GEOMETRIC ESTIMATES OF HERITABILITY IN BIOLOGICAL SHAPE
LEANDRO R. MONTEIRO
Laboratório de Ciěncias Ambientais, Centro de Biociencias e Biotecnologia, Universidade Estadual do Norte Fluminense, Av. Alberto Lamego 2000, Horto, Campos dos Goytacazes, 28015-620, Rio de Janeiro, Brasil E-mail: [email protected]
Search for more papers by this authorJOSÉ ALEXANDRE F. DINIZ-FILHO
Departamento de Biologta Geral, Instituto de Ciěncias Biológicas, Universidade Federal de Goiás, cp 131, 74001-970, Goiǎnia, Goiás, Brasil E-mail: [email protected]
Search for more papers by this authorSÉRGIO F. DOS REIS
Departamento de Parasitologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, 13083-970, São Paulo, Brasil E-mail: [email protected]
Search for more papers by this authorEDILSON D. ARAÚJO
Universidade Tiradentes, Centro de Ciěncias Biológicas e da Saúde, Campus II, Av. Murilo Dantas, 300, 49032-490, Aracaju-SE, Brasil E-mail: [email protected]
Search for more papers by this authorLEANDRO R. MONTEIRO
Laboratório de Ciěncias Ambientais, Centro de Biociencias e Biotecnologia, Universidade Estadual do Norte Fluminense, Av. Alberto Lamego 2000, Horto, Campos dos Goytacazes, 28015-620, Rio de Janeiro, Brasil E-mail: [email protected]
Search for more papers by this authorJOSÉ ALEXANDRE F. DINIZ-FILHO
Departamento de Biologta Geral, Instituto de Ciěncias Biológicas, Universidade Federal de Goiás, cp 131, 74001-970, Goiǎnia, Goiás, Brasil E-mail: [email protected]
Search for more papers by this authorSÉRGIO F. DOS REIS
Departamento de Parasitologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, 13083-970, São Paulo, Brasil E-mail: [email protected]
Search for more papers by this authorEDILSON D. ARAÚJO
Universidade Tiradentes, Centro de Ciěncias Biológicas e da Saúde, Campus II, Av. Murilo Dantas, 300, 49032-490, Aracaju-SE, Brasil E-mail: [email protected]
Search for more papers by this authorAbstract
Abstract The recently developed geometric morphometrics methods represent an important contribution of statistics and geometry to the study of biological shapes. We propose simple protocols using shape distances that incorporate geometric techniques into linear quantitative genetic models that should provide insights into the contribution of genetics to shape variation in organisms. The geometric approaches use Procrustes distances in a curved shape space and distances in tangent spaces within and among families to estimate shape heritability. We illustrate the protocols with an example of wing shape variation in the honeybee, Apis mellifera. The heritability of overall shape variation was small, but some localized components depicting shape changes on distal wing regions showed medium to large heritabilities. The genetic variance-covariance matrix of the geometric shape variables was significantly correlated with the phenotypic shape variance-covariance matrix. A comparison of the results of geometric methods with the traditional multivariate analysis of interlandmark distances indicated that even with a larger dimensionality, the interlandmark distances were not as rich in shape information as the landmark coordinates. Quantitative genetics studies of shape should greatly benefit from the application of geometric methods.
Literature Cited
- Adams, D. C., and D. J. Funk. 1997. Morphometric inferences on sibling species and sexual dimorphism in Neochlamisus bebbi-anae leaf beetles: multivariate applications of the thin-plate spline. Syst. Biol. 46: 180–194.
- Adams, J. E., E. D. Rothman, W. E. Kerr, and Z. L. Paulino-Simoes. 1977. Estimation of the number of sex alleles and queen matings from diploid male frequencies in a population of Apis mellifera. Genetics 86: 583–596.
- Atchley, W. R., and B. K. Hall. 1991. A model for development and evolution of complex morphological structures. Biol. Rev. 66: 101–157.
