The polymeric immunoglobulin receptor: bridging innate and adaptive immune responses at mucosal surfaces
Corresponding Author
Charlotte S. Kaetzel
Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA
* Charlotte S. Kaetzel Department of Microbiology, Immunology and Molecular Genetics University of Kentucky 124D Combs Cancer Research Building 800 Rose St. Lexington, KY 40536, USA Tel: +1 859 257 6573 Fax: +1 859 257 8994 E-mail: [email protected]Search for more papers by this authorCorresponding Author
Charlotte S. Kaetzel
Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA
* Charlotte S. Kaetzel Department of Microbiology, Immunology and Molecular Genetics University of Kentucky 124D Combs Cancer Research Building 800 Rose St. Lexington, KY 40536, USA Tel: +1 859 257 6573 Fax: +1 859 257 8994 E-mail: [email protected]Search for more papers by this authorAbstract
Summary: Secretory antibodies of the immunoglobulin A (IgA) class form the first line of antigen-specific immune protection against inhaled, ingested, and sexually transmitted pathogens and antigens at mucosal surfaces. Epithelial transcytosis of polymeric IgA (pIgA) is mediated by the polymeric immunoglobulin receptor (pIgR). At the apical surface, the extracellular ligand-binding region of pIgR, known as secretory component (SC), is cleaved and released in free form or as a component of secretory IgA (SIgA). SC has innate anti-microbial properties, and it protects SIgA from proteolytic degradation. Expression of pIgR is regulated by microbial products through Toll-like receptor signaling and by host factors such as cytokines and hormones. Recent studies of the structure of the extracellular ligand-binding domain of pIgR have revealed mechanisms by which it binds pIgA and other ligands. During transcytosis, pIgA has been shown to neutralize pathogens and antigens within intracellular vesicular compartments. The recent identification of disease-associated polymorphisms in human pIgR near the cleavage site may help to unravel the mystery of how pIgR is cleaved to SC. The identification of novel functions for SC and SIgA has expanded our view of the immunobiology of pIgR, a key component of the mucosal immune system that bridges innate and adaptive immune defense.
References
- 1 Lamm ME. Interaction of antigens and antibodies at mucosal surfaces. Annu Rev Microbiol 1997; 51: 311–340.
- 2 Brandtzaeg P, et al. Mucosal immunity – a major adaptive defence mechanism. Behring Inst Mitt 1997; 98: 1–23.
- 3 Norderhaug IN, Johansen FE, Schjerven H, Brandtzaeg P. Regulation of the formation and external transport of secretory immunoglobulins. Crit Rev Immunol 1999; 19: 481–508.
- 4 Kaetzel CS, Mostov K. Immunoglobulin transport and the polymeric immunoglobulin receptor. In: J Mestecky, J Bienenstock, M Lamm, W Strober, J McGhee, L Mayer eds. Mucosal Immunology, 3rd edn. San Diego: Academic Press 2005, 211–250.
- 5 Mestecky J, Russell MW, Jackson S, Brown TA. The human IgA system: a reassessment. Clin Immunol Immunopath 1986; 40: 105–114.
- 6 Conley ME, Delacroix DL. Intravascular and mucosal immunoglobulin A. two separate but related systems of immune defense? Ann Intern Med 1987; 106: 892–899.
- 7 Tomasi TB Jr, Tan EM, Solomon A, Prendergast RA. Characteristics of an immune system common to certain external secretions. J Exp Med 1965; 121: 101–124.
- 8 Mostov KE, Kraehenbuhl J-P, Blobel G. Receptor-mediated transcellular transport of immunoglobulin: synthesis of secretory component as multiple and larger transmembrane forms. Proc Natl Acad Sci USA 1980; 77: 7257–7261.
- 9 Brandtzaeg P, Prydz H. Direct evidence for an integrated function of J chain and secretory component in epithelial transport of immunoglobulins. Nature 1984; 311: 71–73.
- 10 Mostov K, Su T, Ter Beest M. Polarized epithelial membrane traffic: conservation and plasticity. Nat Cell Biol 2003; 5: 287–293.
- 11 Johansen FE, et al. Absence of epithelial immunoglobulin A transport, with increased mucosal leakiness, in polymeric immunoglobulin receptor/secretory component-deficient mice. J Exp Med 1999; 190: 915–922.
