NONSTOCHASTIC VARIATION OF SPECIES-LEVEL DIVERSIFICATION RATES WITHIN ANGIOSPERMS
Hallie J. Sims
Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20013–7012
E-mail: [email protected]
Search for more papers by this authorKevin J. McConway
Department of Statistics, The Open University, Milton Keynes MK7 6AA, United Kingdom
E-mail: [email protected]
Search for more papers by this authorHallie J. Sims
Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20013–7012
E-mail: [email protected]
Search for more papers by this authorKevin J. McConway
Department of Statistics, The Open University, Milton Keynes MK7 6AA, United Kingdom
E-mail: [email protected]
Search for more papers by this authorAbstract
Abstract Variations in the origination and extinction rates of species over geological time often are linked with a range of factors, including the evolution of key innovations, changes in ecosystem structure, and environmental factors such as shifts in climate and physical geography. Before hypothesizing causality of a single factor, it is critical to demonstrate that the observed variation in diversification is significantly greater than one would expect due to natural stochasticity in the evolutionary branching process. Here, we use a likelihood-ratio test to compare taxonomic rate heterogeneity to a neutral birth-death model, using data on well-supported sister pairs of taxa and their species richness. We test the likelihood that the distribution of extant species among angiosperm genera and families could be the result of constant diversification rates. Results strongly support the conclusion that there is significantly more heterogeneity in diversity at the species level within angiosperms than would be expected due to stochastic processes. This result is consistent in datasets of genus pairs and family pairs and is not affected significantly by degrading pairs to simulate inaccuracy in the assumption of simultaneous origin of sister taxa. When we parse taxon pairs among higher groups of angiosperms, results indicate that a constant rates model is not rejected by rosid and basal eudicot pairs but is rejected by asterid and eumagnoliid pairs. These results provide strong support for the hypothesis that species-level rates of origination and/or extinction have varied nonrandomly within angiosperms and that the magnitude of heterogeneity varies among major groups within angiosperms.
Literature Cited
- Ackerly, D. D. 2000. Taxon sampling, correlated evolution, and independent contrasts. Evolution. 54: 1480–1492.
- Adrain, J. M., and S. R. Westrop 2000. An empirical assessment of taxic paleobiology. Science. 289: 110–112.
- Alroy, J. 1998. Equilibrial diversity dynamics in North American mammals. Pp. 233–287 in M. L. McKinney and J. A. Drake, eds Biodiversity dynamics: turnover of populations, taxa and communities. Columbia Univ. Press, New York .
- 2000. New methods for quantifying macroevolutionary patterns and processes. Paleobiology. 26: 707–733.
- 2002. How many named species are valid Proc Natl. Acad. Sci. USA. 99: 3706–3711.
- Alroy, J., C. R. Marshall, R. K. Bambach, K. Bezusko, M. Foote, F.T. Fu″rsich, T. A. Hansen, S. M. Holland, L. C. Ivany, D. Jablonski, D. K. Jacobs, D. C. Jones, M. A. Kosnik, S. Lidgard, S. Low, A. I. Miller, P. M. Novack-Gottshall, T. D. Olszewski, M. E. Patzkowsky, D. M. Raup, K. Roy, J. J. Sepkoski Jr, M. G. Sommers, P. J. Wagner, and A. Webber 2001. Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proc. Natl. Acad. Sci. USA. 98: 6261–6266.
- Angiosperm Phylogeny Group. 1998. An ordinal classification for families of flowering plants. Ann. Mo. Bot. Gard.. 85: 531–553.
-
Archibald, J. D.
1999. Technical comments: divergence times of eutherian mammals.
Science. 285: 2031a.
10.1126/science.285.5436.2031a Google Scholar
- Ayala, F. J., A. Rzhetsky, and F. J. Ayala 1998. Origin of the metazoan phyla: molecular clocks confirm paleontological estimates. Proc. Natl. Acad. Sci. USA. 95: 606–611.
- Bailey, N. T. J. 1964. The elements of stochastic processes. Wiley, New York .
- Baldwin, B. G., and M. J. Sanderson 1998. Age and rate diversification of the Hawaiian silversword alliance (Compositae). Proc. Natl. Acad. Sci. USA. 95: 9402–9406.