- Atchley, W. R., J. J. Rutledge, and D. E. Cowley. 1981. Genetic components of size and shapeII. Multivariate patterns in rat and mouse skull. Evolution 35: 1037–1055.
- Atchley, W. R., S. Z. Xu, and C. Vogl. 1994. Developmental quantitative genetic models of evolutionary change. Dev. Genet. 15: 92–103.
- Bar-Yam, Y. 1997. Dynamics of complex systems. Perseus Books, Boulder , CO .
- Biehs, B., M. A. Sturtevant, and E. Bier. 1998. Boundaries in the Drosophila wing imaginal disc organize vein-specific genetic programs. Development 125: 4245–4257.
- Bitner-Mathé, B. C., and L. B. Klaczko. 1999a. Heritability, phe-notypic and genetic correlations of size and shape of Drosophila mediopunctata wings. Heredity 83: 688–696.
- Bitner-Mathé, B. C., and L. B. Klaczko. 1999b. Size and shape heritability in natural populations of Drosophila mediopunctata: temporal and microgeographical variation. Genetica 105: 35–42.
-
Bookstein, F. L.
1986. Size and shape spaces for landmark data in two dimensions.
Stat. Sci.
1: 181–242.
10.1214/ss/1177013696 Google Scholar
- Bookstein, F. L. 1989. Principal warps: thin-plate splines and the decomposition of deformations. IEEE T. Pattern Anal. 11: 567–585.
- Bookstein, F. L. 1993. A brief history of the morphometric synthesis. Pp. 15–40 in L. F. Marcus, E. Bello, and A. Garcia-Valdecasas, eds. Contributions to morphometrics. Monografias, Museo Nacional de Ciencias Naturales, Madrid , Spain .
- Bookstein, F. L. 1996. Combining the tools of geometric morphometrics. Pp. 131–151 in L. F. Marcus, M. Corti, A. Loy, G. J. P. Naylor, and D. E. Slice, eds. Advances in morphometrics. NATO ASI series A: life sciences, Vol. 284. Plenum Press, New York .
- Cassidy, K. M., E. F. Harris, E. A. Tolley, and R. G. Keim. 1998. Genetic influence on dental arch form in orthodontic patients. Angle Orthod. 68: 445–454.
- Cheverud, J. M. 1982. Phenotypic, genetic and environmental morphological integration in the cranium. Evolution 36: 499–516.
-
Collins, A. M.
1986. Quantitative genetics. Pp. 283–304
in
T. E. Rinderer, ed.
Bee genetics and breeding. Academic Press,
New York
.
10.1016/B978-0-12-588920-9.50016-9 Google Scholar
- Cowley, D. E., and W. R. Atchley. 1992. Quantitative genetic models for development, epigenetic selection and phenotypic evolution. Evolution 46: 495–518.
- Coyne, J. A., and E. Beecham. 1987. Heritability of two morphological characters within and among natural populations of Dro-sophila melanogaster. Genetics 117: 727–737.
- Currie, A. J., S. Ganeshanandan, D. A. Noiton, D. Garrick, C. J. A. Shelbourne and N. Oraguzie. 2000. Quantitative evaluation of apple (Mallus domestica Borkh.) fruit shape by principal component analysis of Fourier descriptors. Euphytica 111: 219–227.
- Diniz-Filho, J. A. F., and M. I. B. Pignata. 1994. Quantitative genetics of multivariate morphometric variation in the neotropical stingless bee, Scaptotrigona postica (Hymenoptera: Meliponi-nae). Braz. J. Genet. 17: 259–265.
- Diniz-Filho, J. A. F., O. Malaspina, and D. H. Cavalheri. 1994. Genetic and within-colony environmental components of variation in the hamuli number of Africanized honey bees. Braz. J. Genet. 17: 255–258.
- Diniz-Filho, J. A. F., S. Fuchs, and M. C. Arias. 1999. Phylogeo-graphical autocorrelation of phenotypic evolution in honeybees (Apis mellifera L.). Heredity 83: 671–680.