- 12 Shimada S, et al. Generation of polymeric immunoglobulin receptor-deficient mouse with marked reduction of secretory IgA. J Immunol 1999; 163: 5367–5373.
- 13 Johansen FE, Brandtzaeg P. Transcriptional regulation of the mucosal IgA system. Trends Immunol 2004; 25: 150–157.
- 14 Martín MG, et al. Characterization of the 5′-flanking region of the murine polymeric IgA receptor gene. Am J Physiol 1998; 275: G778–G788.
- 15
Johansen FE,
Bosloven BA,
Krajci P,
Brandtzaeg P.
A composite DNA element in the promoter of the polymeric immunoglobulin receptor regulates its constitutive expression.
Eur J Immunol
1998; 28: 1161–1171.
10.1002/(SICI)1521-4141(199804)28:04<1161::AID-IMMU1161>3.0.CO;2-S CAS PubMed Web of Science® Google Scholar
- 16 Hempen PM, et al. Transcriptional regulation of the human polymeric Ig receptor gene: analysis of basal promoter elements. J Immunol 2002; 169: 1912–1921.
- 17 Solorzano-Vargas RS, et al. Multiple transcription factors in 5′-flanking region of human polymeric Ig receptor control its basal expression. Am J Physiol Gastrointest Liver Physiol 2002; 283: G415–G425.
- 18 Sirito M, Lin Q, Deng JM, Behringer RR, Sawadogo M. Overlapping roles and asymmetrical cross-regulation of the USF proteins in mice. Proc Natl Acad Sci USA 1998; 95: 3758–3763.
- 19 Kiermaier A, et al. DNA binding of USF is required for specific E-box dependent gene activation in vivo. Oncogene 1999; 18: 7200–7211.
- 20 Lüscher B, Larsson LG. The basic region/helix-loop-helix/leucine zipper domain of Myc proto-oncoproteins: function and regulation. Oncogene 1999; 18: 2955–2966.
- 21 Bruno MEC, West RB, Schneeman TA, Bresnick EH, Kaetzel CS. Upstream stimulatory factor but not c-Myc enhances transcription of the human polymeric immunoglobulin receptor gene. Mol Immunol 2004; 40: 695–708.
- 22 Khattar NH, Lele SM, Kaetzel CS. Down-regulation of the polymeric immunoglobulin receptor in non-small cell lung carcinoma: correlation with dysregulated expression of the transcription factors USF and AP2. J Biomed Sci 2005; 12: 1–12.
- 23 Traicoff JL, et al. Characterization of the human polymeric immunoglobulin receptor (PIGR) 3′UTR and differential expression of PIGR mRNA during colon tumorigenesis. J Biomed Sci 2003; 10: 792–804.
- 24 Piskurich JF, et al. Transcriptional regulation of the human polymeric immunoglobulin receptor gene by interferon-γ. Mol Immunol 1997; 34: 75–91.
- 25 Haelens A, et al. The first exon of the human sc gene contains an androgen responsive unit and an interferon regulatory factor element. Mol Cell Endocrinol 1999; 153: 91–102.
- 26 Kaetzel CS, Blanch VJ, Hempen PM, Phillips KM, Piskurich JF, Youngman KR. The polymeric immunoglobulin receptor: structure and synthesis. Biochem Soc Trans 1997; 25: 475–480.
- 27 Blanch VJ, Piskurich JF, Kaetzel CS. Cutting edge: coordinate regulation of IFN regulatory factor-1 and the polymeric Ig receptor by proinflammatory cytokines. J Immunol 1999; 162: 1232–1235.
- 28 Denning GM. IL-4 and IFN-γ synergistically increase total polymeric IgA receptor levels in human intestinal epithelial cells. Role of protein tyrosine kinases. J Immunol 1996; 156: 4807–4814.
- 29 Pine R. Convergence of TNFα and IFNγ signalling pathways through synergistic induction of IRF-1/ISGF-2 is mediated by a composite GAS/κB promoter element. Nucleic Acids Res 1997; 25: 4346–4354.
- 30 Ackermann LW, Denning GM. Nuclear factor-κB contributes to interleukin-4- and interferon-dependent polymeric immunoglobulin receptor expression in human intestinal epithelial cells. Immunology 2004; 111: 75–85.