- Barraclough, T. G., and V. Savolainen 2001. Evolutionary rates and species diversity in flowering plants. Evolution. 55: 677–683.
- Barraclough, T. G., P. H. Harvey, and S. Nee 1995. Sexual selection as a cause of diversity in passerine birds. Proc. R. Soc. Lond. B. 259: 211–215.
- Barraclough, T. G., S. Nee, and P. H. Harvey 1998. Sister-group analysis in identifying correlates of diversification. Evol. Ecol.. 12: 751–754.
- Behrensmeyer, A. K., and R. H. Hook 1992. Paleoenvironmental contexts and taphonomic controls. Pp. 15–136 in A. K. Beh-rensmeyer, J. D. Damuth, W. A. DiMichele, R. Potts, H. D. Sues, and S. L. Wing, eds Terrestrial ecosystems through time. Univ. of Chicago Press, Chicago , IL .
- Behrensmeyer, A. K., S. M. Kidwell, and R. A. Gastaldo 2000. Taphonomy and paleobiology. Pp. 236–258 in Deep time: Pa-leobiology's perspective. Paleobiology 26 (Supplement to no. 4).
- Bond, W. J. 1989. The tortoise and the hare: ecology of angiosperm dominance and gymnosperm persistence. Biol. J. Linn. Soc. 36: 227–249.
- Bosquet, J. S. H. Strauss, A. H. Doeksen, and R. A. Price 1992. Extensive variation in evolutionary rate of rbcL gene sequences among seed plants. Proc. Natl. Acad. Sci. USA. 89: 7844–7848.
- Bremer, K. 2000. Early Cretaceous lineages of monocot flowering plants. Proc. Natl. Acad. Sci. USA. 97: 4707–4711.
-
Brenner, G. J.
1996. Evidence of the earliest stage of angiosperm pollen evolution: a paleoequatorial section from Israel. Pp. 91–115
in
D. W. Taylor and
L. J. Hickey, eds
Flowering plant origin, evolution, and phylogeny. Chapman and Hall,
New York
.
10.1007/978-0-585-23095-5_5 Google Scholar
- Bromham, L. D., A. E. Rambaut, and P. H. Harvey 1996. Determinants of rate variation in DNA sequence evolution of mammals. J. Mol. Evol.. 43: 610–621.
- Bromham, L. D., D. Penny, A. Rambaut, and M. D. Hendy 2000. The power of relative rates tests depends on the data. J. Mol. Evol.. 50: 296–301.
- Brooks, D. R., and D. A. McLennan 1991. Phylogeny, ecology, and behavior. Univ. of Chicago Press, Chicago , IL .
- Brown, J. H. 1995. Macroecology. Univ. of Chicago Press, Chicago , IL .
- Burnham, R. J. 1995. Time resolution in terrestrial macrofloras: guidelines from modern accumulations. Pp. 57–78 in S. M. Kid-well and A. K. Behrensmeyer, eds Taphonomic approaches to time resolution in fossil assemblages. Short Courses in Paleontology. The Paleontological Society, University of Tennessee, Knoxville , TN .
- Chao, L., and D. E. Carr 1993. The molecular clock and the relationship between population size and generation time. Evolution. 47: 688–690.
- Cracraft, J. 1981. Pattern and process in paleobiology: the role of cladistic analysis in systematic paleontology. Paleobiology. 7: 456–468.
- Crane, P. R., and P. H. Herendeen 1996. Cretaceous floras containing angiosperm flowers and fruits from eastern North America. Rev. Palaeobot. Palynol.. 90: 319–337.
- Crane, P. R., and S. Lidgard 1990. Angiosperm radiation and patterns of Cretaceous palynological diversity. Pp. 377–407 in P. D. Taylor and G. P. Larwood. Major evolutionary radiations. Systematics Association Special Volume 42. Clarendon Press, Oxford , U.K .
- Crane, P. R., E. M. Friis, and K. R. Pedersen 1995. The origin and early diversification of angiosperms. Nature. 374: 27–33.
