POPULATION VARIATION IN SEXUAL SELECTION AND ITS EFFECT ON SIZE ALLOMETRY IN TWO DUNG FLY SPECIES WITH CONTRASTING SEXUAL SIZE DIMORPHISM
Urs Kraushaar
Zoologisches Museum, Universität Zürich-Irchel, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
Search for more papers by this authorWolf U. Blanckenhorn
Zoologisches Museum, Universität Zürich-Irchel, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
E-mail: [email protected]
Search for more papers by this authorUrs Kraushaar
Zoologisches Museum, Universität Zürich-Irchel, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
Search for more papers by this authorWolf U. Blanckenhorn
Zoologisches Museum, Universität Zürich-Irchel, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
E-mail: [email protected]
Search for more papers by this authorAbstract
Abstract Body size is one of the most important quantitative traits under evolutionary scrutiny. Sexual size dimorphism (SSD) in a given species is expected to result if opposing selection forces equilibrate differently in both sexes. We document variation in the intensity of sexual and fecundity selection, male and female body size, and thus SSD among 31 and 27 populations of the two dung fly species, Scathophaga stercoraria and Sepsis cynipsea, across Switzerland. Whereas in S. cynipsea females are larger, the SSD is reversed in S. stercoraria. We comprehensively evaluated Fairbairn and Preziosi's (1994) general, three-tiered scenario, hypothesizing that sexual selection for large male size is the major driving force of SSD allometry within these two species. Sexual selection intensity on male size in the yellow dung fly, S. stercoraria, was overall positive, greater, and more variable among populations than fecundity selection on females. Also, sexual selection intensity in a given population correlated positively with mean male body size of that population for both the field-caught fathers and their laboratory-reared sons, indicating a response to selection. In S. cynipsea, sexual selection intensity on males was lower overall and significantly positive, about equal in magnitude, but more variable than fecundity selection on females. However, there was no correlation between the intensity of sexual selection and mean male body size among populations. In both species, the laboratory-reared offspring indicate genetic differentiation among populations in body size. Despite fulfillment of all key prerequisites, at least in S. stercoraria, we did not find hypoallometry for SSD (Rensch's rule, i.e., greater evolutionary divergence in male size than female size) for the field-caught parents or the laboratory-reared offspring: Female size was isometric to male size in both species. We conclude that S. cynipsea does not fit some major requirements of Fairbairn and Preziosi's (1994) scenario, whereas for S. stercoraria we found partial support for it. Failure to support Rensch's rule within the latter species may be due to phylogenetic or other constraints, power limitations, erroneous estimates of sexual selection, insufficient genetic isolation of populations, or sex differences in viability selection against large size.
Literature Cited
- Abouheif, E., and D. J. Fairbairn. 1997. A comparative analysis of allometry for sexual size dimorphism: assessing Rensch's rule. Am. Nat. 149: 540–562.
-
Amano, K.
1983. Studies on the intraspecific competition in dung breeding fliesI. Effects of larval density on the yellow dung fly.
Jpn. J. Sanit. Zool.
34: 165–175.
10.7601/mez.34.165 Google Scholar
- Andersen, N. M. 1994. The evolution of sexual size dimorphism and mating systems in water striders (Hemiptera: Gerridae): a phylogenetic approach. Ecoscience 1: 208–214.
- 1997. A phylogenetic analysis of the evolution of sexual dimorphism and mating systems in water striders (Hemiptera: Gerridae). Biol. J. Linn. Soc. 61: 345–368.
- Andersson, M. 1994. Sexual selection. Princeton Univ. Press, Princeton , NJ .
- Arak, A. 1988. Sexual dimorphism in body size: a model and a test. Evolution 42: 820–825.
- Arnold, S. J., and M. J. Wade. 1984a. On the measurement of natural and sexual selection: theory. Evolution 38: 709–719.
- 1984b. On the measurement of natural and sexual selection: applications. Evolution 38: 720–734.
- Badyaev, A. V., and T. E. Martin. 2000. Sexual dimorphism in relation to current selection in the house finch. Evolution 54: 987–997.