- 31 Bonizzi G, Karin M. The two NF-κB activation pathways and their role in innate and adaptive immunity. Trends Immunol 2004; 25: 280–288.
- 32 Dunne A, O'Neill LA. The interleukin-1 receptor/Toll-like receptor superfamily: signal transduction during inflammation and host defense. Sci STKE 2003; 2000: re3.
- 33 Takenouchi-Ohkubo N, Takahashi T, Tsuchiya M, Mestecky J, Moldoveanu Z, Moro I. Role of nuclear factor-κB in the expression by tumor necrosis factor-α of the human polymeric immunoglobulin receptor (plgR) gene. Immunogenetics 2000; 51: 289–295.
- 34 Schjerven H, Brandtzaeg P, Johansen FE. A novel NF-κB/Rel site in intron 1 cooperates with proximal promoter elements to mediate TNF-α-induced transcription of the human polymeric Ig receptor. J Immunol 2001; 167: 6412–6420.
- 35 Schjerven H, Tran TN, Brandtzaeg P, Johansen FE. De novo synthesized RelB mediates TNF-induced up-regulation of the human polymeric Ig receptor. J Immunol 2004; 173: 1849–1857.
- 36 Bren GD, Solan NJ, Miyoshi H, Pennington KN, Pobst LJ, Paya CV. Transcription of the RelB gene is regulated by NF-κB. Oncogene 2001; 20: 7722–7733.
- 37 Schneider K, Potter KG, Ware CF. Lymphotoxin and LIGHT signaling pathways and target genes. Immunol Rev 2004; 202: 49–66.
- 38 Kushiro A, Sato T. Polymeric immunoglobulin receptor gene of mouse: sequence, structure and chromosomal location. Gene 1997; 204: 277–282.
- 39 Phillips JO, Everson MP, Moldoveanu Z, Lue C, Mestecky J. Synergistic effect of IL-4 and IFN-γ on the expression of polymeric Ig receptor (secretory component) and IgA binding by human epithelial cells. J Immunol 1990; 145: 1740–1744.
- 40 Youngman KR, Fiocchi C, Kaetzel CS. Inhibition of IFN-γ activity in supernatants from stimulated human intestinal mononuclear cells prevents up-regulation of the polymeric Ig receptor in an intestinal epithelial cell-line. J Immunol 1994; 153: 675–681.
- 41 Ackermann LW, Wollenweber LA, Denning GM. IL-4 and IFN-γ increase steady state levels of polymeric Ig receptor mRNA in human airway and intestinal epithelial cells. J Immunol 1999; 162: 5112–5118.
- 42 Loman S, Jansen HM, Out TA, Lutter R. Interleukin-4 and interferon-γ synergistically increase secretory component gene expression, but are additive in stimulating secretory immunoglobulin A release by Calu-3 airway epithelial cells. Immunology 1999; 96: 537–543.
- 43 Schjerven H, Brandtzaeg P, Johansen FE. Mechanism of IL-4-mediated up-regulation of the polymeric Ig receptor: role of STAT6 in cell type-specific delayed transcriptional response. J Immunol 2000; 165: 3898–3906.
- 44 Bjercke S, Brandtzaeg P. Glandular distribution of immunoglobulins, J chain, secretory component, and HLA-DR in the human endometrium throughout the menstrual cycle. Hum Reprod 1993; 8: 1420–1425.
- 45 Kaushic C, Richardson JM, Wira CR. Regulation of polymeric immunoglobulin A receptor messenger ribonucleic acid expression in rodent uteri: effect of sex hormones. Endocrinol 1995; 136: 2836–2844.
- 46 Claessens F, et al. Selective DNA binding by the androgen receptor as a mechanism for hormone-specific gene regulation. J Steroid Biochem Mol Biol 2001; 76: 23–30.
- 47 Li TW, et al. Transcriptional control of the murine polymeric IgA receptor promoter by glucocorticoids. Am J Physiol 1999; 276: G1425–G1434.
- 48 Yu-Lee L. Stimulation of interferon regulatory factor-1 by prolactin. Lupus 2001; 10: 691–699.
- 49 Chapman RS, et al. A novel role for IRF-1 as a suppressor of apoptosis. Oncogene 2000; 19: 6386–6391.
