A GENERAL MULTIVARIATE EXTENSION OF FISHER'S GEOMETRICAL MODEL AND THE DISTRIBUTION OF MUTATION FITNESS EFFECTS ACROSS SPECIES
Guillaume Martin
Centre d'Ecologie Fonctionnelle et Evolutive, Centre National de la Recherche Scientifique, UMR 5175, 1919 Route de Mende, 34 293 Montpellier, France
Department of Ecology and Evolution, Université de Lausanne, CH1015 Lausanne, Switzerland; E-mail: [email protected].
Search for more papers by this authorThomas Lenormand
Centre d'Ecologie Fonctionnelle et Evolutive, Centre National de la Recherche Scientifique, UMR 5175, 1919 Route de Mende, 34 293 Montpellier, France
Search for more papers by this authorGuillaume Martin
Centre d'Ecologie Fonctionnelle et Evolutive, Centre National de la Recherche Scientifique, UMR 5175, 1919 Route de Mende, 34 293 Montpellier, France
Department of Ecology and Evolution, Université de Lausanne, CH1015 Lausanne, Switzerland; E-mail: [email protected].
Search for more papers by this authorThomas Lenormand
Centre d'Ecologie Fonctionnelle et Evolutive, Centre National de la Recherche Scientifique, UMR 5175, 1919 Route de Mende, 34 293 Montpellier, France
Search for more papers by this authorAbstract
Abstract The evolution of complex organisms is a puzzle for evolutionary theory because beneficial mutations should be less frequent in complex organisms, an effect termed “cost of complexity.” However, little is known about how the distribution of mutation fitness effects (f(s)) varies across genomes. The main theoretical framework to address this issue is Fisher's geometric model and related phenotypic landscape models. However, it suffers from several restrictive assumptions. In this paper, we intend to show how several of these limitations may be overcome. We then propose a model of f(s) that extends Fisher's model to account for arbitrary mutational and selective interactions among n traits. We show that these interactions result in f(s) that would be predicted by a much smaller number of independent traits. We test our predictions by comparing empirical f(s) across species of various gene numbers as a surrogate to complexity. This survey reveals, as predicted, that mutations tend to be more deleterious, less variable, and less skewed in higher organisms. However, only limited difference in the shape of f(s) is observed from Escherichia coli to nematodes or fruit flies, a pattern consistent with a model of random phenotypic interactions across many traits. Overall, these results suggest that there may be a cost to phenotypic complexity although much weaker than previously suggested by earlier theoretical works. More generally, the model seems to qualitatively capture and possibly explain the variation of f(s) from lower to higher organisms, which opens a large array of potential applications in evolutionary genetics.
Supporting Information
Filename | Description |
---|---|
Martin-Lenormand-2006-Appendix_1.pdf35.1 KB | Supplementary Material |
Martin-Lenormand-2006-Appendix_2.pdf15.6 KB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
Literature Cited
- Avila, V., and A. Garcia-Dorado. 2002. The effects of spontaneous mutation on competitive fitness in Drosophila melanogaster. J. Evol. Biol. 15: 561–566.
- Baer, C. F., F. Shaw, C. Steding, M. Baurngartner, A. Hawkins, A. Houppert, N. Mason, M. Reed, K. Sinnonelic, W. Woodard, and M. Lynch 2005. Comparative evolutionary genetics of spontaneous mutations affecting fitness in rhabditid nematodes. Proc. Natl. Acad. Sci. USA 102: 5785–5790.
- Barton, N., and L. Partridge 2000. Limits to natural selection. BioEssays 22: 1075–1084.
- Barton, N. H., and P. D. Keightley 2002. Understanding quantitative genetic variation. Nat. Rev. Genet. 3: 11–21.
- Bataillon, T. 2000. Estimation of spontaneous genome-wide mutation rate parameters: whither beneficial mutations Heredity 84: 497–501.
- Bataillon, T. 2003. Shaking the “deleterious mutations” dogma Trends Ecol. Evol. 18: 315–317.
