PHYLOGEOGRAPHY OF THE SOCIALLY POLYMORPHIC SWEAT BEE HALICTUS RUBICUNDUS (HYMENOPTERA: HALICTIDAE)
Sheryl L. Soucy
Department of Ecology and Evolution, State University of New York, Stony Brook, New York 11794-5245
E-mail: [email protected]
Department of Biology, Florida State University, Tallahassee, Florida 32306.
Search for more papers by this authorBryan N. Danforth
Department of Entomology, Cornell University, Ithaca, New York 14853
E-mail: [email protected]
Search for more papers by this authorSheryl L. Soucy
Department of Ecology and Evolution, State University of New York, Stony Brook, New York 11794-5245
E-mail: [email protected]
Department of Biology, Florida State University, Tallahassee, Florida 32306.
Search for more papers by this authorBryan N. Danforth
Department of Entomology, Cornell University, Ithaca, New York 14853
E-mail: [email protected]
Search for more papers by this authorDepartment of Biology, Florida State University, Tallahassee, Florida 32306.
E-mail: [email protected]
Abstract
Abstract The evolution of sociality in insects holds a central place in evolutionary theory. By examining the phylogenetic patterns of solitary and social behavior and how they correlate with ecological variables, we may identify factors important in the evolution of sociality. In this study, we investigated historical and biogeographical patterns of sociality in a socially polymorphic bee species (one that demonstrates both social and solitary nesting behavior). This unique system allows for a more powerful examination of evolutionary transitions in sociality than interspecific studies of obligately social and solitary species. We conducted a phylogenetic analysis among populations of the halictine bee Halictus rubicundus and then identified relationships among mitochondrial DNA sequence data, sociality, environmental conditions at the nesting site, and geographic location of populations of this species. Within North America, populations of H. rubicundus expressing social and solitary behavior belong to different genetic lineages. Sociality is also correlated with at least one environmental variable used in this study. Taken together, the results support the predictions for genetic control of sociality, but they are still consistent with social behavior at some level being determined by the environmental conditions at the nesting site.
Literature Cited
- Armbruster, W. S., and D. A. Guinn. 1989. The solitary bee fauna (Hymenoptera: Apoidea) of interior and arctic Alaska: flower associations, habitat use, and phenology. J. Kans. Entomol. Soc. 62: 468–483.
- Avise, J. C. 1999. Phylogeography: the history and formation of species. Harvard Univ. Press, Cambridge , MA .
- Bonelli, B. 1967. Osservazioni biologiche sugli imenotteri melliferi e predatori della Val di Fiemme [XXIII contributo Halictus rub-icundus Christ (Hymenoptera-Halictidae)]. Stud. Trentini Sci. Nat. Sez. B Biol. 44: 85–97.
- Byun, S. A., B. F. Koop, and R. E. Reimchen. 1997. North American black bear mtDNA phylogeography: implications for morphology and the Haida Gwaii glacial refugium controversy. Evolution 51: 1647–1653.
- Crespi, B. J. 1996. Comparative analysis of the origins and losses of eusociality: causal mosaics and historical uniqueness. Pp. 253–287 in E. P. Martins, ed. Phylogenies and the comparative method in animal behavior. Oxford Univ. Press, Oxford , U.K.
- Crozier, R. H., and Y. C. Crozier. 1993. The mitochondrial genome of the honeybee Apis mellifera: complete sequence and genome organization. Genetics 133: 97–117.
- Danforth, B. N. 1999. Phylogeny of the bee genus Lasioglossum (Hymenoptera: Halictidae) based on mitochondrial COI sequence data. Syst. Entomol. 24: 377–393.
- 2002. Evolution of sociality in a primitively eusocial lineage of bees. Proc. Natl. Acad. Sci., USA 99: 286–290.
- Danforth, B. N., H. Sauquet, and L. Packer. 1999. Phylogeny of the bee genus Halictus (Hymenoptera: Halictidae) based on parsimony and likelihood analyses of nuclear EF-1 alpha sequence data. Mol. Phylogenet. Evol. 13: 605–618.