- Crepet, W. L., K. C. Nixon, E. M. Friis, and J. V. Freudenstein 1992. Oldest fossil flowers of hamamelidaceous affinity, from the Late Cretaceous of New Jersey. Proc. Natl. Acad. Sci USA.. 89: 8986–8989.
- Darwin, C. R. 1859. On the origin of species. John Murray, London .
- de Queiroz, A. 1998. Interpreting sister-group tests of key innovation hypothesis. Syst. Biol.. 47: 710–718.
- 1999. Do image-forming eyes promote evolutionary diversification Evolution. 53: 1654–1664.
- Dial, K. P., and J. M. Marzluff 1989. Nonrandom diversification within taxonomic assemblages. Syst. Zool.. 38: 26–37.
- Dobzhansky, T. 1970. Genetics of the evolutionary process. Columbia Univ. Press, New York .
- Dodd, M. E., J. Silvertown, and M. W. Chase 1999. Phylogenetic analysis of trait evolution and species diversity variation among angiosperm families. Evolution. 53: 732–744.
- Doyle, J. A., and M. J. Donoghue 1993. Phylogenies and angiosperm diversification. Paleobiology. 19: 141–167.
-
Draper, N. R., and
H. Smith
1998. Applied regression analysis. 3rd ed. John Wiley and Sons,
New York
.
10.1002/9781118625590 Google Scholar
- Eldredge, N., and J. Cracraft 1980. Phylogenetic patterns and the evolutionary process. Columbia Univ. Press, New York .
- Eriksson, O., and B. Bremer 1992. Pollination systems, dispersal modes, life forms, and diversification rates in angiosperm families. Evolution. 46: 258–266.
-
Erwin, D. H.
1992. A preliminary classification of evolutionary radiations.
Hist. Biol.. 6: 133–147.
10.1080/10292389209380423 Google Scholar
- Erwin, D. H., and R. L. Anstey 1995. New approaches to speciation in the fossil record. Columbia Univ. Press, New York .
- Farrell, B., D. E. Dussourd, and C. Mitter 1991. Escalation of plant defense: Do latex and resin canals spur plant diversification Am Nat.. 138: 881–900.
- Farris, J. S., V. A. Albert, M. Ka″llersjo″, D. Lipscomb, and A. G. Kluge 1996. Parsimony jackknifing outperforms neighbor-joining. Cladistics. 12: 99–124.
- Felsenstein, J. 1985. Phylogenies and the comparative method. Am. Nat.. 125: 1–15.
- Fisher, R. A. 1954. Statistical methods for research workers. 12th ed. Oliver and Boyd, Edinburgh .
- Foote, M. 1997. Estimating taxonomic durations and preservation probability. Paleobiology. 23: 278–300.
- 2000. Origination and extinction components of taxonomic diversity: general problems. Pp. 74102 in Deep time: Paleo-biology's perspective. Paleobiology 26 (Supplement to no. 4).
- Foote, M., and D. M. Raup 1996. Fossil preservation and the stratigraphic ranges of taxa. Paleobiology. 22: 121–140.
- Foote, M., and J. J. Sepkoski Jr. 1999. Absolute measures of the completeness of the fossil record. Nature. 398: 415–417.
- Foote, M., J. P. Hunter, C. M. Janis, and J. J. Sepkoski Jr. 1999a. Evolutionary and preservational constraints on origins of biologic groups: divergence times of Eutherian mammals. Science. 283: 1310–1314.
-
1999b. Technical comments: divergence times of eutherian mammals.
Science. 285: 2031a.
10.1126/science.285.5436.2031a Google Scholar
- Friis, E. M. 1983. Upper Cretaceous (Senonian) floral structures of juglandalean affinity containing Normapolles pollen. Rev. Pa-laeobot. Palynol.. 39: 161–188.
- Friis, E. M., K. R. Pedersen, and P. R. Crane 1999. Early angiosperm diversification: the diversity of pollen associated with angiosperm reproductive structures in Early Cretaceous floras from Portugal. Ann. Mo. Bot. Gard.. 86: 259–296.
