USING HETEROCHRONY TO DETECT MODULARITY IN THE EVOLUTION OF STEM DIVERSITY IN THE PLANT FAMILY MORINGACEAE
Mark E. Olson
Instituto de Biologia, Universidad Nacional Autónoma de MéAxico, 3 er Circuito s/n CU, México DF 04510, Mexico
E-mail: [email protected]
Search for more papers by this authorJulieta A. Rosell
Instituto de Biologia, Universidad Nacional Autónoma de MéAxico, 3 er Circuito s/n CU, México DF 04510, Mexico
E-mail: [email protected]
Search for more papers by this authorMark E. Olson
Instituto de Biologia, Universidad Nacional Autónoma de MéAxico, 3 er Circuito s/n CU, México DF 04510, Mexico
E-mail: [email protected]
Search for more papers by this authorJulieta A. Rosell
Instituto de Biologia, Universidad Nacional Autónoma de MéAxico, 3 er Circuito s/n CU, México DF 04510, Mexico
E-mail: [email protected]
Search for more papers by this authorAbstract
Abstract Organisms are made up of semiautonomous parts or modules, but identifying the limits of modules is not straightforward. Covariation between morphological features across the adults of a clade can identify suites of characters as putative modules. We contrast such an approach for delimiting modules with one that includes inferences of heterochrony, evolutionary change in the timing of developmental events. That two features show differing types of heterochrony is a strong indication that they are ontogenetically dissociated and belong to differing modules even though these features may covary across adults. We focus on xylem vessels (wood water conduits) and phloem fibers (bark support cells) in the stems of the 13 species of the plant genus Moringa (Moringaceae), which vary from massive bottle trees to tiny tuberous shrubs. Across adults, vessel diameter and number of phloem fibers scale positively and significantly with stem size and with respect to one another. This covariation across adults suggests that these features may be members of the same ontogenetic module, a finding that might be expected given that these cells both derive from the same tissue ontogenetically and are tightly functionally integrated in the stem. In contrast, ontogenetic data in the context of a phylogenetic hypothesis suggest that vessel elements and phloem fibers have undergone different types of paedomorphosis, heterochronic alteration to ontogeny producing adults of descendant species that resemble the juveniles of their ancestors. Vessels and phloem fibers would be expected to show differing types of paedomorphosis only if they are not ontogenetically coupled, and therefore it is likely that they are part of different modules; this ontogenetic independence was invisible to inference based only on adult covariation. Finally, we show reasons to implicate paedomorphosis in the diversification in life form of Moringa across the Old World dry tropics.
Literature Cited
- Alberch, P., S. J. Gould, G. F. Oster, and D. B. Wake. 1979. Size and shape in ontogeny and phylogeny. Paleobiology 5: 296–317.
- Berg, R. L. 1960. The ecological significance of correlation pleiades. Evolution 14: 171–180.
- Blomberg, S. P., T. Garland, Jr., and A. R. Ives. 2003. Testing for phylogenetic signal in comparative data; behavioral traits are more labile. Evolution 57: 717–745.
- Bolker, J. A. 2000. Modularity in development and why it matters to evo-devo. Am. Zool. 40: 770–776.
-
Bolker, J. A.
Bolker, J. A.
Bolker, J. A.
Bolker, J. A.
2003. From genotype to phenotype: looking into the black box. Pp.
82–91
in
S. Kumar and
P. Bentley, eds.
On growth, form and computers. Elsevier,
Oxford
,
U.K
.
10.1016/B978-012428765-5/50037-2 Google Scholar
- Brigandt, I. 2003. Homology in comparative, molecular, and evolutionary developmental biology: the radiation of a concept. J. Exp. Biol. 299B: 9–17.
- Carlquist, S. 1962. A theory of paedomorphosis in dicotyledonous woods. Phytomorphology 12: 30–45.
-
Carlquist, S.
1975. Ecological strategies of xylem evolution. Univ. of California Press,
Berkeley
.
10.1525/9780520320567 Google Scholar
- Carlquist, S. 1998. Wood and bank anatomy of Caricaceae: correlations with systematics and habit. IAWA J. 19: 191–206.
-
Carlquist, S.
2001. Comparative wood anatomy. Springer-Verlag,
Berlin
.
10.1007/978-3-662-04578-7 Google Scholar
- Cheverud, J. 1982. Relationships among ontogenetic, static, and evolutionary allometry. Am. J. Phys. Anthropol. 59: 139–149.
-
Chrysler, M. A.
1937. Persistent juveniles among the cycads.
Bot. Gaz.