- Eickwort, G. C., J. M. Eickwort, J. Gordon, and M. A. Eickwort. 1996. Solitary behavior in a high-altitude population of the social sweat bee Halictus rubicundus (Hymenoptera: Halictidae). Behav. Ecol. Sociobiol. 38: 227–233.
- Evans, J. 1996. Temporal and spatial variation in reproduction in the facultatively polygynous ant Myrmica tahoensis (Hymenoptera: Formicidae). Insectes Soc. 43(3): 309–317.
- Fratti, F., C. Simon, J. Sullivan, and D. L. Swofford. 1997. Evolution of the mitochondrial cytochrome oxidase II gene in Collembola. J. Mol. Evol. 44: 145–158.
- Friesen, V. L., W. A. Montevecchi, A. J. Baker, R. T. Barrett, and W. S. Davidson. 1996. Population differentiation and evolution in the common guillemot Uria aalge. Mol. Ecol. 5: 793–805.
- Hafner, D. J., and R. M. Sullivan. 1995. Historical and ecological biogeography of nearctic pikas (Lagomorpha, Ochotonidae). J. Mammal. 76: 302–321.
- Hasegawa, M., H. Kishino, and T. Yano. 1985. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 22: 160–174.
- Hewitt, G. M. 1996. Some genetic consequences of ice ages, and their role in divergence and speciation. Biol. J. Linn. Soc. 58: 247–276.
- Hogendoorn, K., and R. Leys. 1997. Life-cycle of Halictus rubicundus Christ (Hymenoptera: Halictidae) in The Netherlands: comparison of two populations. J. Kans. Entomol. Soc. 70: 347–352.
- Holder, K., R. Montgomerie, and V. L. Friesen. 1999. A test of the glacial refugium hypothesis using patterns of mitochondrial and nuclear DNA sequence variation in rock ptarmigan (Lagopus mutus). Evolution 53: 1936–1950.
- Inouye, D., and A. D. McGuire. 1991. Effects of snowpack on timing and abundance of flowering in Delphinium nelsonii (Ranunculaceae): implications from climate change. Am. J. Bot. 78: 997–1001.
-
Jukes, T. H., and
C. R. Cantor. 1969. Evolution of protein molecules. Pp. 21–132
in
H. N. Monroe, ed.
Mammalian protein metabolism. Academic Press,
New York
.
10.1016/B978-1-4832-3211-9.50009-7 Google Scholar
- Kimura, M. 1980. A simple model for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111–120.
- Kishino, H., and M. Hasegawa. 1989. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA data, and the branching order in Hominoidea. J. Mol. Evol. 29: 170–179.
- Knerer, G. 1980. Biologie und Sozialverhalten von Bienenarten der Gattung Halictus Latreille (Hymenoptera; Halictidae). Zool. Jahrb. Abt. Syst. Oekol. Geogr. Tiere 107: 511–536.
- Mantel, N. 1967. The detection of disease clustering and a generalized regression approach. Cancer Res. 27: 209–220.
- Michener, C. D. 1974. The social behavior of the bees. Belknap Press, Cambridge , MA .
-
1990. Reproduction and castes in social halictine bees. Pp. 77–121
in
W. Engels, ed.
Social insects: an evolutionary approach to castes and reproduction. Springer,
Berlin
.
10.1007/978-3-642-74490-7_6 Google Scholar
- Michener, C. D., and D. A. Grimaldi. 1988. The oldest fossil bee: apoid history, evolutionary stasis, and antiquity of social behavior. Proc. Natl. Acad. Sci. USA 85: 6424–6426.
- Nielson, M., K. Lohman, and J. Sullivan. 2001. Phylogeography of the tailed frog (Ascaphus truei): implications for the biogeography of the Pacific Northwest. Evolution 55: 147–160.
