM, Zayzafoon M. Cyclosporin A elicits dose-dependent biphasic effects on osteoblast differentiation and bone formation. Bone 2007; 40: 1502–1516.
- 94 Koga T, et al. NFAT and Osterix cooperatively regulate bone formation. Nat Med 2005; 11: 880–885.
- 95 Choo MK, Yeo H, Zayzafoon M. NFATc1 mediates HDAC-dependent transcriptional repression of osteocalcin expression during osteoblast differentiation. Bone 2009; 45: 579–589.
- 96 Schroeder TM, Nair AK, Staggs R, Lamblin AF, Westendorf JJ. Gene profile analysis of osteoblast genes differentially regulated by histone deacetylase inhibitors. BMC Genomics 2007; 8: 362.
- 97 Penolazzi L, et al. Induction of estrogen receptor alpha expression with decoy oligonucleotide targeted to NFATc1 binding sites in osteoblasts. Mol Pharmacol 2007; 71: 1457–1462.
- 98 Syed F, Khosla S. Mechanisms of sex steroid effects on bone. Biochem Biophys Res Commun 2005; 328: 688–696.
- 99 Ranger AM, et al. The transcription factor NFATp is a repressor of chondrogenesis. J Exp Med 2000; 191: 9–21.
- 100 Nishigaki F, Sakuma S, Ogawa T, Miyata S, Ohkubo T, Goto T. FK506 induces chondrogenic differentiation of clonal mouse embryonic carcinoma cells, ATDC5. Eur J Pharmacol 2002; 437: 123–128.
- 101 Wang J, et al. Transcription factor Nfat1 deficiency causes osteoarthritis through dysfunction of adult articular chondrocytes. J Pathol 2009; 219: 163–172.
- 102 Thirunavukkarasu K, et al. Regulation of the human ADAMTS-4 promoter by transcription factors and cytokines. Biochem Biophys Res Commun 2006; 345: 197–204.
- 103 Yaykasli KO, et al. ADAMTS9 activation by interleukin 1 beta via NFATc1 in OUMS-27 chondrosarcoma cells and in human chondrocytes. Mol Cell Biochem 2009; 323: 69–79.
- 104 Yoo SA, et al. Calcineurin modulates the catabolic and anabolic activity of chondrocytes and participates in the progression of experimental osteoarthritis. Arthritis Rheum 2007; 56: 2299–2311.
- 105 Koch AE. Review: angiogenesis: implications for rheumatoid arthritis. Arthritis Rheum 1998; 41: 951–962.
- 106 Yoo SA, Kwok SK, Kim WU. Proinflammatory role of vascular endothelial growth factor in the pathogenesis of rheumatoid arthritis: prospects for therapeutic intervention. Mediators Inflamm 2008; 2008: 129873.
- 107 Nilsson LM, Nilsson-Ohman J, Zetterqvist AV, Gomez MF. Nuclear factor of activated T-cells transcription factors in the vasculature: the good guys or the bad guys? Curr Opin Lipidol 2008; 19: 483–490.
- 108 Graef IA, Chen F, Chen L, Kuo A, Crabtree GR. Signals transduced by Ca2+/calcineurin and NFATc3/c4 pattern the developing vasculature. Cell 2001; 105: 863–875.
- 109 Ribatti D, et al. An experimental study in the chick embryo chorioallantoic membrane of the anti-angiogenic activity of cyclosporine in rheumatoid arthritis versus osteoarthritis. Inflamm Res 2000; 49: 418–423.
- 110 Maruotti N, Cantatore FP, Crivellato E, Vacca A, Ribatti D. Angiogenesis in rheumatoid arthritis. Histol Histopathol 2006; 21: 557–566.
- 111 Kowanetz M, Ferrara N. Vascular endothelial growth factor signaling pathways: therapeutic perspective. Clin Cancer Res 2006; 12: 5018–5022.
- 112 Koch AE, et al. Vascular endothelial growth factor. A cytokine modulating endothelial function in rheumatoid arthritis. J Immunol 1994; 152: 4149–4156.