- Dryden, I. L., and K. V. Mardia. 1998. Statistical shape analysis. John Wiley and Sons, New York .
- Duarte, L. C., L. R. Monteiro, F. J. Von Zuben, and S. F. dos Reis. 2000. Variation in mandible shape in Thrichomys apereoides (Mammalia: Rodentia): geometric analysis of a complex morphological structure. Syst. Biol. 49: 563–578.
- Falconer, D. S., and T. F. C. Mackay. 1996. Introduction to quantitative genetics. Longman Group, Harlow , U.K.
- García-Bellido, A., and J. F. de Cellis. 1992. Developmental genetics of the venation pattern of Drosophila. Annu. Rev. Genet. 26: 277–304.
- Goodall, C. R. 1991. Procrustes methods in the statistical analysis of shape. J. R. Stat. Soc. B 53: 285–339.
- Guralnick, R. P., and D. R. Lindberg. 1999. Integrating developmental evolutionary patterns and mechanisms: a case study using the gastropod radula. Evolution 53: 447–459.
- Haberl, M., and R. F. A. Moritz. 1994. Estimation of intracolonial worker relationship in a honeybee colony (Apis mellifera L.) using DNA fingerprinting. Insectes Soc. 41: 263–272.
- Humphries, J. M., F. L. Bookstein, B. Chernoff, G. Smith, R. Elder, and S. Poss. 1981. Multivariate discrimination by shape in relation to size. Syst. Zool. 30: 291–308.
- Iwata, H., S. Niikura, S. Matsuura, Y. Takano, and Y. Ukai. 2000. Diallel analysis of root shape of Japanese radish (Raphanus sa-tivus L.) based on elliptic Fourier descriptors. Breeding Sci. 50: 73–80.
- Kendall, D. G. 1984. Shape manifolds, procrustean metrics, and complex projective spaces. Bull. Lond. Math. Soc. 16: 81–121.
- Klingenberg, C. P., and L. J. Leamy. 2001. Quantitative genetics of geometric shape in the mouse mandible. Evolution 55: 2342–2352.
- Klingenberg, C. P., and G. S. McIntyre. 1998. Geometric morpho-metrics of developmental instability: analyzing patterns of fluctuating asymmetry with Procrustes methods. Evolution 52: 1363–1375.
- Klingenberg, C. P., L. J. Leamy, E. J. Routman, and J. M. Cheverud. 2001. Genetic architecture of mandible shape in mice: effects of quantitative trait loci analyzed by geometric morphometrics. Genetics 157: 785–802.
- Leamy, L., and W. R. Atchley. 1984. Morphometric integration in the rat (Rattus sp.) scapula. J. Zool. Lond. 202: 43–56.
- Levin, S. A. 1992. The problem of scale in ecology. Ecology 73: 1943–1967.
- Lobo, J. A., and H. Krieger. 1992. Maximum likelihood estimates of gene frequencies and racial admixture in Apis mellifera L. (Africanized honeybees). Heredity 68: 441–448.
- Lynch, M., and B. Walsh. 1998. Genetics and analysis of quantitative traits. Sinauer, Sunderland , MA .
- Marcus, L. F. 1990. Traditional morphometrics. Pp. 77–122 in F. J. Rohlf and F. L. Bookstein, eds. Proceedings of the Michigan morphometrics workshop. Special publication no. 2. Univ. of Michigan Museum of Zoology, Ann Arbor , MI .
-
Marcus, L. F.,
M. Corti,
A. Loy,
G. J. P. Naylor, and
D. E. Slice. 1996. Advances in morphometrics. NATO ASI series A: life sciences. Vol. 284. Plenum Press,
New York
.
10.1007/978-1-4757-9083-2 Google Scholar
- Marcus, L. F., E. Hingst-Zaher, and H. Zaher. 2000. Application of landmark morphometrics to skulls representing the orders of living mammals. Hystrix 11: 27–48.