- Noonan, G. R. 1990. Biogeographical patterns of North American Harpalus Latreille. J. Biogeogr. 17: 583–614.
- Packer, L. 1997. The relevance of phylogenetic systematics to biology: examples from medicine and behavioral ecology. Mem. Mus. Natl. Hist. Nat. 173: 11–29.
- 1998. A phylogenetic analysis of western European species of the Lasioglossum leucozonium species-group (Hymenoptera: Halictidae): sociobiological and taxonomic implications. Can. J. Zool. 76: 1611–1621.
- Packer, L., and R. E. Owen. 1989. Allozyme variation in Halictus rubicundus (Christ): a primitively social halictine bee (Hymenoptera: Halictidae). Can. Entomol. 121: 1049–1058.
- Packer, L., and J. S. Taylor. 1997. How many hidden species are there? An application of the phylogenetic species concept to genetic data for some comparatively well known bee “species. Can. Entomol. 129: 587–594.
- Pearson, B., and A. F. Raybould. 1997. The effect of the length of larval diapause on caste determination in the ant Myrmica rubra. Sociobiology 29: 301–306.
- Pearson, B., A. F. Raybould, and R. T. Clarke. 1997. Temporal changes in the relationship between observed and expected sex investment frequencies, social structure and intraspecific parasitism in Leptothorax tuberum (Formicidae). Biol. J. Linn. Soc. 61: 515–536.
-
Plateaux-Quénu, C.,
A. Horel, and
C. Roland. 1997. A reflection on social evolution in two different groups of arthropods: halictine bees (Hymenoptera) and spiders (Arachnida).
Ethol. Ecol. Evol.
9: 183–196.
10.1080/08927014.1997.9522897 Google Scholar
- Plateaux-Quénu, C., L. Plateaux, and L. Packer. 2000. Population typical behaviours are retained when eusocial and non-eusocial forms of Evylaeus albipes (F.) (Hymenoptera, Halictidae) are reared simultaneously in the laboratory. Insectes Soc. 47: 263–270.
- Potts, S. G., and P. Willmer. 1997. Abiotic and biotic factors influencing nest-site selection by Halictus rubicundus, a ground nesting halictine bee. Ecol. Entomol. 22: 319–328.
- Richards, M. 1994. Social evolution in the genus Halictus: a phylogenetic approach. Insectes Soc. 41: 315–325.
- Richards, M., and L. Packer. 1995. Annual variation in survival and reproduction of the primitively eusocial sweat bee Halictus ligatus (Hymenoptera: Halictidae). Can. J. Zool. 73: 933–941.
- Ross, K. G., and L. Keller. 1995. Ecology and evolution of social organization: insights from fire ants and other highly eusocial insects. Annu. Rev. Ecol. Syst. 26: 631–656.
- Ross, K. G., E. L. Vargo, and L. Keller. 1996. Social evolution in a new environment: the case of introduced fire ants. Proc. Natl. Acad. Sci., USA 93: 3021–3025.
- Saiki, R. K., D. H. Gelfand, S. Stoffel, S. J. Scharf, R. Higuchi, G. T. Horn, K. B. Mullis, and H. A. Erlich. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA-polymerase. Science 239: 487–491.
- Sakagami, S. F., and M. Munakata. 1972. Distribution and bionomics of a transpalearctic eusocial halictine bee, Lassioglossum (Evylaeus) calceatum, in northern Japan, with reference to its solitary life cycle at high altitude. J. Fac. Sci. Hokkaido Univ. Ser. VI Zool. 18: 411–439.
-
Sambrook, J.,
E. F. Fritsch, and
T. Maniatis. 1989. Molecular cloning: a laboratory manual. Cold Spring Harbor Press,
Cold Spring Harbor
,
NY
.
10.1111/j.1095-8312.1996.tb01434.x Google Scholar
-
Scudder, G. G. E.
1993. Geographic distribution and biogeography of representative species of xeric grassland-adapted nearctic Lygaeidae in western North America (Insecta: Heteroptera).