- Badyaev, A. V., G. E. Hill, A. M. Stoehr, P. M. Nolan, and K. J. McGraw. 2000. The evolution of sexual dimorphism in the house finchII. Population divergence in relation to local selection. Evolution 54: 2134–2144.
- Blanckenhorn, W. U. 1997. Altitudinal life history variation in the dung flies Scathophaga stercoraria and Sepsis cynipsea. Oecologia 109: 342–352.
- 1998. Adaptive phenotypic plasticity in growth, development and body size in the yellow dung fly. Evolution 52: 1394–1407.
- 1999. Different growth responses to food shortage and temperature in three insect species with similar life histories. Evol. Ecol. 13: 395–409.
- 2000. The evolution of body size: What keeps organisms small Q. Rev. Biol. 75: 385–407.
- Blanckenhorn, W. U., R. F. Preziosi, and D. J. Fairbairn. 1995. Time and energy constraints and the evolution of sexual size dimorphism: To eat or to mate Evol. Ecol. 9: 1–13.
- Blanckenhorn, W. U., C. Mühlhäuser, and T. Reusch. 1998. Fluctuating asymmetry and sexual selection in the dung fly Sepsis cynipsea: testing the good genes assumptions and predictions. J. Evol. Biol. 11: 735–753.
- Blanckenhorn, W. U., C. Morf, C. Mühlhäuser, and T. Reusch. 1999a. Spatiotemporal variation in selection on body size in the dung fly Sepsis cynipsea. J. Evol. Biol. 12: 563–576.
- Blanckenhorn, W. U., M. Reuter, P. I. Ward, and A. D. Barbour. 1999b. Correcting for sampling bias in quantitative measures of selection when fitness is discrete. Evolution 53: 286–291.
- Blanckenhorn, W. U., C. Mühlhäuser, C. Morf, T. Reusch, and M. Reuter. 2000a. Female choice, female reluctance to mate and sexual selection on body size in the dung fly Sepsis cynipsea. Ethology 106: 577–593.
- Blanckenhorn, W. U., C. Morf, and M. Reuter. 2000b. Are dung flies ideal-free distributed at their mating site Behaviour 137: 233–248.
- Blanckenhorn, W. U., C. Henseler, D. U. Burkhard, and H. Briegel. 2001. Summer decline in populations of the yellow dung fly: Diapause or quiescence Physiol. Entomol. 26: 260–265.
-
Borgia, G.
1979. Sexual selection and the evolution of mating systems. Pp. 19–80
in
S. M. Blum, and
N. A. Blum, eds.
Sexual selection and reproductive competition in insects. Academic Press,
New York
.
10.1016/B978-0-12-108750-0.50008-2 Google Scholar
- 1981. Mate selection in the fly Scathophaga stercoraria: female choice in a male-controlled system. Anim. Behav. 29: 71–80.
- 1982. Experimental changes in resource structure and male density: size-related differences in mating success among male Scathophaga stercoraria. Evolution 36: 307–315.
- Brodie, E. D., and F. J. Janzen. 1996. On the assignment of fitness values in statistical analyses of selection. Evolution 50: 437–442.
- Brodie, E. D., A. J. Moore, and F. J. Janzen. 1995. Visualizing and quantifying natural selection. Trends Ecol. Evol. 10: 313–318.
- Burkhard, D. U. 1999. Is adult longevity size-dependent in the yellow dung fly, Scathophaga stercoraria (Diptera: Scathophagidae)? Diploma thesis, University of Zürich, Switzerland.
- Cabana, G., A. Frewin, R. H. Peters, and L. Randall. 1982. The effect of sexual size dimorphism on variations in reproductive effort of birds and mammals. Am. Nat. 120: 17–25.
- Cheverud, J. M., M. M. Dow, and W. Leutenegger 1985. The quantitative assessment of phylogenetic constraints in comparative analyses: sexual dimorphism in body weight among primates. Evolution 39: 1335–1341.
