Oral tolerance
Ana M. C. Faria
Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
Search for more papers by this authorCorresponding Author
Howard L. Weiner
Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
* Howard L. Weiner Center for Neurologic Diseases Brigham and Women's Hospital 77 Ave Louis Pasteur Boston, MA 02115 USA Tel.: +1 617 525 5300 Fax: +1 617 525 5252 E-mail: [email protected]Search for more papers by this authorAna M. C. Faria
Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
Search for more papers by this authorCorresponding Author
Howard L. Weiner
Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
* Howard L. Weiner Center for Neurologic Diseases Brigham and Women's Hospital 77 Ave Louis Pasteur Boston, MA 02115 USA Tel.: +1 617 525 5300 Fax: +1 617 525 5252 E-mail: [email protected]Search for more papers by this authorAbstract
Summary: Multiple mechanisms of tolerance are induced by oral antigen. Low doses favor active suppression, whereas higher doses favor clonal anergy/deletion. Oral antigen induces T-helper 2 [interleukin (IL)-4/IL-10] and Th3 [transforming growth factor (TGF)-β] T cells plus CD4+CD25+ regulatory cells and latency-associated peptide+ T cells. Induction of oral tolerance is enhanced by IL-4, IL-10, anti-IL-12, TGF-β, cholera toxin B subunit, Flt-3 ligand, and anti-CD40 ligand. Oral (and nasal) antigen administration suppresses animal models of autoimmune diseases including experimental autoimmune encephalitis, uveitis, thyroiditis, myasthenia, arthritis, and diabetes in the non-obese diabetic (NOD) mouse, plus non-autoimmune diseases such as asthma, atherosclerosis, graft rejection, allergy, colitis, stroke, and models of Alzheimer's disease. Oral tolerance has been tested in human autoimmune diseases including multiple sclerosis (MS), arthritis, uveitis, and diabetes and in allergy, contact sensitivity to dinitrochlorobenzene (DNCB), and nickel allergy. Although positive results have been observed in phase II trials, no effect was observed in phase III trials of CII in rheumatoid arthritis or oral myelin and glatiramer acetate (GA) in MS. Large placebo effects were observed, and new trials of oral GA are underway. Oral insulin has recently been shown to delay onset of diabetes in at-risk populations, and confirmatory trials of oral insulin are being planned. Mucosal tolerance is an attractive approach for treatment of autoimmune and inflammatory diseases because of lack of toxicity, ease of administration over time, and antigen-specific mechanisms of action. The successful application of oral tolerance for the treatment of human diseases will depend on dose, developing immune markers to assess immunologic effects, route (nasal versus oral), formulation, mucosal adjuvants, combination therapy, and early therapy.
References
- 1 Moog F. The lining of the small intestine. Sci Am 1981; 245: 116–125.
- 2 Brandtzaeg P. Development and basic mechanisms of human gut immunity. Nutr Rev 1998; 56: S5–S18.
- 3 Macfarlance GT, Macfarlane S. Human colonic microbiota: ecology, physiology and metabolic potential of intestinal bacteria. Scand J Gastroenterol 1997; 222 (Suppl): 3–9.
- 4 Mestecky J, McGhee JR. Immunoglobulin A (IgA): molecular and cellular interactions involved in IgA biosynthesis and immune response. Adv Immunol 1987; 40: 153–245.
- 5 Van Der Heidjen PJ, Stock W, Bianchi ATJ. Contribution of immunoglobulin-secreting cells in the murine small intestine to the total ‘background’ immunoglobulin production. Immunology 1987; 62: 551–555.
- 6 Menezes Jda S, et al. Stimulation by food proteins plays a critical role in the maturation of the immune system. Int Immunol 2003; 15: 447–455.
- 7 Challacombe SJ, Tomasi TB. Systemic tolerance and secretory immunity after oral immunization. J Exp Med 1980; 152: 1459–1472.
- 8 Fuller KA, Pearl D, Whitacre CC. Oral tolerance in experimental autoimmune encephalomyelitis: serum and salivary antibody responses. J Neuroimmunol 1990; 28: 15–26.
- 9 Fujihashi K, McGhee JR, Yamamoto M, Hiroi T, Kiyono H. Role of gama-delta T cells in the regulation of mucosal IgA response and oral tolerance. In: HL Weiner, L Mayer, eds. Oral Tolerance. Mechanisms and Applications, Vol. 778. New York: New York Academy of Sciences, 1996, 55–63.
- 10 Ngan J, Kind LS. Suppressor T cells for IgE and IgG in Peyer's patches of mice made tolerant by the oral administration of ovalbumin. J Immunol 1978; 120: 861–865.
- 11 Vaz NM, Maia LC, Hanson DG, Lynch JM. Inhibition of homocytotropic antibody responses in adult inbred mice by previous feeding of the specific antigen. J Allergy Clin Immunol 1977; 60: 110–115.
- 12 Miller SD, Hanson DG. Inhibition of specific immune responses by feeding protein antigens. IV. Evidence for tolerance and specific active suppression of cell-mediated responses to ovalbumin. J Immunol 1979; 123: 2344–2350.
- 13 Mowat AM, Strobel S, Drummond HE, Ferguson A. Immunological response to fed protein antigens in mice. I. Reversal of oral tolerance to ovalbumin by cyclophosphamide. Immunology 1982; 45: 105–113.
- 14 Hanson DG, Vaz NM, Maia LC, Lynch JM. Inhibition of specific immune responses by feeding protein antigens. III. Evidence against maintenance of tolerance to ovalbumin by orally induced antibodies. J Immunol 1979; 123: 2337–2343.
- 15 Richman LK, Chiller JM, Brown WR, Hanson DG, Vaz NM. Enterically-induced immunological tolerance. I. Induction of suppressor T cells by intragastric administration of soluble proteins. J Immunol 1978; 212: 2429–2435.
- 16 Titus RG, Chiller JM. Orally-induced tolerance. Definition at the cellular level. Int Arch Allergy Appl Immunol 1981; 65: 323–338.
- 17 Hanson DG, Miller S. Inhibition of specific immune responses by feeding protein antigens. V. Induction of the tolerant state in the absence of specific suppressor cells. J Immunol 1982; 128: 2378–2381.
- 18 Higgins PJ, Weiner HL. Prevention of experimental autoimmune encephalomyelitis by oral administration of myelin basic protein and its fragments. J Immunol 1988; 140: 440–445.
- 19 Lider O, et al. Suppression of experimental autoimmune diseases and prolongation of allograft survival by treatment of animals with low doses of heparins. J Clin Invest 1989; 83: 752–756.
- 20 Fishman-Lobell J, Friedman A, Weiner HL. Different kinetic patterns of cytokine gene expression in vivo in orally tolerant mice. Eur J Immunol 1994; 24: 2720–2724.
- 21 Weiner HL. Oral tolerance: immune mechanisms and treatment of autoimmune diseases. Immunol Today 1997; 18: 335–343.
- 22 Weiner HL, Gonnella PA, Slavin A, Maron R. Oral tolerance: cytokine milieu in the gut and modulation of tolerance by cytokines. Res Immunol 1997; 148: 528–533.
- 23 Faria AMC, Weiner HL. Oral tolerance: mechanisms and therapeutic applications. Adv Immunol 1999; 73: 153–264.
- 24 Mowat AM, Weiner HL. Oral tolerance. Physiological basis and clinical applications. In: W Stroben, J Mestecky, JR McGhee, ME Lamm, JE Bienenstock, eds. Handbook of Mucosal Immunology. San Diego: Academic Press, 1998.
- 25 Kay RA, Ferguson A. The immunological consequences of feeding cholera toxin. I. Feeding cholera toxin suppresses the induction of systemic delayed-type hypersensitivity but not humoral immunity. Immunol 1989; 66: 410–415.
- 26 Ke Y, Kapp JA. Oral antigen inhibits priming of CD8 + CTL, CD4 + T cells and antibody responses while activating CD8 + suppressor T cells. J Immunol 1996; 156: 3610–3618.
- 27 Mowat AM, Steel M, Worthey EA, Kewin PJ, Garside P. Inactivation of Th1 and Th2 cells by feeding ovalbumin. Ann NY Acad Sci 1996; 778: 122–132.
- 28 Faria AMC, et al. Aging and immunoglobulin isotype patterns in oral tolerance. Braz J Med Biol Res 1998; 31: 35–48.
- 29 Faria AMC, et al. Aging affects oral tolerance induction but not its maintenance in mice. Mech Ageing Dev 1998; 102: 67–80.
- 30 Faria AM, Maron R, Ficker SM, Slavin AJ, Spahn T, Weiner HL. Oral tolerance induced by continuous feeding: enhanced up-regulation of transforming growth factor-beta/interleukin-10 and suppression of experimental autoimmune encephalomyelitis. J Autoimmun 2003; 20: 135–145.
- 31 Saklayen MG, Pesce AJ, Pollak VE, Michael JG. Kinetics of oral tolerance: study of variables affecting tolerance induced by oral administration of antigen. Int Arch Allergy Appl Immunol 1984; 73: 5–9.
