A BIRD'S-EYE VIEW OF THE C-VALUE ENIGMA: GENOME SIZE, CELL SIZE, AND METABOLIC RATE IN THE CLASS AVES
T. Ryan Gregory
Department of Zoology, University of Guelph, Guelph, Ontario NIG 2W1, Canada E-mail: [email protected]
Search for more papers by this authorT. Ryan Gregory
Department of Zoology, University of Guelph, Guelph, Ontario NIG 2W1, Canada E-mail: [email protected]
Search for more papers by this authorAbstract
Abstract For half a century, variation in genome size (C—value) has been an unresolved puzzle in evolutionary biology. While the initial “C—value paradox” was solved with the discovery of noncoding DNA, a much more complex “C—value enigma” remains. The present study focuses on one aspect of this puzzle, namely the small genome sizes of birds. Significant negative correlations are reported between resting metabolic rate and both C—value and erythrocyte size. Cell size is positively correlated with both nucleus size and C—value in birds, as in other vertebrates. These findings shed light on the constraints acting on genome size in birds and illustrate the importance of interactions among various levels of the biological hierarchy, ranging from the subchromosomal to the ecological. Following from a discussion of the mechanistic bases of the correlations reported and the processes by which birds achieved and/or maintain small genomes, a pluralistic approach to the C—value enigma is recommended.
Literature Cited
- Bachmann, K., B. A. Harrington, and J. P. Craig. 1972. Genome size in birds. Chromosoma 37: 405–416.
- Baker, R. J., M. Maltbie, J. G. Owen, M. J. Hamilton, and R. D. Bradley. 1992. Reduced number of ribosomal sites in bats: evidence for a mechanism to contain genome size. J. Mammal. 73: 847–858.
-
Bartsch, P.,
W. H. Ball,
W. Rosenzweig, and
S. Salman. 1937. Size of red blood corpuscles and their nucleus in fifty North American birds.
Auk
54: 516–519.
10.2307/4078144 Google Scholar
- Benga, G., P. W. Kuchel, B. E. Chapman, G. C. Cox, I. Ghiran, and C. H. Gallagher. 2000. Comparative cell shape and diffusional water permeability of red blood cells from Indian elephant (Elephas maximus) and Man (Homo sapiens). Comp. Haematol. Int. 10: 1–8.
- Bennett, P. M., and P. H. Harvey. 1987. Active and resting metabolism in birds: allometry, phylogeny and ecology. J. Zool. 213: 327–363.
- Bernardi, G. 2000. Isochores and the evolutionary genomics of vertebrates. Gene 241: 3–17.
- Bloom, S. E., M. E. Delany, and D. E. Muscarella. 1993. Constant and variable features of avian chromosomes. Pp. 39–59 in R. J. Etches and A. M.V. Gibbons, eds. Manipulation of the avian genome. CRC Press, Boca Raton , FL .
- Boivin, A., R. Vendrely, and C. Vendrely. 1948. L'acide désoxy—ribonucléique du noyau cellulaire dépositaire des caractères hér-editaires; arguments d'ordre analytique. C. R. Acad. Sci. 226: 1061–1063.
- Burton, D. W., J. W. Bickham, and H. H. Genoways. 1989. Flowcytometric analyses of nuclear DNA content in four families of neotropical bats. Evolution 43: 756–765.
- Cavalier-Smith, T. 1978. Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox. J. Cell Sci. 34: 247–278.
- Cavalier-Smith, T. 1985. Cell volume and the evolution of eukaryotic genome size. Pp. 104–184 in T. Cavalier-Smith, ed. The evolution of genome size. John Wiley and Sons, Chichester , UK .
- Cavalier-Smith, T. 1991. Coevolution of vertebrate genome, cell, and nuclear sizes. Pp. 51–86 in G. Ghiara et al., eds. Selected Symposia and Monographs Unione Zoologia Italia, Vol. 4. Mucchi, Modena , Italy .
- Commoner, B. 1964. Roles of deoxyribonucleic acid in inheritance. Nature 202: 960–968.
- Cooper, A., and D. Penny. 1997. Mass survival of birds across the Cretaceous–Tertiary boundary: molecular evidence. Science 275: 1109–1113.