- Clutton-Brock, T. H., and G. A. Parker. 1992. Potential reproductive rates and the operation of sexual selection. Q. Rev. Biol. 67: 437–456.
- Clutton-Brock, T. H., P. Harvey, and B. Rudder. 1977. Sexual dimorphism, socionomic sex ratio and body weight in primates. Nature 269: 797–800.
- Crean, C. S., D. W. Dunn, T. H. Day, and A. S. Gilburn. 2000. Female mate choice for large males in several species of seaweed fly (Diptera: Coelopidae). Anim. Behav. 59: 121–126.
- Darwin, C. 1859. The origin of species by means of natural selection. John Murray, London .
- 1871. The descent of man and selection in relation to sex. John Murray, London .
- Emlen, S. T., and L. W. Oring. 1977. Ecology, sexual selection, and the evolution of mating systems. Science 197: 215–223.
- Endler, J. A. 1986. Natural selection in the wild. Princeton Univ. Press, Princeton , NJ .
- Fairbairn, D. J. 1990. Factors influencing sexual size dimorphism in temperate waterstriders. Am. Nat. 136: 61–86.
- 1997. Allometry for sexual size dimorphism: pattern and process in the coevolution of body size in males and females. Annu. Rev. Ecol. Syst. 28: 659–687.
- Fairbairn, D. J., and R. F. Preziosi. 1994. Sexual selection and the evolution of allometry for sexual size dimorphism in the water strider, Aquarius remigis. Am. Nat. 144: 101–118.
- 1996. Sexual selection and the evolution of sexual size dimorphism in the water strider, Aquarius remigis. Evolution 50: 1549–1559.
- Ferguson, I. M., and D. J. Fairbairn. 2000. Sex-specific selection and sexual dimorphism in the water strider Aquarius remigis. J. Evol. Biol. 13: 160–170.
- Gibbons, D. S. 1987. The causes of seasonal changes in numbers of the yellow dung fly, Scathophaga stercoraria (Diptera: Scath-ophagidae). Ecol. Entomol. 12: 173–185.
- Gorodkov, K. B. 1984. Scathophagidae. Pp. 11–41 in A. Soos, and L. Papp, eds. Catalogue of Palaearctic Diptera. Elsevier, Amsterdam .
- Harvey, P. H. 1982. On rethinking allometry. J. Theoret. Biol. 95: 37–41.
- Hedrick, A. V., and E. J. Temeles. 1989. The evolution of sexual dimorphism in animals: hypotheses and tests. Trends Ecol. Evol. 4: 136–138.
- Honek, A. 1993. Intraspecific variation in body size and fecundity in insects: a general relationship. Oikos 66: 483–492.
- Jann, P., W. U. Blanckenhorn, and P. I. Ward. 2000. Temporal and microspatial variation in the intensities of natural and sexual selection in the yellow dung fly Scathophaga stercoraria. J. Evol. Biol. 13: 927–938.
- Kingsolver, J. G., H. E. Hoekstra, J. M. Hoekstra, D. Berrigan, S. N. Vignieri, C. E. Hill, A. Hoang, P. Gibert, and P. Beerli. 2001. The strength of phenotypic selection in natural populations. Am. Nat. 157: 245–261.
- Kraushaar, U. 2000. Sexual size dimorphism and population genetic structure in the dung flies Scathophaga stercoraria and Sepsis cynipsea. Ph.D. diss., University of Zurich, Switzerland.
- Lande, R. 1980. Sexual dimorphism, sexual selection, and adaptation in polygenic characters. Evolution 34: 292–305.
- Lande, R., and S. J. Arnold. 1983. The measurement of selection on correlated characters. Evolution 37: 1210–1226.
- Leutenegger, W. 1978. Scaling of sexual dimorphism in body size and breeding system in primates. Nature 272: 610–611.
- Maynard Smith, J. 1991. Theories of sexual selection. Trends Ecol. Evol. 6: 146–151.
