DIFFERENT CELL SIZE AND CELL NUMBER CONTRIBUTION IN TWO NEWLY ESTABLISHED AND ONE ANCIENT BODY SIZE CLINE OF DROSOPHILA SUBOBSCURA
Federico C. F. Calboli
Department of Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
E-mail: [email protected]
Search for more papers by this authorGeorge W. Gilchrist
Department of Biology, Box 8795, College of William and Mary, Williamsburg, Virginia 23187–8795, E-mail: [email protected]
Search for more papers by this authorLinda Partridge
Department of Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
E-mail: [email protected]
Search for more papers by this authorFederico C. F. Calboli
Department of Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
E-mail: [email protected]
Search for more papers by this authorGeorge W. Gilchrist
Department of Biology, Box 8795, College of William and Mary, Williamsburg, Virginia 23187–8795, E-mail: [email protected]
Search for more papers by this authorLinda Partridge
Department of Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
E-mail: [email protected]
Search for more papers by this authorAbstract
Abstract Latitudinal genetic clines in body size occur in many ectotherms including Drosophila species. In the wing of D. melanogaster, these clines are generally based on latitudinal variation in cell number. In contrast, differences in wing area that evolve by thermal selection in the laboratory are in general based on cell size. To investigate possible reasons for the different cellular bases of these two types of evolutionary response, we compared the newly established North and South American wing size clines of Drosophila subobscura. The new clines are based on latitudinal variation in cell area in North America and cell number in South America. The ancestral European cline is also based on latitudinal variation in cell number. The difference in the cellular basis of wing size variation in the American clines, which are roughly the same age, together with the similar cellular basis of the new South American cline and the ancient European one, suggest that the antiquity of a cline does not explain its cellular basis. Furthermore, the results indicate that wing size as a whole, rather than its cellular basis, is under selection. The different cellular bases of different size clines are most likely explained either entirely by chance or by different patterns of genetic variance—or its expression—in founding populations.
Literature Cited
- Anderson, A. 1973. Genetic divergence in body size among experimental populations of Drosophila pseudoobscura kept at different temperatures. Evolution. 27: 278–284.
- Ayala, F. J., L. Serra, and A. Prevosti 1989. A grand experiment in evolution–the Drosophila subobscura colonization of the Americas. Genome. 31: 246–255.
- Azevedo, R. B. R., V. French, and L. Partridge 2002. Temperature modulates epidermal cell size in Drosophila melanogaster. J. Insect Physiol.. 48: 231–237.
- Balanya, J. and L. Serra 1994. Colonization of America by Drosophila subobscura: the founder event and a rapid expansion. Heredity. 85: 427–432.
- Beckenbach, A. T. and A. Prevosti 1986. Colonization of North America by the European species, Drosophila subobscura and D. ambigua. Am. Midl. Nat.. 115: 10–18.
- Brncic, D., A. Prevosti, M. Budnik, M. Monclus, and J. Ocaña 1981. Colonization of Drosophila subobscura in Chile. I. First population and cytogenetic studies. Genetica. 56: 3–9.
- Budnik, M., L. Cifuentes, and D. Brncic 1991. Quantitative-analysis of genetic differentiation among European and Chilean strains of Drosophila subobscura. Heredity. 67: 29–33.
- Cavicchi, S., D. Guerra, G. Giorgi, and C. Pezzoli 1985. Temperature-related divergence in experimental populations of Drosophila melanogaster. 1. Genetic and developmental basis of wing size and shape variation.. Genetics. 109: 665–689.
- Coyne, J. A., and E. Beecham 1987. Heritability of two morphological characters within and among natural populations of Drosophila melanogaster. Genetics. 117: 727–737.
- Delcour, J., and F. A. Lints 1966. Environmental and genetic variations of wing size, cell size and division rate in Drosophila melanogaster. Genetica. 37: 543–556.
- Gilchrist, A. S. and L. Partridge 1999. A comparison of the genetic basis of wing size difference in three parallel body size clines of Drosophila melanogaster. Genetics. 53: 1775–1787.
- Gilchrist, G. W., R. B. Huey, and L. Serra 2001. Rapid evolution of wing size clines in Drosophila subobscura. Genetica. 112: 273–286.
- Huey, R. B., G. W. Gilchrist, M. L. Carlson, D. Berrigan, and L. Serra 2000. Rapid evolution of a geographic cline in size in an introduced fly. Science. 287: 308–309.
- Imasheva, A. G., O. A. Bubli, and O. E. Lazebny 1994. Variation in wing length in Eurasian natural populations of Drosophila melanogaster. Heredity. 72: 508–514.
- James, A. C., R. B. R. Azevedo, and L. Partridge 1995. Cellular basis and developmental timing in a size cline of Drosophila melanogaster. Genetics. 140: 659–666.
- 1997. Genetic and environmental responses to temperature of Drosophila melanogaster from a latitudinal cline. Genetics. 146: 881–890.