- 50 Kvale D, Brandtzaeg P. Constitutive and cytokine induced expression of HLA molecules, secretory component, and intercellular adhesion molecule-1 is modulated by butyrate in the colonic epithelial cell line HT-29. Gut 1995; 36: 737–742.
- 51 Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI. Molecular analysis of commensal host-microbial relationships in the intestine. Science 2001; 291: 881–884.
- 52 Jenkins SL, et al. Role of passive and adaptive immunity in influencing enterocyte-specific gene expression. Am J Physiol Gastrointest Liver Physiol 2003; 285: G714–G725.
- 53 Barton GM, Medzhitov R. Toll-like receptor signaling pathways. Science 2003; 300: 1524–1525.
- 54 Takeda K, Akira S. Toll receptors and pathogen resistance. Cell Microbiol 2003; 5: 143–153.
- 55 Cario E, Podolsky DK. Differential alteration in intestinal epithelial cell expression of Toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect Immun 2000; 68: 7010–7017.
- 56 Hausmann M, et al. Toll-like receptors 2 and 4 are up-regulated during intestinal inflammation. Gastroenterology 2002; 122: 1987–2000.
- 57 Yamamoto M, Takeda K, Akira S. TIR domain-containing adaptors define the specificity of TLR signaling. Mol Immunol 2004; 40: 861–868.
- 58 Bowie A, O'Neill LA. The interleukin-1 receptor/Toll-like receptor superfamily: signal generators for pro-inflammatory interleukins and microbial products. J Leukoc Biol 2000; 67: 508–514.
- 59 Fernandez MI, Pedron T, Tournebize R, Olivo-Marin JC, Sansonetti PJ, Phalipon A. Anti-inflammatory role for intracellular dimeric immunoglobulin A by neutralization of lipopolysaccharide in epithelial cells. Immunity 2003; 18: 739–749.
- 60 Buts J-P, Bernasconi P, Vaerman J-P, Dive C. Stimulation of secretory IgA and secretory component of immunoglobulins in small intestine of rats treated with Saccharomyces boulardii. Dig Dis Sci 1990; 35: 251–256.
- 61
Mignone F,
Gissi C,
Liuni S,
Pesole G.
Untranslated regions of mRNAs.
Genome Biol
2002; 3: reviews
0004.1–0004.10.
10.1186/gb-2002-3-3-reviews0004 Google Scholar
- 62 Fodor E, Feren A, Jones A. Isolation and genomic analysis of the rat polymeric immunoglobulin receptor gene terminal domain and transcriptional control region. DNA Cell Biol 1997; 16: 215–225.
- 63 Martín MG, Gutierrez EM, Lam JT, Li TW, Wang J. Genomic cloning and structural analysis of the murine polymeric receptor (pIgR) gene and promoter region. Gene 1997; 201: 189–197.
- 64 Koch KS, et al. Discordant expression and variable numbers of neighboring GGA- and GAA-rich triplet repeats in the 3′ untranslated regions of two groups of messenger RNAs encoded by the rat polymeric immunoglobulin receptor gene. Nucleic Acids Res 1995; 23: 1098–1112.
- 65 Aoki T, Koch KS, Leffert HL. Attenuation of gene expression by a trinucleotide repeat-rich tract from the terminal exon of the rat hepatic polymeric immunoglobulin receptor gene. J Mol Biol 1997; 267: 229–236.
- 66 Kulseth MA, Krajci P, Myklebost O, Rogne S. Cloning and characterization of two forms of bovine polymeric immunoglobulin receptor. DNA Cell Biol 1995; 14: 251–256.
- 67 Verbeet MP, Vermeer H, Warmerdam GCM, De Boer HA, Lee SH. Cloning and characterization of the bovine polymeric immunoglobulin receptor-encoding cDNA. Gene 1995; 164: 329–333.
- 68 Adamski FM, Demmer J. Two stages of increased IgA transfer during lactation in the marsupial, Trichosurus vulpecula (brushtail possum). J Immunol 1999; 162: 6009–6015.
- 69 Taylor CL, Harrison GA, Watson CM, Deane EM. cDNA cloning of the polymeric immunoglobulin receptor of the marsupial Macropus eugenii (tammar wallaby). Eur J Immunogenet 2002; 29: 87–93.