- Maynard Smith, J., R. Burian, S. Kauffman, P. Alberch, J. Campbell, B. Goodwin, R. Lande, D. Raup, and L. Wolpert. 1985. Developmental constraints and evolution. Q. Rev. Biol. 60: 265–287.
- McLain, D. K., L. B. Burnette, and D. A. Deeds. 1993. Within season variation in the intensity of sexual selection on body size in the bug Margus obscurator. Ethol. Ecol. Evol. 5: 75–86.
- Merilä, J., B. C. Sheldon, and H. Ellegren. 1998. Quantitative genetics of sexual size dimorphism in the collared flycatcher, Ficedula albicollis. Evolution 52: 870–876.
- Mitchell-Olds, T., and R. Shaw. 1987. Regression analysis of natural selection: statistical inference and biological interpretation. Evolution 41: 1149–1161.
- Mousseau, T. A., and D. A. Roff. 1987. Natural selection and the heritability of fitness components. Heredity 59: 181–197.
- Mühlhäuser, C., W. U. Blanckenhorn, and P. I. Ward. 1996. The genetic component of copula duration in the yellow dung fly Scathophaga stercoraria. Anim. Behav. 51: 1401–1407.
- Nishida, T. 1994. Spatio-temporal variation of natural and sexual selection in breeding populations of the coreid bug, Colpula lativentiris (Heteroptera: Coreide). Res. Pop. Ecol. 36: 209–218.
- Palmer, A. R. 2000. Quasi-replication and the contract of error: lessons from sex ratios, heritabilities and fluctuating asymmetry. Annu. Rev. Ecol. Syst. 31: 441–480.
- Parker, G. A. 1970a. The reproductive behaviour and the nature of sexual selection in Scathophaga stercoraria L. (Diptera: Scath-ophagidae). II. The fertilization rate and the spatial and temporal relationships of each sex around the site of mating and ovipo-sition. J. Anim. Ecol. 39: 205–228.
- 1970b. The reproductive behaviour and the nature of sexual selection in Scatophaga stercoraria L. (Diptera: Scatophagidae). IV. Epigamic recognition and competition between males for the possession of females. Behaviour 37: 113–139.
- 1972a. Reproductive behaviour of Sepsis cynipsea (L.) (Diptera: Sepsidae)I. A preliminary analysis of the reproductive strategy and its associated behaviour patterns. Behaviour 41: 172–206.
- 1972b. Reproductive behaviour of Sepsis cynipsea (L.) (Diptera: Sepsidae)II. The significance of the precopulatory passive phase and emigration. Behaviour 41: 242–250.
- 1974. The reproductive behaviour and the nature of sexual selection in Scathophaga stercoraria L.(Diptera: Scathophagidae)IX. Spatial distribution of fertilization rates and evolution of male search strategy within the reproductive area. Evolution 28: 93–108.
- Parker, G. A., and L. W. Simmons. 1994. Evolution of phenotypic optima and copula duration in dungflies. Nature 370: 53–56.
- Parker, G. A., L. W. Simmons, and P. I. Ward. 1993. Optimal copula duration in dungflies: effects of frequency dependence and female mating status. Behav. Ecol. Sociobiol. 32: 157–166.
- Partridge, L., and R. Sibly. 1991. Constraints in the evolution of life histories. Phil. Trans. R. Soc. Lond. B 332: 3–13.
- Preziosi, R. F., and D. J. Fairbairn. 1996. Sexual size dimorphism and selection in the wild in the waterstrider Aquarius remigis: body size, components of body size and male mating success. J. Evol. Biol. 9: 317–336.
- 1997. Sexual size dimorphism and selection in the wild in the water strider Aquarius remigis: lifetime fecundity selection on female total length and its components. Evolution 51: 467–474.
- 2000. Lifetime selection on adult body size and components of body size in a water strider: opposing selection and maintenance of sexual size dimorphism. Evolution 54: 558–566.
- Price, T. D. 1984. The evolution of sexual dimorphism in Darwin's finches. Am. Nat. 123: 500–518.