- 32 Friedman A, Weiner HL. Induction of anergy or active suppression following oral tolerance is determined by antigen dosage. Proc Natl Acad Sci USA 1994; 91: 6688–6692.
- 33 Miller A, Lider O, Roberts AB, Sporn MB, Weiner HL. Suppressor T cells generated by oral tolerization to myelin basic protein suppress both in vivo and in vitro immune response by the release of transforming growth factor beta after antigen-specific triggering. Proc Natl Acad Sci USA 1992; 89: 421–425.
- 34 Melamed D, Friedman A. Direct evidence for anergy in T lymphocytes tolerized by oral administration of ovalbumin. Eur J Immunol 1993; 23: 935–942.
- 35 Whitacre CC, Gienapp IE, Orosz CG, Bitar DM. Oral tolerance in experimental autoimmune encephalomyelitis. III. Evidence for clonal anergy. J Immunol 1991; 147: 2155–2163.
- 36 Chen W, Jin W, Wahl SM. Engagement of cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) induces transforming growth factor beta (TGF-beta) production by murine CD4 (+) T cells. J Exp Med 1998; 188: 1849–1857.
- 37 Nakamura K, Kitani A, Strober W. Cell contact-dependent immunosuppression by CD4 (+) CD25 (+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J Exp Med 2001; 194: 629–644.
- 38 Takahashi T, et al. Immunologic self-tolerance maintained by CD25 + CD4 + naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int Immunol 1998; 10: 1969–1980.
- 39
Taams LS, et al.
Antigen-specific T cell suppression by human CD4 + CD25 + regulatory T cells.
Eur J Immunol
2002; 32: 1621–1630.
10.1002/1521-4141(200206)32:6<1621::AID-IMMU1621>3.0.CO;2-Q CAS PubMed Web of Science® Google Scholar
- 40 Tsuji NM, Mizumachi K, Kurisaki J. Antigen-specific, CD4 + CD25 + regulatory T cell clones induced in Peyer's patches. Int Immunol 2003; 15: 525–534.
- 41 Tomasi TB, Barr WG, Challacombe SJ, Curran G. Oral tolerance and accessory cell function of Peyer's patches. Ann NY Acad Sci 1983; 409: 145–163.
- 42 Mowat AM. The regulation of immune responses to dietary proteins. Immunol Today 1987; 8: 93–98.
- 43 Melamed D, Friedman A. In vivo tolerization of Th1 lymphocytes following a single feeding with ovalbumin: anergy in the absence of suppression. Eur J Immunol 1994; 24: 1974–1981.
- 44 Weiner HL, et al. Oral tolerance: immunologic mechanisms and treatment of animal and human organ-specific autoimmune diseases by oral administration of autoantigens. Annu Rev Immunol 1994; 12: 809–837.
- 45 Hirahara K, Hisatsune T, Nishijima K, Kato H, Shiho O, Kaminogawa S. CD4 + T cells anergized by high dose feeding establish oral tolerance to antibody responses when transferred in SCID and nude mice. J Immunol 1995; 154: 6238–6245.
- 46 Inada S, Yoshino S, Haque MA, Ogata Y, Kohashi O. Clonal anergy is a potent mechanism of oral tolerance in the suppression of acute antigen-induced arthritis in rats by oral administration of the inducing antigen. Cell Immunol 1997; 175: 67–75.
- 47 Chen Y, Inobe J, Marks R, Gonnella P, Kuchroo VK. Peripheral deletion of antigen-reactive T cells in oral tolerance. Nature 1995; 376: 177–180.
- 48 Marth T, Strober W, Kelsall BL. High dose oral tolerance in Ova TCR-transgenic mice. systemic neutralization of interleukin 12 augments TGF-b secretion and T cell apoptosis. J Immunol 1996; 157: 2348–2357.
- 49 Marth T, Zeitz M, Ludviksson BR, Strober W, Kelsall BL. Extinction of IL-12 signaling promotes Fas-mediated apoptosis of antigen-specific T cells. J Immunol 1999; 162: 7233–7240.
- 50 Meyer AL, et al. Rapid depletion of peripheral antigen-specific T cells in TCR-transgenic mice after oral administration of myelin basic protein. J Immunol 2001; 166: 5773–5781.
- 51 Garside P, et al. Lymphocytes from orally tolerized mice display enhanced susceptibility to death by apoptosis. Am J Pathol 1996; 149: 1971–1979.
- 52 Kaji T, Hachimura S, Ise W, Kaminogawa S. Proteome analysis reveals caspase activation in hyporesponsive CD4 T lymphocytes induced in vivo by the oral administration of antigen. J Biol Chem 2003; 278: 27836–27843.
- 53 Kearney ER, Pape KA, Loh DY, Jenkins MK. Visualization of peptide-specific T cell immunity and peripheral tolerance induction in vivo. Immunity 1994; 1: 327–339.
- 54 Chen Y, Inobe J-I, Weiner HL. Inductive events in oral tolerance in the TCR transgenic adoptive transfer model. Cell Immunol 1997; 178: 62–68.
- 55 Gutgemann I, Fahrer AM, Altman JD, Davis MM, Chien YH. Induction of rapid T cell activation and tolerance by systemic presentation of an orally administered antigen. Immunity 1998; 8: 667–673.
- 56 Chen Y, Inobe J, Kuchroo VK, Baron JL, Janeway CA Jr, Weiner HL. Oral tolerance in myelin basic protein T-cell receptor transgenic mice: suppression of autoimmune encephalomyelitis and dose-dependent induction of regulatory cells. Proc Natl Acad Sci USA 1996; 93: 388–391.
- 57 Van Houten N, Blake SF. Direct measurement of anergy of antigen-specific T cells following oral tolerance induction. J Immunol 1996; 157: 1337–1341.
- 58 Neurath MF, Finotto S, Fuss I, Boirivant M, Galle PR, Strober W. Regulation of T-cell apoptosis in inflammatory bowel disease: to die or not to die, that is the mucosal question. Trends Immunol 2001; 22: 21–26.
- 59 Miller ML, Cowdery JS, Laskin CA, Curtin MF Jr., Steinberg AD. Heterogeneity of oral tolerance defects in autoimmune mice. Clin Immunol Immunopathol 1984; 31: 231–240.
- 60 Freire-de-Lima CG, et al. Uptake of apoptotic cells drives the growth of a pathogenic trypanosome in macrophages. Nature 2000; 403: 199–203.
- 61 Chen W, et al. Requirement for transforming growth factor beta1 in controlling T cell apoptosis. J Exp Med 2001; 194: 439–453.
- 62 Ramachandran A, Madesh M, Balasubramanian KA. Apoptosis in the intestinal epithelium: its relevance in normal and pathophysiological conditions. J Gastroenterol Hepatol 2000; 15: 109–120.
- 63 Boirivant M, Pica R, DeMaria R, Testi R, Pallone F, Strober W. Stimulated human lamina propria T cells manifest enhanced Fas-mediated apoptosis. J Clin Invest 1996; 98: 2616–2622.
- 64 Huang FP, et al. A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes. J Exp Med 2000; 191: 435–444.
- 65 Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest 1998; 101: 890–898.
- 66 Paul WE, Seder RA. Lymphocyte responses and cytokines. Cell 1994; 76: 241–251.
- 67 Weiner HL. The mucosal milieu creates tolerogenic dendritic cells and T (R) 1 and T (H) 3 regulatory cells. Nat Immunol 2001; 2: 671–672.
- 68 Horwitz DA, Zheng SG, Gray JD. The role of the combination of IL-2 and TGF-beta or IL-10 in the generation and function of CD4 + CD25 + and CD8 + regulatory T cell subsets. J Leukoc Biol 2003; 74: 471–478.
- 69 Chen W, et al. Conversion of peripheral CD4 + CD25- naive T cells to CD4 + CD25 + regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 2003; 198: 1875–1886.
- 70 Thompson C, Powrie F. Regulatory T Cells. Curr Opin Pharmacol 2004; 4: 408–414.
- 71 Sakaguchi S. Naturally arising CD4 + regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 2004; 22: 531–562.
- 72 Mannie MD, Rendall SK, Arnold PY, Nardella JP, White GA. Anergy-associated T cell antigen presentation. A mechanism of infectious tolerance in experimental autoimmune encephalomyelitis. J Immunol 1996; 157: 1062–1070.
- 73
Taams LS, et al.
Anergic T cells actively suppress T cell responses via the antigen-presenting cell.
Eur J Immunol
1998; 28: 2902–2912.
10.1002/(SICI)1521-4141(199809)28:09<2902::AID-IMMU2902>3.0.CO;2-B CAS PubMed Web of Science® Google Scholar
- 74 Lanoue A, Bona C, Von Boehmer H, Sarukhan A. Conditions that induce tolerance in mature CD4 + T cells. J Exp Med 1997; 185: 405–414.
- 75 Ryan KR, Evavold BD. Persistence of peptide-induced CD4 + T cell anergy in vitro. J Exp Med 1998; 187: 89–96.