- 70 Coyne RS, Siebrecht M, Peitsch MC, Casanova JE. Mutational analysis of polymeric immunoglobulin receptor/ligand interactions. Evidence for the involvement of multiple complementarity determining region (CDR)-like loops in receptor domain I. J Biol Chem 1994; 269: 31620–31625.
- 71 Roe M, Norderhaug IN, Brandtzaeg P, Johansen FE. Fine specificity of ligand-binding domain 1 in the polymeric Ig receptor: importance of the CDR2-containing region for IgM interaction. J Immunol 1999; 162: 6046–6052.
- 72 Brandtzaeg P, Johansen FE. Confusion about the polymeric Ig receptor. Trends Immunol 2001; 22: 545–546.
- 73 Hamburger AE, West AP Jr, Bjorkman PJ. Crystal structure of a polymeric immunoglobulin binding fragment of the human polymeric immunoglobulin receptor. Structure 2004; 12: 1925–1935.
- 74 Hexham JM, et al. A human immunoglobulin (Ig) A Cα3 domain motif directs polymeric Ig receptor-mediated secretion. J Exp Med 1999; 189: 747–752.
- 75 Braathen R, Sorensen V, Brandtzaeg P, Sandlie I, Johansen FE. The carboxy-terminal domains of IgA and IgM direct isotype-specific polymerization and interaction with the polymeric immunoglobulin receptor. J Biol Chem 2002; 277: 42755–42762.
- 76 Peppard JV, Kaetzel CS, Russell MW. Phylogeny and comparative physiology of IgA. In: J Mestecky, J Bienenstock, M Lamm, W Strober, J McGhee, L Mayer eds. Mucosal Immunology, 3rd edn. San Diego: Academic Press 2005, 195–210.
- 77 Wieland WH, Orzaez D, Lammers A, Parmentier HK, Verstegen MW, Schots A. A functional polymeric immunoglobulin receptor in chicken (Gallus gallus) indicates ancient role secretory IGA mucosal immunity. Biochem J 2004; 380: 669–676.
- 78 Herr AB, Ballister ER, Bjorkman PJ. Insights into IgA-mediated immune responses from the crystal structures of human FcαRI and its complex with IgA1-Fc. Nature 2003; 423: 614–620.
- 79 Johansen FE, Braathen R, Brandtzaeg P. Role of J chain in secretory immunoglobulin formation. Scand J Immunol 2000; 52: 240–248.
- 80 Hendrickson BA, et al. Altered hepatic transport of immunoglobulin A in mice lacking the J chain. J Exp Med 1995; 182: 1905–1911.
- 81 Hendrickson BA, et al. Lack of association of secretory component with IgA in J chain-deficient mice. J Immunol 1996; 157: 750–754.
- 82 Lycke N, Erlandsson L, Ekman L, Schon K, Leanderson T. Lack of J chain inhibits the transport of gut IgA and abrogates the development of intestinal antitoxic protection. J Immunol 1999; 163: 913–919.
- 83 Mazanec MB, Nedrud JG, Kaetzel CS, Lamm ME. A three-tiered view of the role of IgA in mucosal defense. Immunol Today 1993; 14: 430–435.
- 84 Gan Y-J, Chodosh J, Morgan A, Sixbey JW. Epithelial cell polarization is a determinant in the infectious outcome of immunoglobulin A-mediated entry by Epstein-Barr virus. J Virol 1997; 71: 519–526.
- 85 Yan H, Lamm ME, Bjorling E, Huang YT. Multiple functions of immunoglobulin A in mucosal defense against viruses: an in vitro measles virus model. J Virol 2002; 76: 10972–10979.
- 86 Zhang JR, et al. The polymeric immunoglobulin receptor translocates pneumococci across human nasopharyngeal epithelial cells. Cell 2000; 102: 827–837.
- 87 Robinson JK, Blanchard TG, Levine AD, Emancipator SN, Lamm ME. A mucosal IgA-mediated excretory immune system in vivo. J Immunol 2001; 166: 3688–3692.
- 88 Alonso de Velasco E, Verheul AF, Verhoef J, Snippe H. Streptococcus pneumoniae: virulence factors, pathogenesis, and vaccines. Microbiol Rev 1995; 59: 591–603.
