ALLELIC DIVERGENCE PRECEDES AND PROMOTES GENE DUPLICATION
Stephen R. Proulx
Center for Ecology and Evolutionary Biology, 5289 University of Oregon, Eugene, Oregon 97403
Department of Ecology, Evolution and Organismal Biology, Iowa State University, 253 Bessey Hall, Ames, Iowa 50011.
E-mail: [email protected]
Search for more papers by this authorPatrick C. Phillips
Center for Ecology and Evolutionary Biology, 5289 University of Oregon, Eugene, Oregon 97403
Search for more papers by this authorStephen R. Proulx
Center for Ecology and Evolutionary Biology, 5289 University of Oregon, Eugene, Oregon 97403
Department of Ecology, Evolution and Organismal Biology, Iowa State University, 253 Bessey Hall, Ames, Iowa 50011.
E-mail: [email protected]
Search for more papers by this authorPatrick C. Phillips
Center for Ecology and Evolutionary Biology, 5289 University of Oregon, Eugene, Oregon 97403
Search for more papers by this authorDepartment of Ecology, Evolution and Organismal Biology, Iowa State University, 253 Bessey Hall, Ames, Iowa 50011.
E-mail: [email protected]
Abstract
Abstract One of the striking observations from recent whole-genome comparisons is that changes in the number of specialized genes in existing gene families, as opposed to novel taxon-specific gene families, are responsible for the majority of the difference in genome composition between major taxa. Previous models of duplicate gene evolution focused primarily on the role that neutral processes can play in evolutionary divergence after the duplicates are already fixed in the population. By instead including the entire cycle of duplication and divergence, we show that specialized functions are most likely to evolve through strong selection acting on segregating alleles at a single locus, even before the duplicate arises. We show that the fitness relationships that allow divergent alleles to evolve at a single locus largely overlap with the conditions that allow divergence of previously duplicated genes. Thus, a solution to the paradox of the origin of organismal complexity via the expansion of gene families exists in the form of the deterministic spread of novel duplicates via natural selection.
Literature Cited
- Abrams, P. A., H. Matsuda, and Y. Harada. 1993. Evolutionary unstable fitness maxima and stable fitness minima of continuous traits. Evol. Ecol. 7: 465–487.
- Chervitz, S. A., L. Aravind, G. Sherlock, C. A. Ball, E. V. Koonin, S. S. Dwight, M. A. Harris, K. Dolinski, S. Mohr, T. Smith, and many others 1998. Comparison of the complete protein sets of worm and yeast: orthology and divergence. Science 282: 2022–2028.
- Clark, A. G. 1994. Invasion and maintenance of a gene duplication. Proc. Natl. Acad. Sci. USA 91: 2950–2954.
- Crow, K. D., P. F. Stadler, V. J. Lynch, C. Amemiya, and G. P. Wagner. 2006. The “fish-specific” hox cluster duplication is coincident with the origin of teleosts. Mol. Biol. Evol. 23: 121–136.
- Daubin, V., and N. A. Moran. 2004. Comment on “the origins of genome complexity. Science 306: 978.
- Dermitzakis, E. T., and A. G. Clark. 2001. Differential selection after duplication in mammalian developmental genes. Mol. Biol. Evol. 18: 557–562.
- Dieckmann, U., and M. Doebeli. 1999. On the origin of species by sympatric speciation. Nature 400: 354–357.
- Dieckmann, U., and R. Law. 1996. The dynamical theory of coevolution: a derivation from stochastic ecological processes. J. Math. Biol. 34: 579–612.
- Doebeli, M. 1996. A quantitative genetic competition model for sympatric speciation. J. Evol. Biol. 9: 893–909.
- Force, A., M. Lynch, F. B. Pickett, A. Amores, Y. Yan, and J. Postlethwait. 1999. Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151: 1531–1545.
- Geritz, S. A. H., and E. Kisdi. 2000. Adaptive dynamics in diploid, sexual populations and the evolution of reproductive isolation. Proc. R. Soc. Lond. B 267: 1671–1678.
- Geritz, S. A. H., E. Kisdi, G. Meszena, and J. A. J. Metz. 1998. Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol. Ecol. 12: 35–57.
- Hammerstein, P. 1996. Darwinian adaptation, population genetics and the streetcar theory of evolution. J. Math. Biol. 34: 511–532.
- Holt, R. A., G. M. Subramanian, A. Halpern, G. G. Sutton, R. Charlab, D. R. Nusskern, P. Winker, A. G. Clark, J. M. C. Ribeiro, R. Wides, and many others 2002. The genome sequence of the malaria mosquito Anopheles gambiae. Science 298: 129–149.
- Hughes, A. L. 1994. The evolution of functionally novel proteins after gene duplication. Proc. R. Soc. Lond. B 256: 119–124.
- Hughes, A. L. 1999. Adaptive evolution of genes and genomes. Oxford Univ. Press, New York .
- Hurst, L. D., and J. P. Randerson. 2000. Dosage, deletions and dominance: simple models of the evolution of gene expression. J. Theor. Biol. 205: 641–647.