- Gaut, B. S., S. V. Muse, W. D. Clark, and M. T. Clegg 1992. Relative rates of nucleotide substitution at the rbcL locus of monocotyledonous plants. J. Mol. Evol.. 35: 292–303.
- Gilinsky, N. L., and I. J. Good 1991. Probabilities of origination, persistence, and extinction of families of marine invertebrate life. Paleobiology. 17: 145–166.
- Gillespie, J. H. 1991. The causes of molecular evolution. Oxford Univ. Press, Oxford , U.K .
- Goldman, N. 1993. Statistical tests of models of DNA substitution. J. Mol. Evol.. 36: 182–198.
- Goudet, J. 1999. An improved procedure for testing the effects of key innovations on rate of speciation. Am. Nat.. 153: 549–555.
-
Gould, S. J.,
D.M. Raup,
J. J. Sepkoski Jr.,
T. J. M. Schopf, and
D. S. Simberloff
1977. The shape of evolution: a comparison of real and random clades.
Paleobiology. 3: 23–40.
10.1017/S009483730000508X Google Scholar
- Guyer, C., and J. B. Slowinski 1991. Comparisons of observed phylogenetic topologies with null expectations among three monophyletic lineages. Evolution. 45: 340–350.
- 1993. Adaptive radiations and the topology of large phy-logenies. Evolution. 47: 253–263.
- Harcourt-Brown, K. G., P. N. Pearson, and M. Wilkinson 2001. The imbalance of paleontological trees. Paleobiology. 27: 188–204.
-
Harvey, P. H., and
M. D. Pagel
1991. The comparative method in evolutionary biology. Oxford Univ. Press,
Oxford
,
U.K
.
10.1093/oso/9780198546412.001.0001 Google Scholar
- Harvey, P. H., and A. Rambaut 1998. Phylogenetic extinction rates and comparative methodology. Proc. R. Soc. Lond. B. 265: 1691–1696.
- Harvey, P. H., R. M. May, and S. Nee 1994. Phylogenies without fossils. Evolution. 48: 523–529.
- Hasegawa, M., H. Kisino, and T. Yano 1985. Dating the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol.. 22: 160–174.
- Heard, S. B. 1992. Patterns in tree balance among cladistic, phe-netic, and randomly generated phylogenetic trees. Evolution. 46: 1818–1826.
-
Heard, S. B., and
D. L. Hauser
1995. Key evolutionary innovations and their ecological mechanisms.
Hist. Biol.. 10: 151–173.
10.1080/10292389509380518 Google Scholar
-
Hedges, S. B., and
S. Kumar
1999. Technical comments: divergence times of eutherian mammals.
Science. 285: 2031a.
10.1126/science.285.5436.2031a Google Scholar
- Heilbuth, J. C. 2000. Lower species richness in dioecious clades. Am. Nat.. 156: 221–241.
- Hennig, W. 1966. Phylogenetic systematics. Univ. Illinois Press, Urbana , IL .
- Herendeen, P. H., P. R. Crane, and A. N. Drinnan 1995. Fagaceous flowers, fruits, and cupules from the Campanian (Late Cretaceous) of central Georgia, U.S.A. Int. J. Plant Sci.. 156: 93–116.
- Herendeen, P. H., S. Magallón-Puebla, R. Lupia, P. R. Crane, and J. Kobylinska 1999. A preliminary conspectus of the Allon flora from the Late Cretaceous (late Santonian) of central Georgia. Ann. Mo. Bot. Gard.. 86: 407–471.
- Hey, J. 1992. Using phylogenetic trees to study speciation and extinction. Evolution. 46: 627–640.
- Hey, J., H. Hilton, N. Leahy, and R.-L. Wang 1998. Testing models of speciation and extinction with phylogenetic trees of extant taxa. Pp. 70–90 in M. L. McKinney and J. A. Drake, eds Biodiversity dynamics, turnover of populations, taxa, and communities. Columbia Univ. Press, New York .
- Hodges, S. A., and M. L. Arnold 1995. Spurring plant diversification: Are floral nectar spurs a key innovation Proc R. Soc. Lond. B. 262: 343–348.