- Bennetzen, J. L., C. Coleman, R. Y. Liu, J. X. Ma, and W. Ramakrishna. 2004. Consistent over-estimation of gene number in complex plant genomes. Curr. Opin. Plant Biol. 7: 732–736.
- Bonhoeffer, S., C. Chappey, N. T. Parkin, J. M. Whitcomb, and C. J. Petropoulos 2004. Evidence for positive epistasis in HIV-1. Science 306: 1547–1550.
- Burch, C. L., and L. Chao. 1999. Evolution by small steps and rugged landscapes in the RNA virus phi6. Genetics 151: 921–927.
- Charlesworth, B., and D. Charlesworth. 1998. Some evolutionary consequences of deleterious mutations. Genetica 103: 3–19.
- Charlesworth, B., H. Borthwick, C. Bartolome, and P. Pignatelli. 2004. Estimates of the genomic mutation rate for detrimental alleles in Drosophila melanogaster. Genetics 167: 815–826.
- Chavarrias, D., C. Lopez-Fanjul, and A. Garcia-Dorado. 2001. The rate of mutation and the homozygous and heterozygous mutational effects for competitive viability: a long-term experiment with Drosophila melanogaster. Genetics 158: 681–693.
- Clarke, B., and W. Arthur. 2000. What constitutes a “large” mutational change in phenotype Evol. Dev. 2: 238–240.
- Drake, J. W., B. Charlesworth, D. Charlesworth, and J. F. Crow. 1998. Rates of spontaneous mutation. Genetics 148: 1667–1686.
- Elena, S. F., and R. E. Lenski. 2003. Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat. Rev. Genet. 4: 457–469.
- Elena, S. F., and A. Moya. 1999. Rate of deleterious mutation and the distribution of its effects on fitness in vesicular stomatitis virus. J. Evol. Biol. 12: 1078–1088.
- Elena, S. F., L. Ekunwe, N. Hajela, S. A. Oden, and R. E. Lenski. 1998. Distribution of fitness effects caused by random insertion mutations in Escherichia coli. Genetica 103: 349–358.
- Estes, S., P. C. Phillips, D. R. Denver, W. K. Thomas, and M. Lynch. 2004. Mutation accumulation in populations of varying size: the distribution of mutational effects for fitness correlates in Caenorhabditis elegans. Genetics 166: 1269–1279.
-
Fisher, R. A.
1930. The genetical theory of natural selection. Oxford Univ. Press,
Oxford
,
U.K.
10.1890/0012-9658(2006)87[1445:SOEFDD]2.0.CO;2 Google Scholar
- Forrester, P. J., N. C. Snaith, and J. J. M. Verbaarschot. 2003. Developments in random matrix theory. J. Physics A 36: R1–R10.
- Garcia-Dorado, A., C. Lopez-Fanjul, and A. Caballero. 1999. Properties of spontaneous mutations affecting quantitative traits. Genet. Res. 74: 341–350.
- Gerrish, P. J., and R. E. Lenski. 1998. The fate of competing beneficial mutations in an asexual population. Genetica 103: 127–144.
-
Ihaka, I., and
G. Robert. 1996. R: a language for data analysis and graphics.
J. Comput. Graphic. Stat.
5: 299–314.
10.2307/1390807 Google Scholar
- Imhof, M., and C. Schlotterer. 2001. Fitness effects of advantageous mutations in evolving Escherichia coli populations. Proc. Natl. Acad. Sci. USA 98: 1113–1117.
- Joseph, S. B., and D. W. Hall. 2004. Spontaneous mutations in diploid Saccharomyces cerevisiae: more beneficial than expected. Genetics 168: 1817–1825.
- Keightley, P. D. 1994. The distribution of mutation effects on viability in Drosophila melanogaster. Genetics 138: 1315–1322.
- Keightley, P. D. 2004. Comparing analysis methods for mutation-accumulation data. Genetics 167: 551–553.
- Keightley, P. D., and A. Eyre-Walker. 2000. Deleterious mutations and the evolution of sex. Science 290: 331–333.