- 76 Buer J, Lanoue A, Franzke A, Garcia C, Von Boehmer H, Sarukhan A. Interleukin 10 secretion and impaired effector function of major histocompatibility complex class II-restricted T cells anergized in vivo. J Exp Med 1998; 187: 177–183.
- 77 Lombardi G, et al. Antigen presentation by interferon-gamma-treated thyroid follicular cells inhibits interleukin-2 (IL-2) and supports IL-4 production by B7-dependent human T cells. Eur J Immunol 1997; 27: 62–71.
- 78 Cauley LS, Cauley KA, Shub F, Huston G, Swain SL. Transferable anergy: superantigen treatment induces CD4 + T cell tolerance that is reversible and requires CD-CD8- cells and interferon g. J Exp Med 1997; 186: 71–81.
- 79 Thornton AM, Shevach EM. CD4 + CD25 + immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med 1998; 188: 287–296.
- 80 Hoyne GF, Lamb JR. Regulation of T cell function in mucosal tolerance. Immunol Cell Biol 1997; 75: 197–201.
- 81 Nishizuka Y, Sakakura T. Thymus and reproduction: sex-linked dysgenesia of the gonad after neonatal thymectomy in mice. Science 1969; 166: 753–755.
- 82 Kojima A, Tanaka-Kojima Y, Sakakura T, Nishizuka Y. Spontaneous development of autoimmune thyroiditis in neonatally thymectomized mice. Lab Invest 1976; 34: 550–557.
- 83 Fukuma K, et al. Immunologic and clinical studies on murine experimental autoimmune gastritis induced by neonatal thymectomy. Gastroenterology 1988; 94: 274–283.
- 84 Sakaguchi S, Takahashi T, Nishizuka Y. Study on cellular events in postthymectomy autoimmune oophoritis in mice. I. Requirement of Lyt-1 effector cells for oocytes damage after adoptive transfer. J Exp Med 1982; 156: 1565–1576.
- 85 Sakaguchi S, Takahashi T, Nishizuka Y. Study on cellular events in post-thymectomy autoimmune oophoritis in mice. II. Requirement of Lyt-1 cells in normal female mice for the prevention of oophoritis. J Exp Med 1982; 156: 1577–1586.
- 86 Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995; 155: 1151–1164.
- 87 Furtado GC, Curotto de Lafaille MA, Kutchukhidze N, Lafaille JJ. Interleukin 2 signaling is required for CD4 (+) regulatory T cell function. J Exp Med 2002; 196: 851–857.
- 88 McHugh RS, Shevach EM. The role of suppressor T cells in regulation of immune responses. J Allergy Clin Immunol 2002; 110: 693–702.
- 89 Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science 2003; 299: 1057–1061.
- 90 Powrie F, Carlino J, Leach MW, Mauze S, Coffman RL. A critical role for transforming growth factor-beta but not interleukin 4 in the suppression of T helper type 1-mediated colitis by CD45RB (low) CD4 + T cells. J Exp Med 1996; 183: 2669–2674.
- 91 Groux H, et al. A CD4 + T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 1997; 389: 737–742.
- 92 Huber S, et al. Cutting edge: TGF-beta signaling is required for the in vivo expansion and immunosuppressive capacity of regulatory CD4 + CD25 + T cells. J Immunol 2004; 173: 6526–6531.
- 93 Mattingly JA, Waksman BH. Immunologic suppression after oral administration of antigen. I. Specific suppressor cells formed in rat Peyer's patches after oral administration of sheep erythrocytes and their systemic migration. J Immunol 1978; 121: 1878–1883.
- 94 Strobel S, Mowat AM, Drumond HE, Pickering MG, Ferguson A. Immunological responses to fed protein antigen in mice. Immunology 1983; 49: 451–456.
- 95 Cowdery JS, Johlin BJ. Regulation of the primary in vitro response to TNP-polymerized ovalbumin by T suppressor cells induced by ovalbumin feeding. J Immunol 1984; 132: 2783–2789.
- 96 Gautam SC, Chikkala NF, Battisto JR. Oral administration of the contact sensitizer trinitrochlorobenzene: initial sensitization and subsequent appearance of a suppressor population. Cell Immunol 1990; 125: 437–448.
- 97 Bloom BR, Salgame P, Diamond B. Revisiting and revising suppressor T cells. Immunol Today 1992; 13: 131–136.
- 98 Sercaz E, Krzych U. The distinctive specificity of antigen-specific suppressor T-cells. Immunol Today 1991; 12: 111–118.
- 99 Miller A, Lider O, Al-Sabbagh A, Weiner HL. Suppression of experimental autoimmune encephalomyelitis by oral administration of myelin basic protein. V. Hierarchy of suppression by myelin basic protein from different species. J Neuroimmunol 1992; 39: 243–250.
- 100 Miller A, Al-Sabbagh A, Santos L, Das MP, Weiner HL. Epitopes of myelin basic protein that trigger TGF-b release following oral tolerization are distinct from encephalitogenic epitopes and mediate epitope driven bystander suppression. J Immunol 1993; 151: 7307–7315.
- 101 Von Herrath MG, Dyrberg T, Oldstone MB. Oral insulin treatment suppresses virus-induced antigen-specific destruction of beta cells and prevents autoimmune diabetes in transgenic mice. J Clin Invest 1996; 98: 1324–1331.
- 102 Zhou J, Carr RI, Liwski RS, Stadnyk AW, Lee TD. Oral exposure to alloantigen generates intragraft CD8 + regulatory cells. J Immunol 2001; 167: 107–113.
- 103 Mosmann TR, Sad S. The expanding universe of T-cell subsets: Th1, Th2 more. Immunol Today 1996; 17: 138–146.
- 104 Den Haan JM, Bevan MJ. Antigen presentation to CD8 + T cells: cross-priming in infectious diseases. Curr Opin Immunol 2001; 13: 437–441.
- 105 Maecker HT, Ghanekar SA, Suni MA, He XS, Picker LJ, Maino VC. Factors affecting the efficiency of CD8 + T cell cross-priming with exogenous antigens. J Immunol 2001; 166: 7268–7275.
- 106 Alpan O, Bachelder E, Isil E, Arnheiter H, Matzinger P. ‘Educated’ dendritic cells act as messengers from memory to naive T helper cells. Nat Immunol 2004; 5: 615–622.
- 107 Hu D, Ikizawa K, Lu L, Sanchirico ME, Shinohara ML, Cantor H. Analysis of regulatory CD8 T cells in Qa-1-deficient mice. Nat Immunol 2004; 5: 516–523.
- 108 Gonnella PA, Waldner HP, Weiner HL. B cell-deficient (mu MT) mice have alterations in the cytokine microenvironment of the gut-associated lymphoid tissue (GALT) and a defect in the low dose mechanism of oral tolerance. J Immunol 2001; 166: 4456–4464.
- 109 Vistica BP, et al. CD8 T-cells are not essential for the induction of ‘low-dose’ oral tolerance. Clin Immunol Immunopathol 1996; 78: 196–202.
- 110 Grdic D, Hornquist E, Kjerrulf M, Lycke NY. Lack of local suppression in orally tolerant CD8-deficient mice reveals a critical regulatory role of CD8 + T cells in the normal gut mucosa. J Immunol 1998; 160: 754–762.
- 111 Garside P, Steel M, Liew FY, Mowat AM. CD4 + but not CD8 + T cells are required for the induction of oral tolerance. Int Immunol 1995; 7: 501–504.
- 112 Chen Y, Inobe J, Weiner HL. Induction of oral tolerance to myelin basic protein in CD8-depleted mice. Both CD4 + and CD8 + cells mediate active suppression. J Immunol 1995; 155: 910–916.
- 113 Barone KS, Jain SL, Michael JG. Effect of in vivo depletion of CD4 + and CD8 + cells on the induction and maintenance of oral tolerance. Cell Immunol 1995; 163: 19–29.
- 114 Mengel J, Cardillo F, Aroeira LS, Williams O, Russo M, Vaz NM. Anti-gamma delta T cell antibody blocks the induction and maintenance of oral tolerance to ovalbumin in mice. Immunol Lett 1995; 48: 97–102.
- 115 Ke Y, Pearce K, Lake JP, Ziegler HK, Kapp JA. Gamma delta T lymphocytes regulate the induction and maintenance of oral tolerance. J Immunol 1997; 158: 3610–3618.
- 116
Spahn TW,
Issazadah S,
Salvin AJ,
Weiner HL.
Decreased severity of myelin oligodendrocyte glycoprotein peptide 33–35-induced experimental autoimmune encephalomyelitis in mice with a disrupted TCR delta chain gene.
Eur J Immunol
1999; 29: 4060–4071.
10.1002/(SICI)1521-4141(199912)29:12<4060::AID-IMMU4060>3.0.CO;2-S CAS PubMed Web of Science® Google Scholar
- 117 Trop S, Samsonov D, Gotsman I, Alper R, Diment J, Ilan Y. Liver-associated lymphocytes expressing NK1.1 are essential for oral immune tolerance induction in a murine model. Hepatology 1999; 29: 746–755.