- 89 Kaetzel CS. Polymeric Ig receptor: defender of the fort or Trojan horse? Curr Biol 2001; 11: R35–R38.
- 90 Lu L, Lamm ME, Li H, Corthesy B, Zhang JR. The human polymeric immunoglobulin receptor binds to Streptococcus pneumoniae via domains 3 and 4. J Biol Chem 2003; 278: 48178–48187.
- 91 Elm C, et al. Ectodomains 3 and 4 of human polymeric immunoglobulin receptor (hpIgR) mediate invasion of Streptococcus pneumoniae into the epithelium. J Biol Chem 2004; 279: 6296–6304.
- 92 Elm C, Rohde M, Vaerman JP, Chhatwal GS, Hammerschmidt S. Characterization of the interaction of the pneumococcal surface protein SpsA with the human polymeric immunoglobulin receptor (hpIgR). Indian J Med Res 2004; 119: 61–65.
- 93 Luo R, et al. Solution structure of choline binding protein A, the major adhesin of Streptococcus pneumoniae. EMBO J 2005; 24: 34–43.
- 94 Dave S, Carmicle S, Hammerschmidt S, Pangburn MK, McDaniel LS. Dual roles of PspC, a surface protein of Streptococcus pneumoniae, in binding human secretory IgA and factor H. J Immunol 2004; 173: 471–477.
- 95 Eiffert H, et al. Determination of the molecular structure of the human free secretory component. Biol Chem Hoppe-Seyler 1991; 372: 119–128.
- 96 Hughes GJ, Reason AJ, Savoy L, Jaton J, Frutiger-Hughes S. Carbohydrate moieties in human secretory component. Biochim Biophys Acta 1999; 1434: 86–93.
- 97 Royle L, et al. Secretory IgA N- and O-glycans provide a link between the innate and adaptive immune systems. J Biol Chem 2003; 278: 20140–20153.
- 98 Marshall LJ, Perks B, Bodey K, Suri R, Bush A, Shute JK. Free secretory component from cystic fibrosis sputa displays the cystic fibrosis glycosylation phenotype. Am J Respir Crit Care Med 2004; 169: 399–406.
- 99 Phalipon A, Corthesy B. Novel functions of the polymeric Ig receptor: well beyond transport of immunoglobulins. Trends Immunol 2003; 24: 55–58.
- 100 Eiffert H, et al. The primary structure of the human free secretory component and the arrangement of the disulfide bonds. Hoppe-Seyler's Z Physiol Chem 1984; 365: 1489–1495.
- 101 Hughes GJ, Frutiger S, Savoy LA, Reason AJ, Morris HR, Jaton JC. Human free secretory component is composed of the first 585 amino acid residues of the polymeric immunoglobulin receptor. FEBS Lett 1997; 410: 443–446.
- 102 Musil LS, Baenziger JU. Cleavage of membrane secretory component to soluble secretory component occurs on the cell surface of rat hepatocyte monolayers. J Cell Biol 1987; 104: 1725–1733.
- 103 Musil LS, Baenziger JU. Proteolytic processing of rat liver membrane secretory component. Cleavage activity is localized to bile canalicular membranes. J Biol Chem 1988; 263: 15799–15808.
- 104 Solari R, Schaerer E, Tallichet C, Braiterman LT, Hubbard AL, Kraehenbuhl J-P. Cellular location of the cleavage event of the polymeric immunoglobulin receptor and fate of its anchoring domain in the rat hepatocyte. Biochem J 1989; 257: 759–768.
- 105 Breitfeld PP, Harris JM, Mostov KE. Postendocytotic sorting of the ligand for the polymeric immunoglobulin receptor in Madin-Darby canine kidney cells. J Cell Biol 1989; 109: 475–486.
- 106 Sztul E, Colombo M, Stahl P, Samanta R. Control of protein traffic between distinct plasma membrane domains. Requirement for a novel 108,000 protein in the fusion of transcytotic vesicles with the apical plasma membrane. J Biol Chem 1993; 268: 1876–1885.
- 107 Chintalacharuvu KR, Piskurich JF, Lamm ME, Kaetzel CS. Cell polarity regulates the release of secretory component, the epithelial receptor for polymeric immunoglobulins, from the surface of HT-29 colon carcinoma cells. J Cell Physiol 1991; 148: 35–47.