- 113 Lee SS, et al. Vascular endothelial growth factor levels in the serum and synovial fluid of patients with rheumatoid arthritis. Clin Exp Rheumatol 2001; 19: 321–324.
- 114 Choi ST, Kim JH, Seok JY, Park YB, Lee SK. Therapeutic effect of anti-vascular endothelial growth factor receptor I antibody in the established collagen-induced arthritis mouse model. Clin Rheumatol 2009; 28: 333–337.
- 115 Clavel G, et al. Relationship between angiogenesis and inflammation in experimental arthritis. Eur Cytokine Netw 2006; 17: 202–210.
- 116 Hernandez GL, et al. Selective inhibition of vascular endothelial growth factor-mediated angiogenesis by cyclosporin A: roles of the nuclear factor of activated T cells and cyclooxygenase 2. J Exp Med 2001; 193: 607–620.
- 117 Jinnin M, et al. Suppressed NFAT-dependent VEGFR1 expression and constitutive VEGFR2 signaling in infantile hemangioma. Nat Med 2008; 14: 1236–1246.
- 118 Yoo SA, et al. Role of placenta growth factor and its receptor flt-1 in rheumatoid inflammation: a link between angiogenesis and inflammation. Arthritis Rheum 2009; 60: 345–354.
- 119 Ikeda M, Hosoda Y, Hirose S, Okada Y, Ikeda E. Expression of vascular endothelial growth factor isoforms and their receptors Flt-1, KDR, and neuropilin-1 in synovial tissues of rheumatoid arthritis. J Pathol 2000; 191: 426–433.
- 120 Luttun A, et al. Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nat Med 2002; 8: 831–840.
- 121 Cho ML, et al. Cyclosporine inhibition of vascular endothelial growth factor production in rheumatoid synovial fibroblasts. Arthritis Rheum 2002; 46: 1202–1209.
- 122 Manabe N, Oda H, Nakamura K, Kuga Y, Uchida S, Kawaguchi H. Involvement of fibroblast growth factor-2 in joint destruction of rheumatoid arthritis patients. Rheumatology (Oxford) 1999; 38: 714–720.
- 123 Sharaki OA, El-Guiziry DA, Abou-Zeid AA, El-Noueam KI, Helal AE, Gaballah AE. Clinical usefulness of basic fibroblast growth factor and E-selectin in patients with rheumatoid arthritis. Egypt J Immunol 2004; 11: 91–100.
- 124 Zaichuk TA, Shroff EH, Emmanuel R, Filleur S, Nelius T, Volpert OV. Nuclear factor of activated T cells balances angiogenesis activation and inhibition. J Exp Med 2004; 199: 1513–1522.
- 125 Courtwright A, et al. Secreted frizzle-related protein 2 stimulates angiogenesis via a calcineurin/NFAT signaling pathway. Cancer Res 2009; 69: 4621–4628.
- 126 Niissalo S, Hukkanen M, Imai S, Tornwall J, Konttinen YT. Neuropeptides in experimental and degenerative arthritis. Ann NY Acad Sci 2002; 966: 384–399.
- 127 Green PG. Gastrin-releasing peptide, substance P and cytokines in rheumatoid arthritis. Arthritis Res Ther 2005; 7: 111–113.
- 128 Lotz M, Carson DA, Vaughan JH. Substance P activation of rheumatoid synoviocytes: neural pathway in pathogenesis of arthritis. Science 1987; 235: 893–895.
- 129 Grimsholm O, Rantapaa-Dahlqvist S, Forsgren S. Levels of gastrin-releasing peptide and substance P in synovial fluid and serum correlate with levels of cytokines in rheumatoid arthritis. Arthritis Res Ther 2005; 7: R416–R426.
- 130 Delgado M, Abad C, Martinez C, Leceta J, Gomariz RP. Vasoactive intestinal peptide prevents experimental arthritis by downregulating both autoimmune and inflammatory components of the disease. Nat Med 2001; 7: 563–568.