Mem. Entomol Soc. Can.
165: 75–113.
10.4039/entm125165075-1 Google Scholar
- Seger, J., and H. J. Brockmann. 1987. What is bet-hedging? Pp. 182–211 in P. H. Harvey and L. Partridge, eds. Oxford surveys in evolutionary biology. Vol. 4. Oxford Univ. Press, Oxford , U.K.
- Simon, C., F. Frati, A. Beckenbach, B. J. Crespi, H. Liu, and P. Flook. 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann. Entomol. Soc. Am. 87: 651–701.
-
Sokal, R. R., and
F. J. Rohlf. 1995. Biometry. 3rd ed.
W.H. Freeman,
San Francisco
,
CA
.
10.1577/1548-8659(1986)115<149:LOPDOR>2.0.CO;2 Google Scholar
- Sokal, R. R., N. L. Oden, J. Walker, and D. M. Waddle. 1997. Using distance matrices to choose between competing theories and an application of modern humans. J. Hum. Evol. 32: 501–522.
- Soucy, S. L. 2002. Nesting biology and socially polymorphic behavior of the sweat bee Halictus rubicundus (Hymenoptera: Halictidae). Ann. Entomol. Soc. Am. 95: 57–65.
- Stewart, D. T., and A. J. Baker. 1997. A phylogeny of some taxa of masked shrews (Sorex cinereus) based on mitochondrial DNA, D-loop sequences. J. Mammal. 78: 361–376.
- Swofford, D. L. 2000. PAUP*: phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, Sunderland , MA .
- Tregenza, T., V. L. Pritchard, and R. K. Butlin. 2000. The origins of premating reproductive isolation: testing hypotheses in the grasshopper Chorthippus parallelus. Evolution 54: 1687–1698.
- Vogler, A. P., R. Desalle, T. Assmann, C. B. Knisley, and T. D. Schultz. 1993. Molecular population genetics of the endangered tiger beetle Cicindela dorsalis (Coleoptera: Cicindelidae). Ann. Entomol. Soc. Am. 86: 142–152.
- Waddle, D. M., R. R. Sokal, and P. Rudan. 1998. Factors affecting population variation in eastern Adriatic isolates (Croatia). Hum. Biol. 70: 845–864.
-
Wcislo, W. T.
1997. Behavioral environments of sweat bees (Hal-ictinae) in relation to variability in social organization?
Pp. 316–332
in
J. C. Choe and
B. J. Crespi, eds.
The evolution of social behavior in insects and arachnids. Cambridge Univ. Press,
Cambridge
,
U.K.
10.1017/CBO9780511721953.016 Google Scholar
- Wcislo, W. T., and B. N. Danforth. 1997. Secondarily solitary: the evolutionary loss of social behavior. Trends Ecol. Evol. 12: 468–474.
- Yanega, D. 1989. Caste determination and differential diapause within the first brood of Halictus rubicundus in New York (Hymenoptera: Halictidae). Behav. Ecol. Sociobiol. 24: 97–107.
- 1992. Does mating determine caste in sweat bees (Hymenoptera, Halictidae) J. Kans. Entomol. Soc. 65: 231–237.
- 1993. Environmental influences on male production and social structure in Halictus rubicundus (Hymenoptera: Halictidae). Insectes Soc. 40: 169–180.
-
1997. Demography and sociality in halictine bees (Hymenoptera: Halictidae). Pp. 293–315
in
J. C. Choe and
B. J. Crespi, eds.
The evolution of social behavior in insects and arachnids. Cambridge Univ. Press,
Cambridge
,
U.K.
10.1017/CBO9780511721953.015 Google Scholar
- Yang, Z. 1994. Estimating the pattern of nucleotide substitution. J. Mol. Evol. 39: 306–314.
- Yang, Z., N. Goldman, and A. Friday. 1995. Maximum likelihood trees from DNA sequences: a peculiar statistical problem. Syst. Biol. 44: 384–399.