- Holland, S. M. 2001. The quality of the fossil record: a sequence stratigraphic perspective. Pp. 148–168 in D. H. Erwin and S. L. Wing, eds. Deep time: Paleobiology's perspective. Paleobiology 26 (Supplement to no. 4).
- Hubbell, S. P. 2001. The unified neutral theory of biodiversity and biogeography. Princeton Univ. Press, Princeton , NJ .
- Huelsenbeck, J. P., and K. A. Crandall 1997. Phylogeny estimation and hypothesis testing using maximum likelihood. Annu. Rev. Ecol. Syst.. 28: 437–466.
- Huelsenbeck, J. P., and M. Kirkpatrick 1996. Do phylogenetic methods produce trees with biased shapes Evolution 50: 1418–1424.
- Huelsenbeck, J. P., and R. Nielsen 1999. Effect of nonindependent substitution on phylogenetic accuracy. Syst. Biol.. 48: 317–328.
- Huelsenbeck, J. P., B. Rannala, and J. P. Masly 2000. Accommodating phylogenetic uncertainty in evolutionary studies. Science. 288: 2349–2350.
- Hunter, J. P. 1998. Key innovations and the ecology of macroevolution. Trends Ecol. Evol.. 13: 31–36.
- Kendall, D. G. 1948. On the generalized “birth-and-death” process. Ann. Math. Stat.. 19: 1–15.
-
Kimura, M.
1983. The neutral theory of molecular evolution. Cambridge Univ. Press,
Cambridge
,
U.K
.
10.1017/CBO9780511623486 Google Scholar
- Kirkpatrick, M., and M. Slatkin 1993. Searching for evolutionary patterns in the shape of a phylogenetic tree. Evolution. 47: 1171–1181.
- Knoll, A. H. 1986. Patterns of change in plant communities through geological time. Pp. 126–141 in J. Diamond and T. J. Case. Community ecology. Harper and Row, New York .
- Kumar, S., and S. B. Hedges 1998. A molecular timescale for vertebrate evolution. Nature. 392: 917–920.
- Losos, J. B., and F. R. Adler 1995. Stumped by trees A generalized null model for patterns of organismal diversity Am. Nat. 145: 329–342.
- Lupia, R., S. Lidgard, and P. R. Crane 1999. Comparing palynological abundance and diversity: implications for biotic replacement during the Cretaceous angiosperm radiation. Paleobiology. 25: 305–340.
- Mabberley, D. J. 1997. The plant-book. Cambridge Univ. Press, Cambridge , U.K .
- Magallón, S., and M. J. Sanderson 2001. Absolute diversification rates in angiosperm clades. Evolution. 55: 1762–1780.
- Magallón, S., P. S. Herendeen, and P. K. Endress 1996. Allonia decandra: floral remains of tribe Hamamelideae (Hamamelida-ceae) from Campanian strata of southeastern U.S.A. Plant Syst. Evol.. 202: 177–198.
- Magallón, S., P. R. Crane, and P. S. Herendeen 1999. Phylogenetic pattern, diversity, and diversification of eudicots. Ann. Mo. Bot. Gard.. 86: 297–372.
- Magallón, S., P. S. Herendeen, and P. R. Crane 2001. Androdecidua endressi gen. et sp. nov., from the Late Cretaceous of Georgia USA: further floral diversity in Hamamelidoideae (Hamameli-daceae). Int. J. Plant Sci.. 162: 963–983.
- Marshall, C. R. 1994. Confidence intervals on stratigraphic ranges: partial relaxation of the assumption of randomly distributed fossil horizons. Paleobiology. 20: 459–469.
-
Mayr, E.
1963. Animal species and evolution. Belknap Press of Harvard Univ. Press,
Cambridge
,
MA
.
10.1111/j.0022-1112.2004.00433.x Google Scholar
- McKinney, M. L., and J. A. Drake 1998. Biodiversity dynamics, turnover of populations, taxa, and communities. Columbia Univ. Press, New York .
- Miller, A. I., and M. Foote 1996. Calibrating the Ordovician radiation of marine life: implications for Phanerozoic diversity trends. Paleobiology. 22: 304–309.