- Maynard Smith, J., R. Burian, S. Kauffman, P. Alberch, J. Campbell, B. Goodwin, R. Lande, D. Raup, and L. Wolpert. 1985. Developmental constraints and evolution. Q. Rev. Biol. 60: 265–287.
- Milne, C. P. 1985. An estimate of the heritability of the corbicular area of the honeybee. J. Apic. Res. 24: 137–139.
- Monteiro, L. R. 1999. Multivariate regression models and geometric morphometrics: the search for causal factors in the analysis of shape. Syst. Biol. 48: 192–199.
-
Monteiro, L. R., and
A. S. Abe. 1999. Functional and historical determinants of shape in the scapula of xenarthran mammals: evolution of a complex morphological structure.
J. Morphol.
241: 251–263.
10.1002/(SICI)1097-4687(199909)241:3<251::AID-JMOR7>3.0.CO;2-7 CAS PubMed Web of Science® Google Scholar
- Monteiro, L. R., B. Bordin, and S. F. Reis. 2000. Shape distances, shape spaces and the comparison of morphometric methods. Trends Ecol. Evol. 15: 217–220.
- Monteiro-Filho, E. L. A., L. R. Monteiro, and S. F. dos Reis. 2002. Skull shape and size divergence in the genus Sotalia (Cetacea): a tridimensional morphometric analysis. J. Mammal. 83: 125–134.
- Murray, J. D. 1990. Mathematical biology. Springer, New York .
- Oldroyd, B., and C. Moran. 1983. Heritability of worker characters in the honeybee (Apis mellifera). Aust. J. Biol. Sci. 36: 323–332.
- Oldroyd, B., T. E. Rinderer, and S. Buco. 1991. Heritability of morphological characters used to distinguish European and Africanized honeybees. Theor. Appl. Genet. 82: 499–504.
- Page, R. 1986. Sperm utilization in social insects. Annu. Rev. En-tomol. 31: 297–320.
- Page, R., and W. E. Kerr. 1991. Honey bee genetics and breeding. Pp. 157–186 in M. Spivak, D. J. C. Fletcher, and M. D. Breed, eds. The African honey bee. Westview Press, San Francisco , CA .
- Palmer, K. A. and B. P. Oldroyd. 2000. Evolution of multiple mat-ings in the genus Apis. Apidologie 31: 235–248.
- Reis, S. F., L. C. Duarte, L. R. Monteiro, and F. J. Von Zuben. 2002. Geographic variation in cranial morphology in Thrichomys apereoides (Rodentia: Echimyidae)I. Geometric descriptors of shape and multivariate analysis of geographic variation in shape. J. Mammal. 83: 125–134.
- Ricklefs, R. E., and D. B. Miles. 1994. Ecological and evolutionary inferences from morphology: an ecological perspective? Pp. 13–41 in P. C. Wainwright and S. M. Reilly, eds. Ecological morphology. Univ. of Chicago Press, Chicago .
- Rinderer, T. E. 1977. Measuring the heritability of characters in honeybees. J. Apic. Res. 16: 95–98.
- Roff, D. A., and M. J. Bradford. 1998. The evolution of shape in the wing dimorphic cricket Allonemobius socius. Heredity 80: 446–455.
- Rohlf, F. J. 1993. Relative warp analysis and an example of its application to mosquito wings. Pp. 131–159 in L. F. Marcus, E. Bello, and A. Garcia-Valdecasas, eds. Contributions to morphometrics. Monografias, Museo Nacional de Ciencias Natur-ales, Madrid, Spain.
- Rohlf, F. J. 1996. Morphometric spaces, shape components and the effect of linear transformations. Pp. 117–130 in L. F. Marcus, M. Corti, A. Loy, G. J. P. Naylor, and D. E. Slice, eds. Advances in morphometrics. NATO ASI series A: life sciences vol. 284. Plenum Press, New York .