- De Smet, W. H. O. 1981. The nuclear Feulgen-DNA content of the vertebrates (especially reptiles), as measured by fluorescence cytophotometry, with notes on the cell and chromosome size. Acta Zool. Pathol. Antverp. 76: 119–167.
- Deutsch, M., and M. Long. 1999. Intron-exon structures of eukaryotic model organisms. Nucleic Acids Res. 27: 3219–3228.
- Duret, L., D. Mouchiroud, and C. Gautier. 1995. Statistical analysis of vertebrate sequences reveals that long genes are scarce in GC-rich isochores. J. Mol. Evol. 40: 308–317.
- Eden, F. C., J. P. Hendrick, and S. S. Gottlieb. 1978. Homology of single copy and repeated sequences in chicken, duck, Japanese quail, and ostrich DNA. Biochemistry 17: 5113–5121.
- Edwards, S. V., C. M. Hess, J. Gasper, and D. Garrigan. 1999. Toward an evolutionary genomics of the avian Mhc. Immunol. Rev. 167: 119–132.
- Epplen, J. T., M. Leipoldt, W. Engel, and J. Schmidtke. 1978. DNA sequence organisation in avian genomes. Chromosoma 69: 307–321.
- Feduccia, A. 1995. Explosive evolution in tertiary birds and mammals. Science 267: 637–638.
- Fisher, P. E., D. A. Russell, M. K. Stoskopf, R. E. Barrick, M. Hammer, and A. A. Kuzmitz. 2000. Cardiovascular evidence for an intermediate or higher metabolic rate in an ornithischian dinosaur. Science 288: 503–505.
- Gregory, T. R. 2000. Nucleotypic effects without nuclei: genome size and erythrocyte size in mammals. Genome 43: 895–901.
- 2001a. Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma. Biol. Rev. 76: 65–101.
- Gregory, T. R. 2001b. Animal genome size database. Available via http:www.genomesize.com.
- Gregory, T. R., and P. D. N. Hebert. 1999. The modulation of DNA content: proximate causes and ultimate consequences. Genome Res. 9: 317–324.
- Gulliver, G. 1846. Note on the size of the blood-corpuscles of birds. Proc. Zool. Soc. Lond. 1846: 26.
- Gulliver, G. 1875. Observations on the sizes and shapes of the red corpuscles of the blood of vertebrates, with drawings of them to a uniform scale, and extended and revised tables of measurements. Proc. Zool. Soc. Lond. 1875: 474–495.
-
Hartman, F. A., and
M. A. Lessler. 1963. Erythrocyte measurements in birds.
Auk
80: 467–473.
10.2307/4082852 Google Scholar
- Hawkey, C. M., P. M. Bennett, S. C. Gascoyne, M. G. Hart, and J. K. Kirkwood. 1991. Erythrocyte size, number and haemoglobin content in vertebrates. Brit. J. Haematol. 77: 392–397.
- Hedges, S. B., P. H. Parker, C. G. Sibley, and S. Kumar. 1996. Continental breakup and the ordinal diversification of birds and mammals. Nature 381: 226–229.
- Holmquist, G. P. 1989. Evolution of chromosome bands: molecular ecology of noncoding DNA. J. Mol. Evol. 28: 469–486.
- Horner, H. A., and H. C. Macgregor. 1983. C value and cell volume: their significance in the evolution and development of amphibians. J. Cell Sci. 63: 135–146.
- Howard, R. and A. Moore. 1994. A complete checklist of the birds of the world. 2d ed. Academic Press, London .
- Hughes, A. L. 1999. Adaptive evolution of genes and genomes. Oxford Univ. Press, Oxford , U.K.
- Hughes, A. L., and M. K. Hughes. 1995. Small genomes for better flyers. Nature 377: 391.
- Jockusch, E. L. 1997. An evolutionary correlate of genome size change in plethodontid salamanders. Proc. R. Soc. Lond. B 264: 597–604.
- John, B., and G. L. G. Miklos. 1988. The eukaryote genome in development and evolution. Allen and Unwin, London .
- Licht, L. E., and L. A. Lowcock. 1991. Genome size and metabolic rate in salamanders. Comp. Biochem. Physiol. 100B: 83–92.