- Mitter, C., B. Farrell, and B. Wiegmann 1988. The phylogenetic study of adaptive zones: Has phytophagy promoted insect diversification Am Nat.. 132: 107–128.
- Mooers, A. Ø. 1995. Tree balance and tree completeness. Evolution. 49: 379–384.
- Mooers, A. Ø., and P. H. Harvey 1994. Metabolic rate, generation time and the rate of molecular evolution in birds. Mol. Phyl. Evol.. 3: 344–350.
- Mooers, A. Ø., and S. B. Heard 1997. Inferring evolutionary process from phylogenetic tree shape. Q. Rev. Biol.. 72: 31–54.
- Mooers, A. Ø., R. D. M. Page, A. Purvis, and P. H. Harvey 1995. Phylogenetic noise leads to unbalanced cladistic tree reconstructions. Syst. Biol.. 44: 332–342.
- Morgan, B. J. T. 2000. Applied stochastic modelling. Arnold Press, London .
- Nee, S. 2001. Inferring speciation rates from phylogenies. Evolution. 55: 661–668.
- Nee, S., and P. H. Harvey 1994. Getting to the roots of flowering plant diversity. Science. 264: 1549–1550.
- Nee, S., A. Ø. Mooers, and P. H. Harvey 1992. Tempo and mode of evolution revealed from molecular phylogenies. Proc. Natl. Acad. Sci. USA. 89: 8322–8326.
- Nee, S., E. C. Holmes, R. M. May, and P. H. Harvey 1994a. Extinction rates can be estimated from molecular phylogenies. Phi-los. Trans. R. Soc. Lond. B. 344: 77–82.
- Nee, S., R. M. May, and P. H. Harvey 1994b. The reconstructed evolutionary process. Philos. Trans. R. Soc. Lond. B. 344: 305–311.
- Nee, S., E. C. Holmes, R. M. May, and P. H. Harvey 1995. Estimating extinction from molecular phylogenies. Pp. 164–182 in J. H. Lawton and R. M. May, eds. Extinction rates. Oxford Univ. Press, Oxford , U.K .
- Nee, S., T. G. Barraclough, and P. H. Harvey 1996. Temporal changes in biodiversity: detecting patterns and identifying causes. Pp. 230–252 in K. J. Gaston, ed Biodiversity: a biology of numbers and differences. Blackwell Science, Oxford , U.K .
- Niklas, K. J., B. H. Tiffney, and A. H. Knoll 1985. Patterns in vascular land plant diversification: an analysis at the species level. Pp. 97–128 in J. Valentine, ed Phanerozoic diversity patterns. Princeton Univ. Press, Princeton , NJ .
- Nixon, K. 1999. The parsimony ratchet: a rapid means for analyzing large data sets. Cladistics. 15: 407–414.
- Nixon, K., and W. L. Crepet 1993. Late Cretaceous fossil flowers of ericalean affinity. Am. J. Bot.. 80: 616–623.
- Pagel, M. 1999. Inferring the historical patterns of biological evolution. Nature. 401: 877–884.
- Paul, C. R. C. 1998. Adequacy, completeness, and the fossil record. Pp. 1–22 in S. K. Donovan and C. R. C. Paul, eds The adequacy of the fossil record. Wiley, Chichester , U.K .
- Przeworski, M., and J. D. Wall 1998. An evaluation of a hierarchical branching process as a model for species diversification. Paleobiology. 24: 498–511.
- Purvis, A., S. Nee, and P. H. Harvey 1995. Macroevolutionary inferences from primate phylogeny. Proc. R. Soc. Lond. B. 260: 329–333.
- Rambaut, A., and L. Bromham 1998. Estimating divergence dates from molecular sequences. Mol. Biol. Evol.. 15: 442–448.
- Raup, D. M. 1985. Mathematical models of cladogenesis. Paleo-biology. 11: 42–52.
- 1991. Extinction: bad genes or bad luck? Norton , New York.
- Raup, D. M., S. J. Gould, T. J. M. Schopf, and D. S. Simberloff 1973. Stochastic models of phylogeny and the evolution of diversity. J. Geol.. 81: 525–542.