- 118 Margenthaler JA, Landeros K, Kataoka M, Flye MW. CD1-dependent natural killer (NK1.1 (+)) T cells are required for oral and portal venous tolerance induction. J Surg Res 2002; 104: 29–35.
- 119 Roelofs-Haarhuis K, Wu X, Gleichmann E. Oral tolerance to nickel requires CD4 + invariant NKT cells for the infectious spread of tolerance and the induction of specific regulatory T cells. J Immunol 2004; 173: 1043–1050.
- 120 Ishimitsu R, Yajima T, Nishimura H, Kawauchi H, Yoshikai Y. NKT cells are dispensable in the induction of oral tolerance but are indispensable in the abrogation of oral tolerance by prostaglandin E. Eur J Immunol 2003; 33: 183–193.
- 121 Desvignes C, Bour H, Nicolas JF, Kaiserlian D. Lack of oral tolerance but oral priming for contact sensitivity to dinitrofluorobenzene in major histocompatibility complex class II-deficient mice and in CD4 + T cell-depleted mice. Eur J Immunol 1996; 26: 1756–1761.
- 122 Khoury SJ, Hancock WW, Weiner HL. Oral tolerance to myelin basic protein and natural recovery from experimental autoimmune encephalomyelites are associated with down-regulation of inflammatory cytokines and differential upregulation of transforming growth factor b, interleukin 4, and prostaglandin E expression in the brain. J Exp Med 1992; 176: 1355–1364.
- 123 Chen Y, Kuchroo V, Inobe J, Hafler DA, Weiner HL. Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelites. Science 1994; 265: 1237–1240.
- 124 Melamed D, Fishmann-Lobell J, Uni Z, Weiner HL, Friedman A. Peripheral tolerance of Th2 lymphocytes induced by continuous feeding of ovalbumin. Int Immunol 1996; 8: 717–724.
- 125 Neurath MF, Fuss I, Kelsall BL, Presky DH, Waegell W, Strober W. Experimental granulomatous colitis in mice is abrogated by induction of TGF-beta-mediated oral tolerance. J Exp Med 1996; 183: 2605–2616.
- 126 Maron R, Melican NS, Weiner HL. Regulatory Th2-type T cell lines against insulin and GAD peptides derived from orally- and nasally-treated NOD mice suppress diabetes. J Autoimmun 1999; 12: 251–258.
- 127 Russo M, et al. Prevention of lung eosinophilic inflammation by oral tolerance. Immunol Lett 1998; 61: 15–23.
- 128 Hoyne GF, Callow MG, Kuhlman J, Thomas WR. T-cell lymphokine response to orally administered proteins during priming and unresponsiveness. Immunol 1993; 78: 534–540.
- 129 Garside P, et al. T helper. cells are subject to high dose oral tolerance and are not essential for its induction. J Immunol 1995; 154: 5649–5655.
- 130 Russo M, et al. Suppression of asthma-like responses in different mouse strains by oral tolerance. Am J Respir Cell Mol Biol 2001; 24: 518–526.
- 131 Wolvers DA, Van Der Cammen MJ, Kraal G. Mucosal tolerance is associated with, but independent of, up-regulation Th2 responses. Immunology 1997; 92: 328–333.
- 132 Kuhn R, Lohler J, Rennick D, Rajewsky K, Muller W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell 1993; 75: 263–274.
- 133 Tsuji NM, Mizumachi K, Kurisaki J. Interleukin-10-secreting Peyer's patch cells are responsible for active suppression in low-dose oral tolerance. Immunology 2001; 103: 458–464.
- 134 Aroeira LS, Cardillo F, De Albuquerque DA, Vaz NM, Mengel J. Anti-IL-10 treatment does not block either the induction or the maintenance of orally induced tolerance to OVA. Scand J Immunol 1995; 41: 319–323.
- 135 Rizzo LV, et al. IL-4 and IL-10 are both required for the induction of oral tolerance. J Immunol 1999; 162: 2613–2622.
- 136 Kitani A, Fuss I, Nakamura K, Kumaki F, Usui T, Strober W. Transforming growth factor (TGF)-beta1-producing regulatory T cells induce Smad-mediated interleukin 10 secretion that facilitates coordinated immunoregulatory activity and amelioration of TGF-beta1-mediated fibrosis. J Exp Med 2003; 198: 1179–1188.
- 137 Hoyne GF, Thomas WR. T-cell responses to orally administered antigens. Study of the kinetics of lymphokine production after single and multiple feeding. Immunology 1995; 84: 304–309.
- 138 Mowat AM, Steel M, Leishman AJ, Garside P. Normal induction of oral tolerance in the absence of a functional IL-12-dependent IFN-gamma signaling pathway. J Immunol 1999; 163: 4728–4736.
- 139 Mueller DL, Jenkins MK, Schwartz RH. Clonal expansion versus functional clonal inactivation. a costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy. Annu Rev Immunol 1989; 7: 445–480.
- 140 Baschieri S, Lees RK, Lussow AR, MacDonald HR. Clonal anergy to staphylococcal enterotoxin B in vivo. selective effects on T cell subsets and lymphokines. Eur J Immunol 1993; 23: 2661–2666.
- 141 Liu Y, Janeway CA Jr. Interferon gamma plays a critical role in induced cell death of effector T cell: a possible third mechanism of self-tolerance. J Exp Med 1990; 172: 1735–1739.
- 142 McMenamin C, McKersey M, Kuhnlein P, Hunig T, Holt PG. γδ T cells down-regulate primary IgE responses in rats to inhaled soluble protein antigens. J Immunol 1995; 154: 4390–4394.
- 143 Kweon MN, et al. Lack of orally induced systemic unresponsiveness in IFN-gamma knockout mice. J Immunol 1998; 160: 1687–1693.
- 144 Lee HO, Miller SD, Hurst SD, Tan LJ, Cooper CJ, Barrett TA. Interferon gamma induction during oral tolerance reduces T-cell migration to sites of inflammation. Gastroenterology 2000; 119: 129–138.
- 145 Kjerrulf M, Grdic K, Ekman L, Schon K, Vajdy M, Lycke NY. Interferon-gamma receptor-deficient mice exhibit impaired gut mucosal immune responses but intact oral tolerance. Immunology 1997; 92: 60–68.
- 146 Turcanu V, Maleki SJ, Lack G. Characterization of lymphocyte responses to peanuts in normal children, peanut-allergic children, and allergic children who acquired tolerance to peanuts. J Clin Invest 2003; 111: 1065–1072.
- 147 Fukaura H, Kent SC, Pietrusewicz MJ, Khoury SJ, Weiner HL. Hafler DA. Induction of circulating myelin basic protein and proteolipid protein-specific transforming growth factor-beta1-secreting Th3 T cells by oral administration of myelin in multiple sclerosis patients. J Clin Invest 1996; 98: 70–77.
- 148 Christ M, et al. Immune dysregulation in TGF-beta 1-deficient mice. J Immunol 1994; 153: 1936–1946.
- 149 Kim PH, Kagnoff MF. Transforming growth factor beta 1 increases IgA isotype switching at the clonal level. J Immunol 1990; 145: 3773–3778.
- 150 Roberts AB, Sporn MB. Physiological actions and clinical applications of transforming growth factor-beta (TGF-beta). Growth Factors 1993; 8: 1–9.
- 151 Santos LM, Al-Sabbagh A, Londono A, Weiner HL. Oral tolerance to myelin basic protein induces regulatory TGF-beta-secreting T cells in Peyer's patches of SJL mice. Cell Immunol 1994; 157: 439–447.
- 152 Wang ZY, et al. Induction of interferon-gamma, interleukin-4, and transforming growth factor-beta in rats orally tolerized against experimental autoimmune myasthenia gravis. Cell Immunol 1994; 157: 353–368.
- 153 Kitani A, Fuss IJ, Nakamura K, Schwartz OM, Usui T, Strober W. Treatment of experimental (Trinitrobenzene sulfonic acid) colitis by intranasal administration of transforming growth factor (TGF) -beta1 plasmid. TGF-beta1-mediated suppression of T helper cell type 1 response occurs by interleukin (IL)-10 induction and IL-12 receptor beta2 chain downregulation. J Exp Med 2000; 192: 41–52.
- 154 Weiner HL, Mayer LF. Introduction. Ann NY Acad Sci 1996; 778: xiii–xviii.
- 155 Zhang X, Izikson L, Liu L, Weiner HL. Activation of CD25(+)CD4(+) regulatory T cells by oral antigen administration. J Immunol 2001; 167: 4245–4253.
- 156 Oida T, et al. CD4 + CD25- T cells that express latency-associated peptide on the surface suppress CD4 + CD45RBhigh-induced colitis by a TGF-beta-dependent mechanism. J Immunol 2003; 170: 2516–2522.
- 157 Nakamura K, et al. TGF-beta 1 plays an important role in the mechanism of CD4 + CD25 + regulatory T cell activity in both humans and mice. J Immunol 2004; 172: 834–842.