- Mandel, P., P. Métais, and S. Cuny. 1951. Les quantités d'acide désoxypentose-nucléique par leucocyte chez diverses espèces de mammiferes. C. R. Acad. Sci. 231: 1172–1174.
- Manfredi Romanini, M. G. 1973. The DNA nuclear content and the evolution of vertebrate evolution. Pp. 39–81 in A. B. Chiarelli and E. Capanna, eds. Cytotaxonomy and vertebrate evolution. Academic Press, New York .
- Manfredi Romanini, M. G. 1985. The nuclear content of deoxyribonucleic acid and some problems of Mammalian phylogenesis. Mammalia 49: 369–385.
- Manfredi Romanini, M. G., C. Pelliciari, F. Bolchi, and E. Capanna. 1975. Données nouvelles sur le contenu en ADN des noyaux postkinétiques chez les chiroptères. Mammalia 39: 675–683.
- Martin, A. P., and S. R. Palumbi. 1993. Body size, metabolic rate, generation time, and the molecular clock. Proc. Natl. Acad. Sci. USA 90: 4087–4091.
- Masterson, J. 1994. Stomatal size in fossil plants: evidence for polyploidy in a majority of angiosperms. Science 264: 421–424.
- Mirsky, A. E., and H. Ris. 1951. The desoxyribonucleic acid content of animal cells and its evolutionary significance. J. Gen. Physiol. 34: 451–462.
- Mooers, A. O., and P. H. Harvey. 1994. Metabolic rate, generation time, and the rate of molecular evolution in birds. Mol. Phylogenet. Evol. 3: 344–350.
- Moriyama, E. N., D. A. Petrov, and D. L. Hartl. 1998. Genome size and intron size in Drosophila. Mol. Biol. Evol. 15: 770–773.
- Nitecki, C. 1972. Correlations between the dimensions of cells of several organs in six species of passerine birds. Bull. Acad. Pol. Sci. 20: 241–247.
- Ogata, H., W. Fujibuchi, and M. Kanehisa. 1996. The size differences among mammalian introns are due to the accumulation of small deletions. FEBS Lett. 390: 99–103.
- Oliver, J. L., and A. Marin. 1996. A relationship between GC content and coding-sequence length. J. Mol. Evol. 43: 216–223.
- Olmo, E. 1983. Nucleotype and cell size in vertebrates: a review. Bas. Appl. Histochem. 27: 227–256.
- Olmo, E., and A. Morescalchi. 1975. Evolution of the genome and cell sizes in salamanders. Experientia 31: 804–806.
- Olmo, E., and A. Morescalchi. 1978. Genome and cell size in frogs: a comparison with salamanders. Experientia 34: 44–46.
- Olmo, E., and G. Odierna. 1982. Relationships between DNA content and cell morphometric parameters in reptiles. Bas. Appl. Histochem. 26: 27–34.
- Olmo, E., V. Stingo, G. Odierna, and O. Cobror. 1981. Variations in repetitive DNA and evolution in reptiles. Comp. Biochem. Physiol. 69B: 687–691.
- Ota, T., and M. Nei. 1995. Evolution of immunoglobulin VH pseudogenes in chickens. Mol. Biol. Evol. 12: 94–102.
- Padian, K. 1998. When is a bird not a bird Nature 393: 729–730.
- Parham, P. 1999. Soaring costs in defence. Nature 401: 870–871.
- Pedersen, R. A. 1971. DNA content, ribosomal gene multiplicity, and cell size in fish. J. Exp. Zool. 177: 65–79.
- Peters, J. L., and successors. 19311987. Peters' check-list of the birds of the world. Vols. I–XVI. Harvard Univ. Press and Museum of Comparative Zoology, Cambridge , MA .
- Pettigrew, J. D. 1994. Flying DNA. Curr. Biol. 4: 277–280.
- Primmer, C. R., T. Raudsepp, B. P. Chowdhary, A. P. Møller, and H. Ellegren. 1997. Low frequency of microsatellites in the avian genome. Genome Res. 7: 471–482.
- Roth, G., J. Blanke, and D. B. Wake. 1994. Cell size predicts morphological complexity in the brains of frogs and salamanders. Proc. Natl. Acad. Sci. USA 91: 4796–4800.