-
Rich, T. H.,
P. Vickers-Rich, and
T. F. Flannery
1999. Technical comments: divergence times of eutherian mammals.
Science. 285: 2031a.
10.1126/science.285.5436.2031a Google Scholar
- Ricklefs, R. E., and S. S. Renner 1994. Species richness within families of flowering plants. Evolution. 48: 1619–1636.
-
Rosenzweig, M. L.
1995. Species diversity in space and time. Cambridge Univ. Press,
Cambridge
,
U.K
.
10.1111/j.2006.0906-7590.04272.x Google Scholar
- Sadler, P. M. 1981. Sediment accumulation rates and the completeness of stratigraphic sections. J. Geol.. 89: 569–584.
- Salisbury, B. A. 1999. Misinformative characters and phylogeny shape. Systematic Biology. 48: 153–169.
- Sanderson, M. J. 1994. Reconstructing the history of evolutionary processes using maximum likelihood. Pp. 13–26 in D. M. Fam-borough, ed Molecular evolution of physiological processes. Society of General Physiologists 47th annual symposium. Rockefeller Univ. Press, New York .
- 1997. A nonparametric approach to estimating divergence times in the absence of rate constancy. Mol. Biol. Evol. 14: 1218–1231.
- 1998. Estimating rate and time in molecular phylogenies: beyond the molecular clock. Pp. 242–264 in D. E. Soltis, P. S. Soltis, and J. J. Doyle, eds Molecular systematics of plants. Vol. II. Kluwer, Boston .
- Sanderson, M. J., and G. Bharathan 1993. Does cladistic information affect inferences about branching rates Syst Biol. 42: 1–17.
- Sanderson, M. J., and M. J. Donoghue 1994. Shifts in diversification rate with the origin of angiosperms. Science. 264: 1590–1593.
- 1996. Reconstructing shifts in diversification rates on phy-logenetic trees. Trends Ecol. Evol.. 11: 15–20.
- Sanderson, M. J., and J. A. Doyle 2001. Sources of error and confidence intervals in estimating the age of angiosperms from rbcL and 18S rDNA data. Am. J. Bot.. 88: 1499–1516.
- Sanderson, M. J., and M. F. Wojciechowski 1996. Diversification rates in a temperate legume clade: Are there “so many species” of Astragalus (Fabaceae) Am J. Bot.. 83: 1488–1502.
- Schindel, D. E. 1980. Microstratigraphic sampling and the limits of paleontologic resolution. Paleobiology. 6: 408–426.
- Simberloff, D., K. L. Heck, E. D. McCoy, and E. F. Connor 1981. There have been no statistical tests of cladistic biogeographic hypotheses. Pp. 40–63 in G. Nelson and D. E. Rosen, eds Vi-cariance biogeography: a critique. Columbia Univ. Press, New York .
-
Simpson, G. G.
1953. The major features of evolution. Columbia Univ. Press,
New York
.
10.7312/simp93764 Google Scholar
- Sims, H. J., P. H. Herendeen, and P. R. Crane 1998. A new genus of fossil Fagaceae from the Santonian (Late Cretaceous) of central Georgia, USA. Int. J. Plant Sci.. 159: 391–404.
- Sims, H. J., P. S. Herendeen, R. Lupia, R. A. Christopher, and P. R. Crane 1999. Fossil flowers with Normapolles pollen from the Upper Cretaceous of southeastern North America. Rev. Pa-laeobot. Palynol.. 106: 131–151.
- Slowinski, J. B., and C. Guyer 1989. Testing the stochasticity of patterns of organismal diversity: an improved null model. Am. Nat.. 134: 907–921.
- 1993. Testing whether certain traits have caused amplified diversification: an improved method based on a model of random speciation and extinction. Am. Nat.. 142: 1019–1024.
- Smith, A. B. 2001. Large-scale heterogeneity of the fossil record: implications for Phanerozoic biodiversity studies. Philos. Trans. R. Soc. Lond. B. 356: 351–367.
- Smith, A. B., and C. Patterson 1988. The influence of taxonomic method on the perception of patterns of evolution. Evol. Biol.. 23: 127–216.