- 158 Nagatani K, Sagawa K, Komagata Y, Yamamoto K. Peyer's patch dendritic cells capturing oral antigen interact with antigen-specific T cells and induce gut-homing CD4 + CD25 + regulatory T cells in Peyer's patches. Ann NY Acad Sci 2004; 1029: 366–370.
- 159 Tsuji NM, Nowak B. IL-18 and antigen-specific CD4 + regulatory T cells in Peyer's patches. Ann NY Acad Sci 2004; 1029: 413–415.
- 160 Thorstenson KM, Khoruts A. Generation of anergic and potentially immunoregulatory CD25 + CD4 T cells in vivo after induction of peripheral tolerance with intravenous or oral antigen. J Immunol 2001; 167: 188–195.
- 161 Kato H, Fujihashi K, Kato R, Yuki Y, McGhee JR. Oral tolerance revisited: prior oral tolerization abrogates cholera toxin-induced mucosal IgA responses. J Immunol 2001; 166: 3114–3121.
- 162 Fuss IJ, Boirivant M, Lacy B, Strober W. The interrelated roles of TGF-beta and IL-10 in the regulation of experimental colitis. J Immunol 2002; 168: 900–908.
- 163 Gonnella PA, Chen Y, Inobe J-I, Komagata Y, Quartulli M, Weiner HL. In situ immune response in gut-associated lymphoid tissue (GALT) following oral antigen in TCR-transgenic mice. J Immunol 1998; 160: 4708–4718.
- 164 Lundin BS, Karlsson MR, Svensson LA, Hanson LA, Dahlgren UI, Telemo E. Active suppression in orally tolerized rats coincides with in situ transforming growth factor-beta (TGF-beta) expression in the draining lymph nodes. Clin Exp Immunol 1999; 116: 181–187.
- 165 Barnard JA, Warwick GJ, Gold LI. Localization of transforming growth factor beta isoforms in the normal murine small intestine and colon. Gastroenterology 1993; 105: 67–73.
- 166 Galliaerde V, Desvignes C, Peyron E, Kaiserlian D. Oral tolerance to haptens: intestinal epithelial cells from 2,4-dinitrochlorobenzene-fed mice inhibit hapten-specific T cell activation in vitro. Eur J Immunol 1995; 25: 1385–1390.
- 167 Haneda K, Sano K, Tamura G, Sato T, Habu S, Shirato K. TGF-beta induced by oral tolerance ameliorates experimental tracheal eosinophilia. J Immunol 1997; 159: 4484–4490.
- 168 Shull MM, et al. Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 1992; 359: 693–699.
- 169 Gorelik L, Flavell RA. Abrogation of TGFbeta signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity 2000; 12: 171–181.
- 170 Schramm C, et al. TGF-beta regulates airway responses via T cells. J Immunol 2003; 170: 1313–1319.
- 171 Barone KS, Tolarova DD, Ormsby I, Doetschman T, Michael JG. Induction of oral tolerance in TGF-beta 1 null mice. J Immunol 1998; 161: 154–160.
- 172 Miller RA. Aging and Immune Function. Int Rev Cytol 1991; 124: 187–214.
- 173 Cross AH, Tuohy VK, Raine CS. Development of reactivity to new myelin antigens during chronic relapsing autoimmune demyelination. Cell Immunol 1993; 146: 261–269.
- 174 Kaufman DL, et al. Spontaneous loss of T-cell tolerance to glutamic acid decarboxylase in murine insulin-dependent diabetes. Nature 1993; 366: 69–72.
- 175 Lehmann PV, Forsthuber T, Miller A, Sercarz EE. Spreading of T-cell autoimmunity to cryptic determinants of an autoantigen. Nature 1992; 358: 155–157.
- 176 McCarron RM, Fallis RJ, McFarlin DE. Alterations in T cell antigen specificity and class II restriction during the course of chronic relapsing experimental allergic encephalomyelitis. J Neuroimmunol 1990; 29: 73–79.
- 177 Tisch R, Yang XD, Singer SM, Liblau RS, Fugger L, McDevitt HO. Immune response to glutamic acid decarboxylase correlates with insulitis in non-obese diabetic mice. Nature 1993; 366: 72–75.
- 178 Kerlero de Rosbo N, Milo R, Lees MB, Burger D, Bernard CC, Ben-Nun A. Reactivity to myelin antigens in multiple sclerosis. Peripheral blood lymphocytes respond predominantly to myelin oligodendrocyte glycoprotein. J Clin Invest 1993; 92: 2602–2608.
- 179 Zhang J, Markovic-Plese S, Lacet B, Raus J, Weiner HL, Hafler DA. Increased frequency of interleukin 2-responsive T cells specific for myelin basic protein and proteolipid protein in peripheral blood and cerebrospinal fluid of patients with multiple sclerosis. J Exp Med 1994; 179: 973–984.
- 180 Harrison LC. Islet cell antigens in insulin-dependent diabetes: Pandora's box revisited. Immunol Today 1992; 13: 348–352.
- 181 Da Cunha AP, Vaz NM, Carvalho CR. Study of oral tolerance and its indirect effects in adoptive cell transfer experiments. Ann NY Acad Sci 2004; 1029: 321–327.
- 182 Miller A, Lider O, Weiner HL. Antigen driven bystander suppression after oral administration of antigen. J Exp Med 1991; 174: 791–798.
- 183 Miller A, Zhang ZJ, Sobel RA, Al-Sabbagh A, Weiner HL. Suppression of experimental autoimmune encephalomyelitis by oral administration of myelin basic protein. VI. Suppression of adoptively transferred disease and differential effects of oral vs. intravenous tolerization. J Neuroimmunol 1993; 46: 73–82.
- 184 Lanzavecchia A. Immunology. Licence to kill. Nature 1998; 393: 413–414.
- 185 Carvalho CR, Verdolin BA, De Souza AV, Vaz NM. Indirect effects of oral tolerance in mice. Scand J Immunol 1994; 39: 533–538.
- 186 Carvalho CR, Verdolin BA, Vaz NM. Indirect effects of oral tolerance cannot be ascribed to bystander suppression. Scand J Immunol 1997; 45: 276–281.
- 187 Brossart P, Bevan MJ. Presentation of exogenous protein antigens on major histocompatibility complex class I molecules by dendritic cells: pathway of presentation and regulation by cytokines. Blood 1997; 90: 1594–1599.
- 188 Al-Sabbagh A, Miller A, Santos LM, Weiner HL. Antigen-driven tissue-specific suppression following oral tolerance: orally administered myelin basic protein suppresses proteolipid protein-induced experimental autoimmune encephalomyelitis in the SJL mouse. Eur J Immunol 1994; 24: 2104–2109.
- 189 Yoshino S. Antigen-induced arthritis in rats is suppressed by the inducing antigen administered orally before, but not after immunization. Cell Immunol 1995; 163: 55–58.
- 190 Zhang Z, Michael JG. Orally inducible immune responsiveness is abrogated by IFN-g treatment. J Immunol 1990; 144: 4163–4165.
- 191 Bregenholt S, et al. The cholera toxin B subunit is a mucosal adjuvant for oral tolerance induction in type 1 diabetes. Scand J Immunol 2003; 57: 432–438.
- 192 Ilan Y. Immune downregulation leads to upregulation of an antiviral response: a lesson from the hepatitis B virus. Microbes Infect 2002; 4: 1317–1326.
- 193 Carvalho CR, Lenzi HL, Correa-Oliveira R, Vaz NM. Indirect effects of oral tolerance to ovalbumin interfere with the immune responses triggered by Schistosoma mansoni eggs. Braz J Med Biol Res 2002; 35: 1195–1199.
- 194 Zivny JH, Moldoveanu Z, Vu HL, Russell MW, Mestecky J, Elson CO. Mechanisms of immune tolerance to food antigens in humans. Clin Immunol 2001; 101: 158–168.
- 195 Wildner G, Thurau SR. Orally induced bystander suppression in experimental autoimmune uveoretinitis occurs only in the periphery and not in the eye. Eur J Immunol 1995; 25: 1292–1297.
- 196 Lundin BS, Dahlgren YIH, Hanson LA, Telemo E. Oral tolerization leads to active suppression and bystander tolerance in adult rats while anergy dominates in young rats. Scand J Immunol 1996; 43: 56–63.
- 197 Becker KJ, et al. Immunologic tolerance to myelin basic protein decreases stroke size after transient focal cerebral ischemia. Proc Natl Acad Sci USA 1997; 94: 10873–10878.
- 198 Frenkel D, et al. Nasal vaccination with myelin oligodendrocyte glycoprotein reduces stroke size by inducing IL-10-producing CD4 + T cells. J Immunol 2003; 171: 6549–6555.
- 199 Monsonego A, Beserman ZP, Kipnis J, Yoles E, Weiner HL, Schwartz M. Beneficial effect of orally administered myelin basic protein in EAE-susceptible Lewis rats in a model of acute CNS degeneration. J Autoimmun 2003; 21: 131–138.