- 108 Deitcher DL, Neutra MR, Mostov KE. Functional expression of the polymeric immunoglobulin receptor from cloned cDNA in fibroblasts. J Cell Biol 1986; 102: 911–919.
- 109 Asano M, et al. Multiple cleavage sites for polymeric immunoglobulin receptor. Immunology 2004; 112: 583–589.
- 110 Pilette C, Ouadrhiri Y, Dimanche F, Vaerman JP, Sibille Y. Secretory component is cleaved by neutrophil serine proteinases but its epithelial production is increased by neutrophils through NF-κB- and p38 mitogen-activated protein kinase-dependent mechanisms. Am J Respir Cell Mol Biol 2003; 28: 485–498.
- 111 Hirunsatit R, et al. Polymeric immunoglobulin receptor polymorphisms and risk of nasopharyngeal cancer. BMC Genet 2003; 4: 3.
- 112 Obara W, et al. Association of single-nucleotide polymorphisms in the polymeric immunoglobulin receptor gene with immunoglobulin A nephropathy (IgAN) in Japanese patients. J Hum Genet 2003; 48: 293–299.
- 113 Endo Y. IgA nephropathy – human disease and animal model. Ren Fail 1997; 19: 347–371.
- 114 Lullau E, et al. Antigen binding properties of purified immunoglobulin A and reconstituted secretory immunoglobulin A antibodies. J Biol Chem 1996; 271: 16300–16309.
- 115 Renegar KB, Jackson GD, Mestecky J. In vitro comparison of the biologic activities of monoclonal monomeric IgA, polymeric IgA, and secretory IgA. J Immunol 1998; 160: 1219–1223.
- 116 Lindh E. Increased resistance of immunoglobulin A dimers to proteolytic degradation after binding of secretory component. J Immunol 1975; 1975: 284–286.
- 117 Mestecky J, Lue C, Russell MW. Selective transport of IgA. Cellular and molecular aspects. Gastroenterol Clin North Am 1991; 20: 441–471.
- 118 Chintalacharuvu KR, Morrison SL. Production of secretory immunoglobulin A by a single mammalian cell. Proc Natl Acad Sci USA 1997; 94: 6364–6368.
- 119 Crottet P, Corthesy B. Secretory component delays the conversion of secretory IgA into antigen-binding competent F(ab′)2: a possible implication for mucosal defense. J Immunol 1998; 161: 5445–5453.
- 120 Ma JKC, et al. Characterization of a recombinant plant monoclonal secretory antibody and preventive immunotherapy in humans. Nature Med 1998; 4: 601–606.
- 121 Uren TK, Johansen FE, Wijburg OL, Koentgen F, Brandtzaeg P, Strugnell RA. Role of the polymeric Ig receptor in mucosal B cell homeostasis. J Immunol 2003; 170: 2531–2539.
- 122 Asahi Y, et al. Protection against influenza virus infection in polymeric Ig receptor knockout mice immunized intranasally with adjuvant-combined vaccines. J Immunol 2002; 168: 2930–2938.
- 123 Asahi-Ozaki Y, et al. Secretory IgA antibodies provide cross-protection against infection with different strains of influenza B virus. J Med Virol 2004; 74: 328–335.
- 124 Maaser C, et al. Clearance of Citrobacter rodentium requires B cells but not secretory immunoglobulin A (IgA) or IgM antibodies. Infect Immun 2004; 72: 3315–3324.
- 125 Uren TK, Wijburg OL, Simmons C, Johansen FE, Brandtzaeg P, Strugnell RA. Vaccine-induced protection against gastrointestinal bacterial infections in the absence of secretory antibodies. Eur J Immunol 2005; 35: 180–188.
- 126 Sait L, Galic M, Strugnell RA, Janssen PH. Secretory antibodies do not affect the composition of the bacterial microbiota in the terminal ileum of 10-week-old mice. Appl Environ Microbiol 2003; 69: 2100–2109.
- 127 Sun K, Johansen FE, Eckmann L, Metzger DW. An important role for polymeric Ig receptor-mediated transport of IgA in protection against Streptococcus pneumoniae nasopharyngeal carriage. J Immunol 2004; 173: 4576–4581.