- Keightley, P. D., and M. Lynch. 2003. Toward a realistic model of mutations affecting fitness. Evolution 57: 683–685.
- Keightley, P. D., and O. Ohnishi. 1998. EMS-induced polygenic mutation rates for nine quantitative characters in Drosophila melanogaster. Genetics 148: 753–766.
- Keightley, P. D., E. K. Davies, A. D. Peters, and R. G. Shaw. 2000. Properties of ethylmethane sulfonate-induced mutations affecting life-history traits in Caenorhabditis elegans and inferences about bivariate distributions of mutation effects. Genetics 156: 143–154.
- Kibota, T. T., and M. Lynch. 1996. Estimate of the genomic mutation rate deleterious to overall fitness in E-coli. Nature 381: 694–696.
- Kingsolver, J. G., H. E. Hoekstra, J. M. Hoekstra, D. Berrigan, S. N. Vignieri, C. E. Hill, A. Hoang, P. Gibert, and P. Beerli. 2001. The strength of phenotypic selection in natural populations. Am. Nat. 157: 245–261.
- Korona, R. 2004. Experimental studies of deleterious mutation in Saccharomyces cerevisiae. Res. Microbiol. 155: 301–310.
- Lande, R. 1980. The genetic covariance between characters maintained by pleiotropic mutations. Genetics 94: 203–215.
- Loewe, L., V. Textor, and S. Scherer. 2003. High deleterious genomic mutation rate in stationary phase of Escherichia coli. Science 302: 1558–1560.
- Lyman, R. F., F. Lawrence, S. V. Nuzhdin, and T. F. C. Mackay. 1996. Effects of single P-element insertions on bristle number and viability in Drosophila melanogaster. Genetics 143: 277–292.
- Lynch, M., and J. S. Conery. 2003. The origins of genome complexity. Science 302: 1401–1404.
- Lynch, M., and B. Walsh. 1998. Correlations between characters. Pp. 629–655. Genetics and analysis of quantitative traits. Sinauer Associates, Sunderland , MA .
- Lynch, M., J. Blanchard, D. Houle, T. Kibota, S. Schultz, L. Vassilieva, and J. Willis. 1999. Perspective: Spontaneous deleterious mutation. Evolution 53: 645–663.
- Mackay, T. F. C., R. F. Lyman, and M. S. Jackson. 1992. Effects of P-Element insertions on quantitative traits in Drosophila melanogaster. Genetics 130: 315–332.
- Mathai, A. M., and S. B. Provost. 1992. Quadratic forms in random variables. Marcel Dekker, New York .
- Mukai, T., S. I. Chigusa, L. E. Mettler, and J. F. Crow. 1972. Mutation rate and dominance of genes affecting viability in Drosophila melanogaster. Genetics 72: 335–355.
- Ohnishi, O. 1977. Spontaneous and ethyl methanesulfonate-induced mutations controlling viability in Drosophila melanogaster. II. Homozygous effects of polygenic mutations. Genetics 87: 529–545.
- Orr, H. A. 1998. The population genetics of adaptation: the distribution of factors fixed during adaptive evolution. Evolution 52: 935–949.
- Orr, H. A. 2000. Adaptation and the cost of complexity. Evolution 54: 13–20.
- Orr, H. A. 2001. The “sizes” of mutations fixed in phenotypic evolution: a response to Clarke and Arthur. Evol. Dev. 3: 121–123.
- Orr, H. A. 2002. The population genetics of adaptation: the adaptation of DNA sequences. Evolution 56: 1317–1330.
- Orr, H. A. 2003. The distribution of fitness effects among beneficial mutations. Genetics 163: 1519–1526.
- Orr, H. A. 2005a. Theories of adaptation: what they do and don't say. Genetica 123: 3–13.
- Orr, H. A. 2005b. The genetic theory of adaptation: a brief history. Nat. Rev. Genet. 6: 119–127.
- Otto, S. P. 2004. Two steps forward, one step back: the pleiotropic effects of favoured alleles. Proc. R. Soc. Lond. B 271: 705–714.