- Solow, A. R., and W. Smith 1997. On fossil preservation and the stratigraphic ranges of taxa. Paleobiology. 23: 271–277.
- Soltis, D. E., P. S. Soltis, M. W. Chase, M. E. Mort, D. C. Albach, M. Zanis, V. Savolainen, W. H. Hahn, S. B. Hoot, M. F. Fay, M. Axtell, S. M. Swensen, L. M. Prance, W. J. Kress, K. C. Nixon, and J. S. Farris 2000. Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences. Bot. J. Linn. Soc.. 133: 381–461.
- Soltis, P. S., D. E. Soltis, V. Savolainen, P. R. Crane, and T. G. Barraclough 2002. Rate heterogeneity among lineages of tracheophytes: integration of molecular and fossil data and evidence for molecular living fossils. Proc. Natl. Acad. Sci. USA. 7: 4430–4435.
- Stanley, S. M. 1979. Macroevolution, pattern and process. Johns Hopkins Univ. Press, Baltimore , MD .
- Stebbins, G. L. 1981. Why are there so many species of flowering plants BioScience 31: 573–577.
- Strauss, D., and P. M. Sadler 1989. Classical confidence intervals and Bayesian probability estimates for ends of local taxon ranges. Math. Geol.. 21: 411–427.
- Tajima, F. 1993. Simple methods for testing the molecular evolutionary clock hypothesis. Genetics. 135: 599–607.
- Tiffney, B. H., and S. J. Mazer 1995. Angiosperm growth habit, dispersal and diversification reconsidered. Evol. Ecol.. 9: 93–117.
- J. W. Valentine, ed. 1985. Phanerozoic diversity patterns: profiles in macroevolution. Princeton Univ. Press, Princeton , NJ .
- van Valen, L. M. 1971. Adaptive zones and the orders of mammals. Evolution. 25: 420–428.
- Vrba, E. S. 1980. Evolution, species, and fossils: How does life evolve S Afr. J. Sci.. 76: 61–84.
-
1984. Evolutionary pattern and process in the sister-group Alcelaphini-Aepcerotini (Mammalia: Bovidae). Pp. 62–79
in
N. Eldredge and
S. Stanley, eds
Living fossils. Springer,
New York
.
10.1007/978-1-4613-8271-3_7 Google Scholar
-
Watson, L., and
M. J. Dallwitz
1991. The families of angiosperms: automated descriptions, with interactive identification and information retrieval.
Aust. Syst. Biol.. 4: 681–695.
10.1071/SB9910681 Google Scholar
- 1999. The families of flowering plants: descriptions, illustrations, identification, and information. Available via http:biodiversity.uno.edudelta. Retrieval version: July 2001.
- Westrop, S. R., and J. M. Adrain 2001. Sampling at the species level: impact of spatial biases on diversity gradients. Geology. 29: 903–906.
- Wiegmann, D. M., C. Mitter, and B. Farrell 1993. Diversification of carnivorous parasitic insects: extraordinary radiation or specialized dead end Am Nat.. 142: 737–754.
- Wing, S. L., and L. D. Boucher 1998. Ecological aspects of the Cretaceous flowering plant radiation. Annu. Rev. Earth Planet. Sci.. 26: 379–421.
- Wu, C.-I., and W.-H. Li 1985. Evidence for higher rates of nucle-otide substitutions in rodents than in man. Proc. Natl. Acad. Sci. USA. 82: 1741–1745.
- Yang, Z. 1996. Among-site rate variation and its impact on phy-logenetic analyses. Trends Ecol. Evol.. 11: 367–372.
-
Yule, U.
1924. A mathematical theory of evolution based on the conclusions of Dr.
J. C. Willis, F. R. S. Philos. Trans. B. 213: 21–87.
10.1098/rstb.1925.0002 Google Scholar
- Zeh, D. W., J. A. Zeh, and R. L. Smith 1989. Ovipositors, amnions, and eggshell architecture in the diversification of terrestrial arthropods. Q. Rev. Biol.. 64: 147–168.
- Zwickl, D. J., and D. M. Hillis 2002. Increased taxon sampling greatly reduces phylogenetic error. Syst. Biol.. 51: 588–598.