- 200 Maron R, Sukhova G, Faria AM, Hoffmann E, Mach F, Libby P, Weiner HL. Mucosal administration of heat shock protein-65 decreases atherosclerosis and inflammation in aortic arch of low-density lipoprotein receptor-deficient mice. Circulation 2002; 106: 1599–1601.
- 201 Harats D, Yacov N, Gilburd B, Shoenfeld Y, George J. Oral tolerance with heat shock protein 65 attenuates Mycobacterium tuberculosis-induced and high-fat-diet-driven atherosclerotic lesions. J Am Coll Cardiol 2002; 40: 1333–1338.
- 202 Slavin AJ, Maron R, Weiner HL. Mucosal administration of IL-10 enhances oral tolerance in autoimmune encephalomyelitis and diabetes. Int Immunol 2001; 13: 825–833.
- 203
Inobe J,
Slavin AJ,
Komagata Y,
Chen Y,
Liu L,
Weiner HL.
IL-4 is a differentiation factor for transforming growth factor-beta secreting Th3 cells and oral administration of IL-4 enhances oral tolerance in experimental allergic encephalomyelitis.
Eur J Immunol
1998; 28: 2780–2790.
10.1002/(SICI)1521-4141(199809)28:09<2780::AID-IMMU2780>3.0.CO;2-J CAS PubMed Web of Science® Google Scholar
- 204 Khoury SJ, Lider O, Al-Sabbagh A, Weiner HL. Suppression of experimental autoimmune encephalomyelitis by oral administration of myelin basic protein. III. Synergistic effect of lypopolysaccharide. Cell Immunol 1990; 131: 302–310.
- 205 Rizzo LV, Miller-Rivero NE, Chan CC, Wiggert B, Nussenblatt RB, Caspi RR. Interleukin-2 treatment potentiates induction of oral tolerance in a murine model of autoimmunity. J Clin Invest 1994; 94: 1668–1672.
- 206 Pecquet S, Leo E, Fritsche R, Pfeifer A, Couvreur P, Fattal E. Oral tolerance elicited in mice by beta-lactoglobulin entrapped in biodegradable microspheres. Vaccine 2000; 18: 1196–1202.
- 207 Kim WU, et al. Suppression of collagen-induced arthritis by single administration of poly (lactic-co-glycolic acid) nanoparticles entrapping type II collagen: a novel treatment strategy for induction of oral tolerance. Arthritis Rheum 2002; 46: 1109–1120.
- 208 Masuda K, Horie K, Suzuki R, Yoshikawa T, Hirano K. Oral delivery of antigens in liposomes with some lipid compositions modulates oral tolerance to the antigens. Microbiol Immunol 2002; 46: 55–58.
- 209 Thorbecke GJ, Schwarcz R, Leu J, Huang C, Simmons WJ. Modulation by cytokines of induction of oral tolerance to type II collagen. Arthritis Rheum 1999; 42: 110–118.
- 210 Holmgren J, Czerkinsky C, Eriksson K, Mharandi A. Mucosal immunisation and adjuvants: a brief overview of recent advances and challenges. Vaccine 2003; 21: S89–S95.
- 211 Eaton AD, Xu D, Garside P. Administration of exogenous interleukin-18 and interleukin-12 prevents the induction of oral tolerance. Immunology 2003; 108: 196–203.
- 212 Nelson PA, et al. Effect of oral beta interferon on subsequent immune responsiveness. Ann NY Acad Sci 1996; 778: 145–155.
- 213 Soos JM, et al. Cutting edge: oral type I IFN-tau promotes a Th2 bias and enhances suppression of autoimmune encephalomyelitis by oral glatiramer acetate. J Immunol 2002; 169: 2231–2235.
- 214 Shi HN, Liu HY, Nagler-Anderson C. Enteric infection acts as an adjuvant for the response to a model food antigen. J Immunol 2000; 165: 6174–6182.
- 215 Sugihara R, Matsumoto Y, Ohmori H. Suppression of IgE antibody response in mice by a polysaccharide, AZ9, produced by Klebsiella oxytoca strain TNM3. Immunopharmacol Immunotoxicol 2002; 24: 245–254.
- 216 Maron R, Palanivel V, Weiner HL, Harn DA. Oral administration of schistosome egg antigens and insulin B-chain generates and enhances Th2-type responses in NOD mice. Clin Immunol Immunopathol 1998; 87: 85–92.
- 217 Karpus WJ, Kennedy KJ, Kunkel SL, Lukacs NW. Monocyte chemotactic protein 1 regulates oral tolerance induction by inhibition of T helper cell 1-related cytokines. J Exp Med 1998; 187: 733–741.
- 218 Ke Y, Pearce K, Lake JP, Ziegler HK, Kapp JA. gd T lymphocytes regulate the induction of oral tolerance. J Immunol 1997; 158: 3610–3618.
- 219 Higgins PJ, Weiner HL. Suppression of experimental autoimmune encephalomyelitis by oral administration of myelin basic protein and its fragments. J Immunol 1988; 140: 440–445.
- 220 Bitar DM, Whitacre CC. Suppression of experimental autoimmune encephalomyelitis by the oral administration of myelin basic protein. Cell Immunol 1988; 112: 364–370.
- 221 Javed NH, Gienapp IE, Cox KL, Whitacre CC. Exquisite peptide specificity of oral tolerance in experimental autoimmune encephalomyelitis. J Immunol 1995; 155: 1599–1605.
- 222 Brod SA, Al-Sabbagh A, Sobel RA, Hafler DA, Weiner HL. Suppression of experimental autoimmune encephalomyelitis by oral administration of myelin antigens. IV. Suppression of chronic relapsing disease in the Lewis rat and strain 13 guinea pig. Ann Neurol 1991; 29: 615–622.
- 223 Meyer A, Gienapp I, Cox K, Goverman J, Hood L, Whitacre C. Oral tolerance in myelin basic protein TCR transgenic mice. Ann NY Acad Sci 1996; 778: 412–413.
- 224 Al-Sabbagh A, Nelson PA, Akselband Y, Sobel RA, Weiner HL. Antigen-driven peripheral immune tolerance: suppression of experimental autoimmune encephalomyelitis and collagen-induced arthritis by aerosol administration of myelin basic protein or type II collagen. Cell Immunol 1996; 171: 111–119.
- 225 Teitelbaum D, Arnon R, Sela M. Immunomodulation of experimental autoimmune encephalomyelitis by oral administration of copolymer 1. Proc Natl Acad Sci USA 1999; 96: 3842–3847.
- 226 Maron R, Slavin AJ, Hoffmann E, Komagata Y, Weiner HL. Oral tolerance to copolymer 1 in myelin basic protein (MBP) TCR transgenic mice: cross-reactivity with MBP-specific TCR and differential induction of anti-inflammatory cytokines. Int Immunol 2002; 14: 131–138.
- 227 Weiner HL. Oral tolerance with copolymer 1 for the treatment of multiple sclerosis. Proc Natl Acad Sci USA 1999; 96: 3333–3335.
- 228 Thompson HSG, Staines NA. Prevention of collagen-induced arthritis by oral administration of encapsulated type II collagen. Clin Exp Immunol 1986; 64: 581–586.
- 229 Courtenay JS, Dallman MJ, Dayan AD, Martin A, Mosedale B. Immunisation against heterologous type II collagen induces arthritis in mice. Nature 1980; 283: 666–668.
- 230 Trentham DE, Townes AS, Kang AH. Autoimmunity to type II collagen an experimental model of arthritis. J Exp Med 1977; 146: 857–868.
- 231 Nagler-Anderson C, Bober LA, Robinson ME, Siskind GW, Thorbecke JG. Suppression of type II collagen-induced arthritis by intragastric administration of soluble type II collagen. Proc Natl Acad Sci USA 1986; 83: 7443–7446.
- 232 Khare SD, Krco CJ, Griffiths MM, Luthra HS, David CS. Oral administration of an immunodominant human collagen peptide modulates collagen-induced arthritis. J Immunol 1995; 155: 3653–3659.
- 233 Myers LK, et al. Characterization of recombinant type II collagen: arthritogenicity and tolerogenicity in DBA/1 mice. Immunology 1998; 95: 631–639.
- 234 Yoshino S. Treatment with an anti-IL-4 monoclonal antibody blocks suppression of collagen-induced arthritis in mice by oral administration of type II collagen. J Immunol 1998; 160: 3067–3071.
- 235 Van Eden W, et al. Cloning of the mycobacterial epitope recognized by T lymphocytes in adjuvant arthritis. Nature 1988; 331: 171–173.
- 236 Haque MA, Yoshino S, Inada S, Nomaguchi H, Tokunaga O, Kohashi O. Suppression of adjuvant arthritis in rats by induction of oral tolerance to mycobacterial 65-kDa heat shock protein. Eur J Immunol 1996; 26: 2650–2656.
- 237 Thompson SJ, et al. Prevention of pristane-induced arthritis by the oral administration of type II collagen. Immunology 1993; 79: 152–157.