- Ralls, K. 1977. Sexual dimorphism in mammals: avian models and unanswered questions. Am. Nat. 111: 917–938.
- Reeve, J. P., and D. J. Fairbairn. 1996. Sexual size dimorphism as a correlated response to selection on body size: an empirical test of the quantitative genetic model. Evolution 50: 1927–1938.
-
Reiss, M. J.
1989. The allometry of growth and reproduction. Cambridge Univ. Press,
Cambridge
,
U.K.
10.1017/CBO9780511608483 Google Scholar
- Rensch, B. 1950. Die Abhängigkeit der relativen Sexualdifferenz von der Körpergrosse. Bonn. Zool. Beitr. 1: 58–69.
- Reusch, T., and W. U. Blanckenhorn. 1998. Quantitative genetics of the dung fly Sepsis cynipsea: Cheverud's conjecture revisited. Heredity 81: 111–119.
- Reznick, D. 1985. Cost of reproduction: an evaluation of the empirical evidence. Oikos 44: 257–267.
- Roff, D. A. 1992. The evolution of life histories. Chapman and Hall, New York .
- 1997. Evolutionary quantitative genetics. Chapman and Hall, New York .
-
Schmidt-Nielsen, K.
1984. Scaling. Why is animal size so important?
Cambridge Univ. Press,
Cambridge
,
U.K.
10.1017/CBO9781139167826 Google Scholar
- Searcy, W. A. 1982. The evolutionary effects of mate selection. Annu. Rev. Ecol. Syst. 13: 57–85.
- Shine, R. 1988. The evolution of large body size in females: a critique of Darwin's “fecundity advantage model”. Am. Nat. 131: 124–131.
- 1989. Ecological causes for the evolution of sexual dimorphism: a review of the evidence. Q. Rev. Biol. 64: 419–461.
- Sigurjónsdóttir, H., and G. A. Parker. 1981. Dung fly struggles: evidence for assessment strategy. Behav. Ecol. Sociobiol. 8: 219–230.
- Sigurjönsdöttir, H., and S. S. Snorrason. 1995. Distribution of male yellow dungflies around oviposition sites: the effect of body size. Ecol. Entomol. 20: 84–90.
- Simmons, L. W., and P. I. Ward. 1991. The heritability of sexually dimorphic traits in the yellow dung fly Scathophaga stercoraria. J. Evol. Biol. 4: 593–601.
- Slatkin, M. 1984. Ecological causes of sexual dimorphism. Evolution 38: 622–630.
- Sokal, R. R., and F. J. Rohlf. 1981. Biometry: the principles and practice of statistics in biological research. 3rd ed. W. H. Freeman, San Francisco , CA .
- Stamps, J. A. 1993. Sexual size dimorphism in species with asymptotic growth after maturity. Biol. J. Linn. Soc. 50: 123–145.
- Stearns, S. C. 1976. Life-history tactics: a review of the ideas. Q. Rev. Biol. 51: 3–47.
- 1992. The evolution of life histories. Oxford Univ. Press, Oxford , U.K.
- Wade, M. J. 1990. The causes of natural selection. Evolution 44: 947–955.
- Ward, P. I. 1983. The effects of size on the mating behaviour of the dung fly Sepsis cynipsea. Behav. Ecol. Sociobiol. 13: 75–80.
- Ward, P. I., and L. W. Simmons. 1990. Short-term changes in numbers of the yellow dung fly Scathophaga stercoraria (Diptera: Scathophagidae). Ecol. Entomol. 15: 115–118.
- 1991. Copula duration and testes size in the yellow dung fly, Scathophaga stercoraria (L.): the effects of diet, body size, and mating history. Behav. Ecol. Sociobiol. 29: 77–85.
- Ward, P. I., J. Hemmi, and T. Röösli. 1992. Sexual conflict in the dung fly Sepsis cynipsea. Funct. Ecol. 6: 649–653.
- Wootton, R. J. 1979. Energy cost of egg production and environmental determinants of fecundity in teleost fishes. Symp. Zool. Soc. Lond. 44: 133–159.