- Johnson, L. J., and J. F. Brookfield. 2003. Evolution of spatial expression pattern. Evol. Dev. 5: 593–599.
- Kisdi, E. 2001. Long-term adaptive diversity in Levene-type models. Evol. Ecol. Res. 3: 721–727.
- Kisdi, E., and S. A. H. Geritz. 1999. Adaptive dynamics in allele space: evolution of genetic polymorphism by small mutations in a heterogeneous environment. Evolution 53: 993–1008.
- Lander, E. S., L. M. Linton, B. Birren, C. Nusbaum, M. C. Zody, J. Baldwin, K. Devon, K. Dewar, M. Doyle, W. FitzHugh, and many others 2001. Initial sequencing and analysis of the human genome. Nature 409: 860–921.
- Lynch, M., and J. S. Conery. 2000. The evolutionary fate and consequences of duplicate genes. Science 290: 1151–1155.
- Lynch, M., and J. S. Conery. 2003a. The evolutionary demography of duplicate genes. J. Struct. Funct. Genomics 3: 35–44.
- Lynch, M., and J. S. Conery. 2003b. The origins of genome complexity. Science 302: 1401–1404.
- Lynch, M., and J. S. Conery. 2004. Response to comment on “the origins of genome complexity. Science 306: 978.
- Lynch, M., and A. Force. 2000. The probability of duplicate gene preservation by subfunctionalization. Genetics 154: 459–473.
- Lynch, M., M. O'Hely, B. Walsh, and A. Force. 2001. The probability of preservation of a newly arisen gene duplicate. Genetics 159: 1789–1804.
- Metz, J. A. J., S. A. H. Geritz, G. Meszena, F. J. A. Jacobs, and J. S. van Heerwaarden. 1996. Adaptive dynamics, a geometrical study of the consequences of nearly faithful reproduction. Pp. 183–231 in S. J. Strien and S. M. Verduyn Lunel, eds. Stochastic and spatial structures of dynamical systems. North-Holland, Amsterdam .
- Notebaart, R. A., M. A. Huynen, B. Teusink, R. J. Siezen, and B. Snel. 2005. Correlation between sequence conservation and the genomic context after gene duplication. Nucleic Acids Res. 33: 6164–6171.
- Nowak, M. A., M. C. Boerlijst, J. Cooke, and J. M. Smith. 1997. Evolution of genetic redundancy. Nature 388: 167–171.
- Ohno, S. 1970. Evolution by gene duplication. Springer-Verlag, Berlin .
- Ohta, T., and G. A. Dover. 1983. Population genetics of multigene families that are dispersed into two or more chromosomes. Proc. Natl. Acad. Sci. USA 80: 4079–4083.
- Otto, S. P., and P. Yong. 2002. The evolution of gene duplicates. Adv. Genet. 46: 451–483.
- Phillips, P. C., and N. A. Johnson. 1998. The population genetics of synthetic lethals. Genetics 150: 449–458.
- Piatigorsky, J., and G. Wistow. 1991. The recruitment of crystallins: new functions precede gene duplication. Science 252: 1078–1079.
- Proulx, S. R., and P. C. Phillips. 2005. The opportunity for canalization and the evolution of genetic networks. Am. Nat. 165: 147–162.
- Salazar-Ciudad, I., S. A. Newman, and R. V. Sole. 2001. Phenotypic and dynamical transitions in model genetic networks. I. Emergence of patterns and genotype-phenotype relationships. Evol. Dev. 3: 84–94.
- Spaethe, J., and A. D. Briscoe. 2004. Early duplication and functional diversification of the opsin gene family in insects. Mol. Biol. Evol. 21: 1583–1594.
- Spofford, J. B. 1969. Heterosis and the evolution of duplications. Am. Nat. 103: 407–432.
- Van Dooren, T. J. 2000. The evolutionary dynamics of direct phenotypic overdominance: emergence possible, loss probable. Evolution 54: 1899–1914.
- von Dassow, G., E. Meir, E. M. Munro, and G. M. Odell. 2000. The segment polarity network is a robust developmental module. Nature 406: 188–192.
- Wagner, A. 1999. Redundant gene functions and natural selection. J. Evol. Biol. 12: 1–16.
- Walsh, B. 1987. Sequence-dependent gene conversion: Can duplicated genes diverge fast enough to escape conversion Genetics 117: 543–557.
- Walsh, B. 2003. Population-genetic models of the fates of duplicate genes. Genetica 118: 279–294.
- Walsh, J. B. 1995. How often do duplicated genes evolve new functions Genetics 139: 421–428.
- Young, J. M., B. M. Shykind, R. P. Lane, L. Tonnes-Priddy, J. A. Ross, M. Walker, E. M. Williams, and B. J. Trask. 2003. Odorant receptor expressed sequence tags demonstrate olfactory expression of over 400 genes, extensive alternate splicing and unequal expression levels. Genome Biol. 4: R71.