- 238 Yoshino S. Downregulation of silicone-induced chronic arthritis by gastric administration of type II collagen. Immunopharmacology 1995; 31: 103–108.
- 239 Yoshino S, Yoshino J. Effect of a monoclonal antibody against inter leukin-4 on suppression of antigen-induced arthritis in mice by oral administration of the inducing antigen. Cell Immunol 1998; 187: 139–144.
- 240 Chen W, Jin W, Cook M, Weiner HL, Wahl SM. Oral delivery of group A streptococcal cell walls augments circulating TGF-beta and suppresses streptococcal cell wall arthritis. J Immunol 1998; 161: 6297–6304.
- 241 Weiner HL, Komagata Y. Oral tolerance and the treatment of rheumatoid arthritis. Springer Semin Immunopathol 1998; 20: 289–308.
- 242 Zhang ZJ, Davidson L, Eisenbarth G, Weiner HL. Suppression of diabetes in non obese diabetic mice by oral administration of porcine insulin. Proc Natl Acad Sci USA 1991; 88: 10252–10256.
- 243 Bergerot I, et al. Insulin B-chain reactive CD4 + regulatory T-cells induced by oral insulin treatment protect from type 1 diabetes by blocking the cytokine secretion and pancreatic infiltration of diabetogenic effector T-cells. Diabetes 1999; 48: 1720–1729.
- 244 Hancock WW, Polanski M, Zhang J, Blogg N, Weiner HL. Suppression of insulitis in non-obese diabetic (NOD) mice by oral insulin administration is associated with selective expression of interleukin-4 and – 10, transforming growth factor-beta, and prostaglandin-E. Am J Pathol 1995; 147: 1193–1199.
- 245 King C, et al. TGF-beta1 alters APC preference, polarizing islet antigen responses toward a Th2 phenotype. Immunity 1998; 8: 601–613.
- 246 Polanski M, Melican NS, Zhang J, Weiner HL. Oral administration of the immunodominant B-chain of insulin reduces diabetes in a co-transfer model of diabetes in the NOD mouse and is associated with a switch from Th1 to Th2 cytokines. J Autoimmun 1997; 10: 339–346.
- 247 Bellmann K, et al. Intervention in autoimmune diabetes by targeting the gut immune system. Int J Immunopharmacol 1997; 19: 573–577.
- 248 Ma SW, et al. Transgenic plants expressing auto antigens fed to mice to induce oral immune tolerance. Nat Med 1997; 3: 793–796.
- 249 Arakawa T, Yu J, Chong DK, Hough J, Engen PC, Langridge WH. A plant-based cholera toxin B subunit-insulin fusion protein protects against the development of autoimmune diabetes. Nat Biotechnol 1998; 16: 934–938.
- 250 Mordes JP, et al. Oral insulin does not prevent insulin-dependent diabetes mellitus in BB rats. Ann NY Acad Sci 1996; 778: 418–421.
- 251 Bellmann K, Kolb H, Rastegar S, Jee P, Scott FW. Potential risk of oral insulin with adjuvant for the prevention of Type I diabetes: a protocol effective in NOD mice may exacerbate disease in BB rats. Diabetologia 1998; 41: 844–847.
- 252 Herbelin A, Gombert JM, Lepault F, Bach JF, Chatenoud L. Mature mainstream TCR alpha beta + CD4 + thymocytes expressing 1-selectin mediate ‘active tolerance’ in the nonobese diabetic mouse. J Immunol 1998; 161: 2620–2628.
- 253 Blanas E, Carbone FR, Allison J, Miller JF, Heath WR. Induction of autoimmune diabetes by oral administration of autoantigen. Science 1996; 274: 1707–1709.
- 254 Dasgupta A, Kesari KV, Ramaswamy KK, Amenta PS, Das KM. Oral administration of unmodified colonic but not small intestinal antigens protects rats from hapten-induced colitis. Clin Exp Immunol 2001; 125: 41–47.
- 255 Leach MW, Bean AG, Mauze S, Coffman RL, Powrie F. Inflammatory bowel disease in C.B-17 scid mice reconstituted with the CD45RBhigh subset of CD4 + T cells. Am J Pathol 1996; 148: 1503–1515.
- 256 Zhou P, Borojevic R, Streutker C, Snider D, Liang H, Croitoru K. Expression of dual TCR on DO11.10 T cells allows for ovalbumin-induced oral tolerance to prevent T cell-mediated colitis directed against unrelated enteric bacterial antigens. J Immunol 2004; 172: 1515–1523.
- 257 Asseman C, Mauze S, Leach MW, Coffman RL, Powrie F. An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J Exp Med 1999; 190: 995–1004.
- 258
Fowler S,
Powrie F.
CTLA-4 expression on antigen-specific cells but not IL-10 secretion is required for oral tolerance.
Eur J Immunol
2002; 32: 2997–3006.
10.1002/1521-4141(2002010)32:10<2997::AID-IMMU2997>3.0.CO;2-D CAS PubMed Web of Science® Google Scholar
- 259 Nussenblatt RB, et al. Inhibition of S antigen induced experimental autoimmune uveoretinitis by oral induction of tolerance with S antigen. J Immunol 1990; 144: 1689–1695.
- 260 Wildner G, Thurau SR. Cross-reactivity between an HLA-B27-derived peptide and a retinal autoantigen peptide: a clue to major histocompatibility complex association with autoimmune disease. Eur J Immunol 1994; 24: 2579–2585.
- 261 Thurau SR, Chan CC, Suh E, Nussenblatt RB. Induction of oral tolerance to S-antigen induced experimental autoimmune uveitis by a uveitogenic 20mer peptide. J Autoimmun 1991; 4: 507–516.
- 262 Thurau SR, Chan CC, Nussenblatt RB, Caspi RR. Oral tolerance in a murine model of relapsing experimental autoimmune uveoretinitis (EAU): induction of protective tolerance in primed animals. Clin Exp Immunol 1997; 109: 370–376.
- 263 Thurau SR, Diedrichs-Mohring M, Fricke H, Arbogast S, Wildner G. Molecular mimicry as a therapeutic approach for an autoimmune disease. oral treatment of uveitis-patients with an MHC-peptide crossreactive with autoantigen – first results. Immunol Lett 1997; 57: 193–201.
- 264 Torseth JW, Gregerson DS. Oral tolerance in experimental autoimmune uveoretinitis: feeding after disease induction is less protective than prefeeding. Clin Immunol Immunopathol 1998; 88: 297–304.
- 265 Torseth JW, Gregerson DS. Oral tolerance in experimental autoimmune uveoretinitis: feeding after disease induction is less protective than prefeeding. Clin Immunol Immunopathol 1998; 88: 297–304.
- 266 Wang ZY, Qiao J, Link H. Suppression of experimental autoimmune myasthenia gravis by oral administration of acetylcholine receptor. J Neuroimmunol 1993; 44: 209–214.
- 267 Okumura S, McIntosh K, Drachman DB. Oral administration of acetylcholine receptor: effects on experimental myasthenia gravis. Ann Neurol 1994; 36: 704–713.
- 268 Van Halteren AG, Van Der Cammen MJ, Cooper D, Savelkoul HF, Kraal G, Holt PG. Regulation of antigen-specific IgE, IgG1, and mast cell responses to ingested allergen by mucosal tolerance induction. J Immunol 1997; 159: 3009–3015.
- 269 Aramaki Y, Fujii Y, Suda H, Suzuki I, Yadomae T, Tsuchiya S. Induction of oral tolerance after feeding of ragweed pollen extract in mice. Immunol Lett 1994; 40: 21–25.
- 270 Sato MN, Carvalho AF, Silva AO, MacIel M Jr, Fusaro AE, Duarte AJ. Oral tolerance induced to house dust mite extract in naive and sensitized mice. evaluation of immunoglobulin G anti-immunoglobulin E autoantibodies and IgG-IgE complexes. Immunology 1998; 95: 193–199.
- 271 Blank M, George J, Barak V, Tincani A, Koike T, Shoenfeld Y. Oral tolerance to low dose beta 2-glycoprotein I. immunomodulation of experimental antiphospholipid syndrome. J Immunol 1998; 161: 5303–5312.
- 272 Gaupp S, Hartung HP, Toyka K, Jung S. Modulation of experimental autoimmune neuritis in Lewis rats by oral application of myelin antigens. J Neuroimmunol 1997; 79: 129–137.
- 273 Browning MJ, Parrott DM. Protection from chronic immune complex nephritis by a single dose of antigen administered by the intragastric route. Adv Exp Med Biol 1987; 216B: 1619–1625.
- 274 Devey ME, Bleasdale K. Antigen feeding modifies the course of antigen-induced immune complex disease. Clin Exp Immunol 1984; 56: 637–644.
- 275 Gesualdo L, Lamm ME, Emancipator SN. Defective oral tolerance promotes nephritogenesis in experimental IgA nephropathy induced by oral immunization. J Immunol 1990; 145: 3684–3691.