- Latorre, A., A. Moya, and F. J. Ayala 1986. Evolution of mitochondrial DNA in Drosophila subobscura. Proc. Natl. Acad. Sci. USA. 83: 8649–8653.
- McCabe, J., V. French, and L. Partridge 1997. Joint regulation of cell size and cell number in the wing blade of Drosophila melanogaster. Genet. Res.. 69: 61–68.
- Mestres, F., and L. Serra 1995. On the origin of the O5 chromosomal inversion in American populations of Drosophila subob-scura. Hereditas. 123: 39–46.
- Mestres, F., J. Balanya, C. Segarra, A. Prevosti, and L. Serra 1994. O chromosome inversion polymorphism in Northern and Atlantic Europe and its implications in the American colonization by Drosophila subobscura. Z. Zool. Syst. Evolutions forsch. 32: 108–116.
- Misra, R. K., and C. R. Reeve 1964. Clines in body dimension in populations of Drosophila subobscura. Genet. Res. Camb. 5: 240–256.
-
Partridge, L., and
V. French
1996. Thermal evolution of ectotherm body size: Why get big in the cold. Pp. 265–296
in
I. A. Johnston and
A. F. Bennet
ed,. Animals and temperature: phenotypic and evolutionary adaption. Cambridge Univ. Press,
Cambridge
,
U.K
.
10.1017/CBO9780511721854.012 Google Scholar
- Partridge, L., B. Barrie, K. Fowler, and V. French 1994. Evolution and development of body size and cell size in Drosophila me-lanogaster in response to temperature. Evolution. 48: 1269–1276.
- Pegueroles, G., M. Papaceit, A. Quintana, A. Guillen, A. Prevosti, and L. Serra 1995. An experimental study of evolution in progressclines for quantitative traits in colonizing and palearctic populations of Drosophila. Evol. Ecol.. 9: 453–465.
- Pezzoli, M. C., D. Guerra, G. Giorgi, F. Garoia, and S. Cavicchi 1997. Developmental constraints and wing shape variation in natural populations of Drosophila melanogaster. Heredity. 79: 572–577.
- Prevosti, A., M. P. Garcia, L. Serra, M. Aguade, G. Ribó, and E. Sagarra 1983. Association between allelic isozyme alleles and chromosomal arrangements in European populations and Chilean colonizers of Drosophila subobscura. Pp. 171–191 in M. C. Rattazzi, J. G. Scandalios, and G. S. Whitt, eds Isozymes: current topics in biological and medical research. Alan R. Liss, New York .
- Prevosti, A., L. Serra, G. Ribó, M. Aguade, E. Sagarra, M. Monclus, and M. P. Garcia 1985. The colonization of Drosophila subobscura in Chile. 2. Clines in the chromosomal arrangements. Evolution. 39: 838–844.
- Prevosti, A., G. Ribó, L. Serra, M. Aguade, J. Balanyá, M. Monclus, and F. Mestres 1988. Colonization of America by Drosophila subobscura: experiment in natural populations that supports the adaptive role of chromosomal-inversion polymorphism. Proc. Natl. Acad. Sci. USA.. 85: 5597–5600.
- Rozas, J., and M. Aguade 1991. Using restriction-map analysis to characterize the colonization process of Drosophila subobscura on the american continent. 1. Rp49 region.. Mol. Biol. Evol. 8: 447–457.
- Rozas, J., M. Hernandez, V. M. Cabrera, and A. Prevosti 1990. Colonization of America by Drosophila subobscuraeffect of the founder event on the mitochondrial-DNA polymorphism. Mol. Biol. Evol.. 7: 103–109.
- Reeve, E. C. R., and F. W. Robertson 1952. Studies in quantitative inheritance. II. Analysis of a strain of Drosophila melanogaster selected for long wings. Genetics. 51: 276–316.
- Robertson, F. W., 1959. Studies in quantitative inheritance. XII. Cell size and number in relation to genetic and environmental variation to body size in Drosophila. Genetics. 44: 869–895.
- Sole, E., F. Mestres, J. Balanya, C. Arenas, and L. Serra 2000. Colonization of America by Drosophila subobscura: spatial and temporal lethal-gene allelism. Hereditas. 133: 65–72.
- Van't Land, J., P. Van Putten, B. Zwaan, A. Kamping, and W. van Delden 1999. Latitudinal variation in wild populations of Drosophila melanogaster: heritabilities and reaction norms. J. Evol. Biol.. 12: 222–232.
- Wilkinson, G. S., K. Fowler and L. Partridge 1990. Resistance of genetic correlation structure to directional selection in Drosophila melanogaster. Evolution. 44: 1990–2003.
- Zwaan, B. J., R. B. R. Azevedo, A. C. James, J. Van't Land, and L. Partridge 2000. Cellular basis of wing size variation in Drosophila melanogaster: a comparison of two continents. Heredity. 84: 338–347.