98: 696–710.
10.1086/334674 Google Scholar
- Cubo, J., V. Fouces, M. González-Martín, V. Pedrocchi, and X. Ruiz. 2000. Nonheterochronic developmental changes underlie morphological heterochrony in the evolution of the Ardeidae. J. Evol. Biol. 13: 269–276.
- Cumbie, B. G. 1963. The vascular cambium and xylem development in Hibiscus lasiocarpus. Am. J. Bot. 50: 944–951.
- Eble, G. J. 2003. Morphological modularity and macroevolution: conceptual and empirical aspects. Pp. 221–238 in W. Callebut and D. Rasskin-Gutman, eds. Modularity: understanding the development and evolution of natural complex systems. MIT Press, Boston , MA .
- Felsenstein, J. 1985. Phylogenies and the comparative method. Am. Nat. 125: 1–15.
- Fraser, H. B. 2005. Modularity and evolutionary constraint on proteins. Nat. Genet. 37: 351–352.
- Garland, T., Jr., and A. R. Ives. 2000. Using the past to predict the present: confidence intervals for regression equations in phylogenetic comparative methods. Am. Nat. 155: 346–364.
- Garland, T., Jr., A. W. Dickerman, C. M. Janis, and J. A. Jones. 1993. Phylogenetic analysis of covariance by computer simulation. Syst. Biol. 42: 265–292.
- Garland, T., Jr., P. E. Midford, and A. R. Ives. 1999. An introduction to phylogenetically based statistical methods, with a new method for confidence intervals on ancestral states. Am. Zool. 39: 374–388.
- Garland, T., P. E. Midford, J. A. Jones, A. W. Dickerman, and R. Diaz-Uriarte. 2002. PDAP: phenotypic diversity analysis programs. Version 6.0. Available via http:www.biology.ucr.edupeoplefacultyGarlandPDAP.html.
- Godfrey, L. R., and M. R. Sutherland. 1995. Flawed inference: why size-based tests of heterochronic processes do not work. J. Theor. Biol. 172: 43–61.
- Gould, S. J. 1977. Ontogeny and phylogeny. Harvard Univ. Press, Cambridge , MA .
- Jaecks, G. S., and S. J. Carlson. 2001. How phylogenetic inference can shape our view of heterochrony: examples from thecideide brachiopods. Paleobiology 27: 205–225.
- Jones, C. S. 1992. Comparative ontogeny of a wild cucurbit and its derived cultivar. Evolution 46: 1827–1847.
- Jones, C. S. 1993. Heterochrony and heteroblastic leaf development in two subspecies of Curcurbita argyrosperma (Cucurbitaceae). Am. J. Bot. 80: 778–795.
- Jones, C. S. 1999. An essay on juvenility, phase change, and heteroblasty in seed plants. Int. J. Plant Sci. 160: S105–S111.
- Klingenberg, C. P., and J. R. Spence. 1993. Heterochrony and allometry: lessons from the water strider genus Limnoporus. Evolution 14: 1834–1835.
- Klingenberg, C. P., A. V. Badyaev, S. M. Sowry, and N. J. Beckwith. 2001. Inferring developmental modularity from morphological integration: analysis of individual variation and asymmetry in bumblebee wings. Am. Nat. 157: 11–23.
- Kutner, M. H., C. J. Nachtsheim, J. Neter, and W. Li. 2005. Applied linear statistical models. McGraw Hill, New York .
- Lewis, P. O. 2001. A likelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol. 50: 913–925.
- Liberman, U., and M. W. Feldman. 2005. On the evolution of epistasis. I. Diploids under selection. Theor. Popul. Biol. 67: 141–160.
- Mabee, P. M. 1993. Phylogenetic interpretation of ontogenetic change: sorting out the actual and artefactual in an empirical case study of centrarchid fishes. Zool. J. Linn. Soc. Lond. 107: 175–291.
- Maddison, W. P., and D. R. Maddison. 2004a. Mesquite: a modular system for evolutionary analysis. Ver. 1.05. Available via http:mesquiteproject.org.
- Maddison, W. P., and D. R. Maddison. 2004b. StochChar: a package of Mesquite modules for stochastic models of character evolution. Ver. 1.02. Available via http:www.mesquiteproject.orgmesquitemesquite.html.
- Martins, E. P. 2004. COMPARE. Ver. 4.6. Computer programs for the statistical analysis of comparative data. Distributed by the author at http:compare.bio.indiana.edu.
- Martins, E. P., and T. F. Hansen. 1997. Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the anlaysis of interspecific data. Am. Nat. 149: 646–667.