- 276 Wang ZY, Huang J, Olsson T, He B, Link H. B cell responses to acetylcholine receptor in rats orally tolerized against experimental autoimmune myasthenia gravis. J Neurol Sci 1995; 128: 167–174.
- 277 Van Hoogstraten IM, Boden D, Von Blomberg ME, Kraal G, Scheper RJ. Persistent immune tolerance to nickel and chromium by oral administration prior to cutaneous sensitization. J Invest Dermatol 1992; 99: 608–616.
- 278 Van Hoogstraten IM, Boos C, Boden D, Von Blomberg ME, Scheper RJ, Kraal G. Oral induction of tolerance to nickel sensitization in mice. J Invest Dermatol 1993; 101: 26–31.
- 279 Guimaraes VC, et al. Suppression of development of experimental autoimmune thyroiditis by oral administration of thyroglobulin. Endocrinology 1995; 136: 3353–3359.
- 280 Peterson KE, Braley-Mullen H. Suppression of murine experimental autoimmune thyroiditis by oral administration of porcine thyroglobulin. Cell Immunol 1995; 166: 123–130.
- 281 Guimaraes VC, et al. Immunosuppression Thyroiditis Endocrinol 1996; 137: 2199–2207.
- 282 Zhang W, Kong YC. Noninvolvement of IL-4 and IL-10 in tolerance induction to experimental autoimmune thyroiditis. Cell Immunol 1998; 187: 95–102.
- 283 Nakao A, Kasai M, Kumano K, Nakajima H, Kurasawa K, Iwamoto I. High-dose oral tolerance prevents antigen-induced eosinophil recruitment into the mouse airways. Int Immunol 1998; 10: 387–394.
- 284 Sayegh MH, Khoury SJ, Hancock WW, Weiner HL, Carpenter CB. Induction of immunity and oral tolerance with polymorphic class II major histocompatibility complex allo peptides in the rat. Proc Natl Acad Sci USA 1992; 89: 7762–7766.
- 285 Hancock WW, Sayegh MH, Kwok CA, Weiner HL, Carpenter CB. Oral, but not intravenous, alloantigen prevents accelerated allograft rejection by selective intragraft Th2 cell activation. Transplantation 1993; 55: 1112–1118.
- 286 Ilan Y, et al. Oral tolerization to adenoviral antigens permits long-term gene expression using recombinant adenoviral vectors. J Clin Invest 1997; 99: 1098–1106.
- 287 Hachimura S, Fujikawa Y, Enomoto A, Kim SM, Ametani A, Kaminogawa S. Differential inhibition of T and B cell responses to individual antigenic determinants in orally tolerized mice. Int Immunol 1994; 6: 1791–1797.
- 288 Kim SM, Enomoto A, Hachimura S, Yamauchi K, Kaminogawa S. Serum antibody response elicited by a casein diet is directed to only limited determinants of alpha s1-casein. Int Arch Allergy Immunol 1993; 101: 260–265.
- 289 Taudorf E, et al. Oral immunotherapy in birch pollen hay fever. J Allergy Clin Immunol 1987; 80: 153–161.
- 290 Taudorf E. Oral immunotherapy of adults with allergic rhinoconjunctivitis. Clinical effects in birch and grass pollinosis. Dan Med Bull 1992; 39: 542–560.
- 291 Scadding GK, Brostoff J. Low dose sublingual therapy in patients with allergic rhinitis due to house dust mite. Clin Allergy 1986; 16: 483–491.
- 292 Litwin A, et al. Immunologic effects of encapsulated short ragweed extract: a potent new agent for oral immunotherapy. Ann Allergy Asthma Immunol 1996; 77: 132–138.
- 293 Litwin A, et al. Oral immunotherapy with short ragweed extract in a novel encapsulated preparation: a double-blind study. J Allergy Clin Immunol 1997; 100: 30–38.
- 294 Ariano R, Panzani RC, Augeri G. Efficacy and safety of oral immunotherapy in respiratory allergy to Parietaria judaica pollen. A double-blind study. J Investig Allergol Clin Immunol 1998; 8: 155–160.
- 295 Lowney ED. Tolerance of a contact sensitizer in man. Lancet 1968; 1: 1377.
- 296 Bagot M. Treatment of cutaneous T-cell lymphoma by retinoids and calcitriol. Lancet 1995; 346: 376–377.
- 297 Morris DL. Intradermal testing and sublingual desensitization for nickel. Cutis 1998; 61: 129–132.
- 298 Van Hoogstraten IM, et al. Reduced frequency of nickel allergy upon oral nickel contact at an early age. Clin Exp Immunol 1991; 85: 441–445.
- 299 Ergun-Longmire B, et al. Oral insulin therapy to prevent progression of immune-mediated (type 1) diabetes. New York Acad Sci 2004; 1029: 260–277.
- 300 Chaillous L, et al. Oral insulin administration and residual beta-cell function in recent-onset type 1 diabetes: a multicentre randomised controlled trial. Diabete Insuline Orale group. Lancet 2000; 356: 545–549.
- 301 Nussenblatt RB, et al. Treatment of uveitis by oral administration of retinal antigens: results of a phase I/II randomized masked trial. Am J Ophthalmol 1997; 123: 583–592.
- 302 Barnett ML, et al. Treatment of rheumatoid arthritis with oral type II collagen. Results of a multicenter, double-blind, placebo-controlled trial. Arthritis Rheum 1998; 41: 290–297.
- 303 Barnett ML, Combitchi D, Trentham DE. A pilot trial of oral type II collagen in the treatment of juvenile rheumatoid arthritis. Arthritis Rheum 1996; 4: 623–628.
- 304 Trentham DE, et al. Effects of oral administration of type II collagen on rheumatoid arthritis. Science 1993; 261: 1727–1730.
- 305 Choy EH, et al. Control of rheumatoid arthritis by oral tolerance. Arthritis Rheum 2001; 44: 1993–1997.
- 306 Myers LK, et al. Juvenile arthritis and autoimmunity to type II collagen. Arthritis Rheum 2001; 44: 1775–1781.
- 307 Postlethwaite AE. Can we induce tolerance in rheumatoid arthritis? Curr Rheumatol Rep 2001; 3: 64–69.
- 308 Lee S, Scherberg N, DeGroot LJ. Induction of oral tolerance in human autoimmune thyroid disease. Thyroid 1998; 8: 229–234.
- 309 Husby S, Mestecky J, Moldoveanu Z, Holland S, Elson CO. Oral tolerance in humans. T cell but not B cell tolerance after antigen feeding. J Immunol 1994; 152: 4663–4670.
- 310 Matsui M, Hafler DA, Weiner HL. Pilot study of oral tolerance to keyhole limpet hemocyanin in humans. down-regulation of KLH-reactive precursor-cell frequency. Ann NY Acad Sci 1996; 778: 398–404.
- 311 Kraus TA, Toy L, Chan L, Childs J, Mayer L. Failure to induce oral tolerance to a soluble protein in patients with inflammatory bowel disease. Gastroenterology 2004; 126: 1771–1778.
- 312 Campbell DA Jr, Lorber MI, Sweeton JC, Turcotte JG, Niederhuber JE, Beer AE. Breast feeding and maternal-donor renal allografts. Possibly the original donor-specific transfusion. Transplantation 1984; 37: 340–344.
- 313 Josien R, et al. A critical role for transforming growth factor-beta in donor transfusion-induced allograft tolerance. J Clin Invest 1998; 102: 1920–1926.
- 314 McKown KM, Carbone LD, Bustillo J, Seyer JM, Kang AH, Postlethwaite AE. Induction of immune tolerance to human type I collagen in patients with systemic sclerosis by oral administration of bovine type I collagen. Arthritis Rheum 2000; 43: 1054–1061.
- 315 Lown KS, et al. Grapefruit juice increases felodipine oral availability in humans by decreasing intestinal CYP3A protein expression. J Clin Invest 1997; 99: 2545–2553.
- 316 Benson JM, et al. Oral administration of myelin basic protein is superior to myelin in suppressing established relapsing experimental autoimmune encephalomyelitis. J Immunol 1999; 162: 6247–6254.
- 317 Weiner H, Mayer L, Strober W. Oral tolerance: New insights and prospects for clinical application. Ann NY Acad Sci 2004; 1029: 1–425.
- 318 Monetini L, et al. Immunotherapy Diabetes (IMDIAB) group. Cytokine profile and insulin antibody IgG subclasses in patients with recent onset type 1 diabetes treated with oral insulin. Diabetologia 2004; 47: 1795–1802.
- 319 Skyler JS, et al. Effects of oral insulin in relatives of patients with type 1 diabetes: The Diabetes Prevention Trial - Type 1. Diabetes Care 2005; 28: 1068–1076.
- 320 Weiner HL, et al. Double-blind pilot trial of oral tolerization with myelin antigensin multiple sclerosis. Science 1993; 259: 1263.
- 321 Im SH, Barchan D, Fuchs S, Souroujon MC. Suppression of ongoing experimental myasthenia by oral treatment with an acetylcholine receptor recombinant fragment. J Clin Invest 1999; 104: 1723–1730.