- 128 Dallas SD, Rolfe RD. Binding of Clostridium difficile toxin A to human milk secretory component. J Med Microbiol 1998; 47: 879–888.
- 129 De Oliveira IR, De Araujo AN, Bao SN, Giugliano LG. Binding of lactoferrin and free secretory component to enterotoxigenic Escherichia coli. FEMS Microbiol Lett 2001; 203: 29–33.
- 130 Phalipon A, Cardona A, Kraehenbuhl JP, Edelman L, Sansonetti PJ, Corthesy B. Secretory component: a new role in secretory IgA-mediated immune exclusion in vivo. Immunity 2002; 17: 107–115.
- 131 Marshall LJ, Perks B, Ferkol T, Shute JK. IL-8 released constitutively by primary bronchial epithelial cells in culture forms an inactive complex with secretory component. J Immunol 2001; 167: 2816–2823.
- 132 Vidarsson G, et al. Activity of human IgG and IgA subclasses in immune defense against Neisseria meningitidis serogroup B. J Immunol 2001; 166: 6250–6256.
- 133 Motegi Y, Kita H. Interaction with secretory component stimulates effector functions of human eosinophils but not of neutrophils. J Immunol 1998; 161: 4340–4346.
- 134 Motegi Y, Kita H, Kato M, Morikawa A. Role of secretory IgA, secretory component, and eosinophils in mucosal inflammation. Int Arch Allergy Immunol 2000; 122: 25–27.
- 135 Van Spriel AB, Leusen JH, Vile H, Van De Winkel JG. Mac-1 (CD11b/CD18) as accessory molecule for FcαR (CD89) binding of IgA. J Immunol 2002; 169: 3831–3836.
- 136 Wold AE, et al. Secretory immunoglobulin A carries oligosaccharide receptors for Escherichia coli type 1 fimbrial lectin. Infect Immun 1990; 58: 3073–3077.
- 137 Giugliano LG, Ribeiro ST, Vainstein MH, Ulhoa CJ. Free secretory component and lactoferrin of human milk inhibit the adhesion of enterotoxigenic Escherichia coli. J Med Microbiol 1995; 42: 3–9.
- 138 Schroten H, Stapper C, Plogmann R, Kohler H, Hacker J, Hanisch FG. Fab-independent antiadhesion effects of secretory immunoglobulin A on S-fimbriated Escherichia coli are mediated by sialyloligosaccharides. Infect Immun 1998; 66: 3971–3973.
- 139 Boren T, Falk P, Roth KA, Larson G, Normark S. Attachment of Helicobacter pylori to human gastric epithelium mediated by blood group antigens. Science 1993; 262: 1892–1895.
- 140 Falk P, Roth KA, Boren T, Westblom TU, Gordon JI, Normark S. An in vitro adherence assay reveals that Helicobacter pylori exhibits cell lineage-specific tropism in the human gastric epithelium. Proc Natl Acad Sci USA 1993; 90: 2035–2039.
- 141 Willer EM, Lima RL, Giugliano LG. In vitro adhesion and invasion inhibition of Shigella dysenteriae, Shigella flexneri and Shigella sonnei clinical strains by human milk proteins. BMC Microbiol 2004; 4: 18.
- 142 Mantis NJ, Farrant SA, Mehta S. Oligosaccharide side chains on human secretory IgA serve as receptors for ricin. J Immunol 2004; 172: 6838–6845.
- 143 Bruno MEC, Kaetzel CS. Long-term exposure of the HT-29 human intestinal epithelial cell-line to TNF causes sustained up-regulation of the polymeric Ig receptor and pro-inflammatory genes through transcriptional and post-transcriptional mechanisms. J Immunol 2005; (in press).
- 144 Schneeman TA, Bruno MEC, Schjerven H, Johansen FE, Chady L, Kaetzel CS. Regulation of the polymeric Ig receptor by signaling through Toll-like receptors 3 and 4: linking innate and adaptive immune responses. J Immunol 2005; (in press).
- 145 Pal K, Kaetzel CS, Brundage K, Cunningham C, Cuff CF. Regulation of polymeric immunoglobulin receptor (pIgR) expression by reovirus. J Gen Virol 2005; (in press).