- 131 Ganea D, Gonzalez-Rey E, Delgado M. A novel mechanism for immunosuppression: from neuropeptides to regulatory T cells. J Neuroimmune Pharmacol 2006; 1: 400–409.
- 132 Quinlan KL, et al. Substance P activates coincident NF-AT- and NF-kappa B-dependent adhesion molecule gene expression in microvascular endothelial cells through intracellular calcium mobilization. J Immunol 1999; 163: 5656–5665.
- 133 Seybold VS, Coicou LG, Groth RD, Mermelstein PG. Substance P initiates NFAT-dependent gene expression in spinal neurons. J Neurochem 2006; 97: 397–407.
- 134 Corral RS, Iniguez MA, Duque J, Lopez-Perez R, Fresno M. Bombesin induces cyclooxygenase-2 expression through the activation of the nuclear factor of activated T cells and enhances cell migration in Caco-2 colon carcinoma cells. Oncogene 2007; 26: 958–969.
- 135 Delgado M, Ganea D. Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit expression of Fas ligand in activated T lymphocytes by regulating c-Myc, NF-kappa B, NF-AT, and early growth factors 2/3. J Immunol 2001; 166: 1028–1040.
- 136 Heiberg T, Kvien TK. Preferences for improved health examined in 1,024 patients with rheumatoid arthritis: pain has highest priority. Arthritis Rheum 2002; 47: 391–397.
- 137 Ranzolin A, et al. Association of concomitant fibromyalgia with worse disease activity score in 28 joints, health assessment questionnaire, and short form 36 scores in patients with rheumatoid arthritis. Arthritis Rheum 2009; 61: 794–800.
- 138 Jackson JG, Usachev YM, Thayer SA. Bradykinin-induced nuclear factor of activated T-cells-dependent transcription in rat dorsal root ganglion neurons. Mol Pharmacol 2007; 72: 303–310.
- 139 Barthel C, et al. Nerve growth factor and receptor expression in rheumatoid arthritis and spondyloarthritis. Arthritis Res Ther 2009; 11: R82.
- 140 Groth RD, Coicou LG, Mermelstein PG, Seybold VS. Neurotrophin activation of NFAT-dependent transcription contributes to the regulation of pro-nociceptive genes. J Neurochem 2007; 102: 1162–1174.
- 141 Dray A, Perkins M. Bradykinin and inflammatory pain. Trends Neurosci 1993; 16: 99–104.
- 142 Miller PD. Denosumab: anti-RANKL antibody. Curr Osteoporos Rep 2009; 7: 18–22.
- 143 Cohen SB, et al. Denosumab treatment effects on structural damage, bone mineral density, and bone turnover in rheumatoid arthritis: a twelve-month, multicenter, randomized, double-blind, placebo-controlled, phase II clinical trial. Arthritis Rheum 2008; 58: 1299–1309.
- 144 Kim Y, Sato K, Asagiri M, Morita I, Soma K, Takayanagi H. Contribution of nuclear factor of activated T cells c1 to the transcriptional control of immunoreceptor osteoclast-associated receptor but not triggering receptor expressed by myeloid cells-2 during osteoclastogenesis. J Biol Chem 2005; 280: 32905–32913.
- 145 Crotti TN, et al. PU.1 and NFATc1 mediate osteoclastic induction of the mouse beta3 integrin promoter. J Cell Physiol 2008; 215: 636–644.
- 146 Kim K, Lee SH, Ha Kim J, Choi Y, Kim N. NFATc1 induces osteoclast fusion via up-regulation of Atp6v0d2 and the dendritic cell-specific transmembrane protein (DC-STAMP). Mol Endocrinol 2008; 22: 176–185.
- 147 Sundaram K, Nishimura R, Senn J, Youssef RF, London SD, Reddy SV. RANK ligand signaling modulates the matrix metalloproteinase-9 gene expression during osteoclast differentiation. Exp Cell Res 2007; 313: 168–178.