- Rohlf, F. J. 1998. On applications of geometric morphometrics to studies of ontogeny and phylogeny. Syst. Biol. 47: 147–158.
- Rohlf, F. J. 1999. Shape statistics: Procrustes superimpositions and tangent spaces. J. Classif. 16: 197–223.
- Rohlf, F. J. 2000a. On the use of shape spaces to compare morpho-metric methods. Hystrix 11: 8–24.
-
Rohlf, F. J.
2000b. Statistical power comparisons among alternative morphometric methods.
Am. J. Phys. Anthropol.
111: 463–478.
10.1002/(SICI)1096-8644(200004)111:4<463::AID-AJPA3>3.0.CO;2-B CAS PubMed Web of Science® Google Scholar
- Rohlf, F. J., and F. L. Bookstein. 1987. A comment on shearing as a method for “size correction. Syst. Zool. 36: 356–367.
- Rohlf, F. J., and L. F. Marcus. 1993. A revolution in morphometrics. Trends Ecol. Evol. 8: 129–132.
-
Ruttner, F.
1988. Biogeography and taxonomy of honeybees. Springer-Verlag,
New York
.
10.1007/978-3-642-72649-1 Google Scholar
- Slice, D. E. 1996. Three-dimensional generalized resistant fitting and the comparison of least-squares and resistant-fit residuals. Pp. 179–200 in L. F. Marcus, M. Corti, A. Loy, G. J. P. Naylor, and D. E. Slice, eds. Advances in morphometrics. NATO ASI series A: life sciences, Vol. 284. Plenum Press, New York .
-
Small, C. G.
1996. The statistical theory of shape. Springer-Verlag,
New York
.
10.1007/978-1-4612-4032-7 Google Scholar
-
Sokal, R. R., and
F. J. Rohlf. 1995. Biometry. 3rd ed.
W. H. Freeman and Co.,
New York
.
10.1577/1548-8659(1986)115<149:LOPDOR>2.0.CO;2 Google Scholar
- Spicer, G. S. 1993. Morphological evolution of the Drosophila vi-rilis species group as assessed by rate tests for natural selection on quantitative characters. Evolution 47: 1240–1254.
- Sturtevant, M. A., and E. Bier. 1995. Analysis of the genetic hierarchy guiding wing vein development in Drosophila. Development 121: 785–801.
- Travis, J. 1994. Evaluating the adaptive role of morphological plasticity. Pp. 99–122 in P. C. Wainwright and S. M. Reilly, eds. Ecological morphology. Univ. of Chicago Press, Chicago , IL .
- Turelli, M., J. H. Gillespie, and R. Lande. 1988. Rate tests for selection on quantitative characters during macroevolution and microevolution. Evolution 42: 1085–1089.
- Venable, D. L., and A. Burquez. 1989. Quantitative genetics of size, shape, life history, and fruit characteristics of the seed-heteromorphic composite Heterosperma pinnatum I. Variation within and among populations. Evolution 43: 113–124.
- Wagner, G. P. 1990. A comparative study of morphological integration in Apis mellifera L. Z. Zool. Syst. Evolutions forsch. 28: 48–61.
- Walsh, B. 2001. Quantitative genetics in the age of genomics. Theor. Popul. Biol. 59: 175–184.
- Young, H. J., M. L. Stanton, N. C. Ellstrand, and J. M. Clegg. 1994. Temporal and spatial variation in heritability and genetic correlations among floral traits in Raphanus sativus, wild radish. Heredity 73: 298–308.
- Zelditch, M. L., W. L. Fink, and D. L. Swiderski. 1995. Morphometrics, homology, and phylogenetics: quantified characters as synapomorphies. Syst. Biol. 44: 179–189.
- Zeng, Z. B., J. J. Liu, L. F. Stam, C. H. Kao, J. M. Mercer, and C. C. Laurie. 2000. Genetic architecture of a morphological shape difference between two Drosophila species. Genetics 154: 299–310.