- Otto, S. P., and P. Yong. 2002. The evolution of gene duplicates. Pp. 451–483. Homology effects. Academic Press, San Diego , CA .
- Poon, A., and S. P. Otto. 2000. Compensating for our load of mutations: freezing the meltdown of small populations. Evolution 54: 1467–1479.
- Remold, S. K., and R. E. Lenski. 2001. Contribution of individual random mutations to genotype-by-environment interactions in Escherichia coli. Proc. Natl. Acad. Sci. 98: 11388–11393.
- Rice, S. H. 1998. The evolution of canalization and the breaking of von Baer's laws: modeling the evolution of development with epistasis. Evolution 52: 647–656.
- Rokyta, D. R., P. Joyce, S. B. Caudle, and H. A. Wichman. 2005. An empirical test of the mutational landscape model of adaptation using a single-stranded DNA virus. Nat. Genet. 37: 441–444.
- Rozen, D. E., J. de Visser, and P. J. Gerrish. 2002. Fitness effects of fixed beneficial mutations in microbial populations. Curr. Biol. 12: 1040–1045.
- Sanjuan, R., A. Moya, and S. F. Elena. 2004a. The distribution of fitness effects caused by single-nucleotide substitutions in an RNA virus. Proc. Natl. Acad. Sci. USA 101: 8396–8401.
- Sanjuan, R., A. Moya, and S. F. Elena. 2004b. The contribution of epistasis to the architecture of fitness in an RNA virus. Proc. Natl. Acad. Sci. USA 101: 15376–15379.
- Shaw, F. H., C. J. Geyer, and R. G. Shaw. 2002. A comprehensive model of mutations affecting fitness and inferences for Arabidopsis thaliana. Evolution 56: 453–463.
- Shaw, R. G., F. H. Shaw, and C. Geyer. 2003. What fraction of mutations reduces fitness? A reply to Keightley and Lynch. Evolution 57: 686–689.
- Stein, L. D., Z. R. Bao, D. Blasiar, T. Blumenthal, M. R. Brent, N. S. Chen, A. Chinwalla, L. Clarke, C. Clee, A. Coghlan, and many others 2003. The genome sequence of Caenorhabditis briggsae: a platform for comparative genomics. Plos Biol. 1: 166.
- Thatcher, J. W., J. M. Shaw, and W. J. Dickinson. 1998. Marginal fitness contributions of nonessential genes in yeast. Proc. Natl. Acad. Sci. USA 95: 253–257.
- Vassilieva, L. L., A. M. Hook, and M. Lynch. 2000. The fitness effects of spontaneous mutations in Caenorhabditis elegans. Evolution 54: 1234–1246.
- Wagner, G. P., and L. Altenberg. 1996. Perspective: Complex adaptations and the evolution of evolvability. Evolution 50: 967–976.
- Ware, D., and L. Stein. 2003. Comparison of genes among cereals. Curr. Opin. Plant Biol. 6: 121–127.
- Waxman, D., and J. J. Welch. 2005. Fisher's microscope and Haldane's ellipse. Am. Nat. 166: 447–457.
- Welch, J. J., and D. Waxman. 2003. Modularity and the cost of complexity. Evolution 57: 1723–1734.
- Wloch, D. M., K. Szafraniec, R. H. Borts, and R. Korona. 2001. Direct estimate of the mutation rate and the distribution of fitness effects in the yeast Saccharomyces cerevisiae. Genetics 159: 441–452.
- Xu, J. P. 2004. Genotype-environment interactions of spontaneous mutations for vegetative fitness in the human pathogenic fungus Cryptococcus neoformans. Genetics 168: 1177–1188.
- Zeyl, C., and J. DeVisser. 2001. Estimates of the rate and distribution of fitness effects of spontaneous mutation in Saccharomyces cerevisiae. Genetics 157: 53–61.
- Zhang, X. S., and W. G. Hill. 2003. Multivariate stabilizing selection and pleiotropy in the maintenance of quantitative genetic variation. Evolution 57: 1761–1775.