-
McKinney, M. L., and
K. J. McNamara. 1991. Heterochrony: the evolution of ontogeny. Plenum Press,
New York
.
10.1007/978-1-4757-0773-1 Google Scholar
-
Medina, E.
1995. Diversity of life forms of higher plants in neotropical dry forests. Pp.
221–242
in
S. H. Bullock,
H. A. Mooney, and
E. Medina, eds.
Seasonally dry tropical forests. Cambridge University Press,
Cambridge
,
U.K
.
10.1017/CBO9780511753398.009 Google Scholar
- Müller, G. B., and G. P. Wagner. 1991. Novelty in evolution: restructuring the concept. Annu. Rev. Evol. Syst. 22: 229–256.
- Nagy, L. M., and T. A. Williams. 2001. Comparative limb development as a tool for understanding the evolutionary diversification of limbs in arthropods: challenging the modularity paradigm. Pp. 455–488 in G. P. Wagner, ed. The character concept in evolutionary biology. Academic Press. San Diego , CA .
- Niklas, K. J. 1999. The mechanical role of bark. Am. J. Bot. 86: 465–469.
- Olson, M. E. 2001. Stem and root anatomy of Moringa (Moringaceae). Haseltonia 8: 56–96.
- Olson, M. E. 2002a. Combining data from DNA sequences and morphology for a phylogeny of Moringaceae. Syst. Bot. 27: 55–73.
- Olson, M. E. 2002b. Intergeneric relationships within the Caricaceae-Moringacecae clade (Brassicales), and potential morphological synapomorphies of the clade and its families. Int. J. Plant Sci. 163: 51–65.
- Olson, M. E. 2005. Wood, bark, and pith anatomy in Pittocaulon (Senecio, Asteraceae): water storage and systematics. J. Torrey Bot. Soc. 132: 173–186.
- Olson, M. E., and S. Carlquist. 2001. Stem and root anatomical correlations with life form diversity, ecology, and systematics in Moringa (Moringaceae). Bot. J. Linn. Soc. 135: 315–348.
- Panshin, A. J., and C. De Zeeuw. 1980. Textbook of wood technology. McGraw-Hill, New York .
- Patterson, C. 1982. Morphological characters and homology. Pp. 21–74 in K. A. Joysey and A. E. Friday, eds. Problems of phylogenetic reconstruction. Academic Press, London .
- Pigliucci, M. 2003. Species as family resemblance concepts: The (dis-)solution of the species problem Bioessays 25: 596–602.
- Pigliucci, M., C. Paoletti, S. Fineschi, and M. E. Malvolti. 1991. Phenotypic integration in chestnut (Castanea sativa Mill.): leaves versus fruits. Bot. Gaz. 152: 514–521.
- Preston, K. A., and D. D. Ackerly. 2003. The evolution of allometry in modular organisms. Pp. 80–106 in M. Pigliucci and K. A. Preston, eds. Phenotypic integration: studying the ecology and evolution of complex phenotypes. Oxford Univ. Press, Oxford , U.K .
- Raff, E. C., and R. A. Raff. 2000. Dissociability, modularity, evolvability. Evol. Dev. 2: 235–237.
-
Raff, R. A.
1996. The shape of life. Univ. of chicago Press,
Chicago
.
10.7208/chicago/9780226256573.001.0001 Google Scholar
- Raff, R. A., and G. A. Wray. 1989. Heterochrony: developmental mechanisms and evolutionary results. J. Evol. Biol. 2: 409–434.
- Rieppel, O. 2005. Modules, kinds, and homology. J. Exp. Zool. 304B: 18–27.
- Sokal, R. R., and F. J. Rohlf. 1995. Biometry: the principles and practice of statistics in biological research. W. H. Freeman, New York .
- Strauss, R. E. 1987. On allometry and relative growth in evolutionary studies. Syst. Zool. 36: 72–75.
- Takhtajan, A. L. 1954. Essays on the evolutionary morphology of plants. American Institute of Biological Sciences, Arlington , VA .
- Wagner, G. P. 1989. The origin of morphological characters and the biological basis of homology. Evolution 43: 1157–1171.
- Wagner, G. P. 1996. Homologues, natural kinds and the evolution of modularity. Am. Zool. 36: 36–43.
- West-Eberhard, M. J. 2003. Developmental plasticity and evolution. Oxford Univ. Press, Oxford , U.K .
- Zelditch, M. 2001. Beyond heterochrony: the evolution of development. Wiley-Liss, New York .