- Salienko, Y. A. 1995. On the correlation of the set point of body temperature with erythrocyte size. Human Physiol. 21: 625–626.
- Sereno, P. C. 1999. The evolution of dinosaurs. Science 284: 2137–2147.
- Sessions, S. K., and A. Larson. 1987. Developmental correlates of genome size in plethodontid salamanders and their implications for genome evolution. Evolution 41: 1239–1251.
- Swift, H. 1950. The constancy of deoxyribose nucleic acid in plant nuclei. Proc. Natl. Acad. USA 36: 643–654.
- Szarski, H. 1970. Changes in the amount of DNA in cell nuclei during vertebrate evolution. Nature 226: 651–652.
- Szarski, H. 1976. Cell size and nuclear DNA content in vertebrates. Int. Rev. Cytol. 44: 93–111.
- Szarski, H. 1983. Cell size and the concept of wasteful and frugal evolutionary strategies. J. Theor. Biol. 105: 201–209.
- Thomas, C. A. 1971. The genetic organization of chromosomes. Annu. Rev. Genet. 5: 237–256.
- Thomson, K. S. 1972. An attempt to reconstruct evolutionary changes in the cellular DNA content of lungfish. J. Exp. Zool. 180: 363–372.
- Thomson, K. S., and K. Muraszko. 1978. Estimation of cell size and DNA content in fossil fishes and amphibians. J. Exp. Zool. 205: 315–320.
- Tiersch, T. R., and S. S. Wachtel. 1991. On the evolution of genome size of birds. J. Heredity 82: 363–368.
- Van Den Bussche, R. A., J. L. Longmire, and R. J. Baker. 1995. How bats achieve a small C-value: frequency of repetitive DNA in Macrotus. Mamm. Genome 6: 521–525.
- Van Den Bussche, R. A., R. J. Baker, J. P. Huelsenbeck, and D. M. Hillis. 1998. Base compositional bias and phylogenetic analyses: A test of the “flying DNA” hypothesis. Mol. Phylogenet. Evol. 13: 408–416.
- van Tuinen, M., and S. B. Hedges. 2001. Calibration of avian molecular clocks. Mol. Biol. Evol. 18: 206–213.
- Vendrely, R., and C. Vendrely. 1949. La teneur du noyau cellulaire en acide désoxyribonucléique à travers les organes, les individus et les espèces animales: Etude particulière des Mammifères. Experientia 5: 327–329.
- Vendrely, R., and C. Vendrely. 1950. Sur la teneur absolue en acide désoxyribonucléique du noyau cellulaire chez quelques espèces d'oiseaux et de pois-sons. C. R. Acad. Sci. 230: 788–790.
- Venturini, G., R. D'Ambrogi, and E. Capanna. 1986. Size and structure of the bird genome. I. DNA content of 48 species of Neognathae. Comp. Biochem. Physiol. 85B: 61–65.
- Venturini, G., E. Capanna, and B. Fontana. 1987. Size and structure of the bird genome. II. Repetitive DNA and sequence organization. Comp. Biochem. Physiol. 87B: 975–979.
- Vialli, M. 1957. Volume et contenu en ADN par noyau. Exp. Cell Res. Suppl. 4: 284–293.
- Vinogradov, A. E. 1995. Nucleotypic effect in homeotherms: body mass-corrected basal metabolic rate of mammals is related to genome size. Evolution 49: 1249–1259.
- Vinogradov, A. E. 1997. Nucleotypic effect in homeotherms: body-mass independent metabolic rate of passerine birds is related to genome size. Evolution 51: 220–225.
- Vinogradov, A. E. 1999. Intron-genome size relationship on a large evolutionary scale. J. Mol. Evol. 49: 376–384.
- Wachtel, S. S., and T. R. Tiersch. 1993. Variations in genome mass. Comp. Biochem. Physiol. 104B: 207–213.
- Wagenmann, M., J. T. Epplen, K. Bachmann, W. Engel, and J. Schmidke. 1981. DNA sequence organisation in relation to genome size in birds. Experientia 37: 1274–1276.
- Welty, C. 1955. Birds as flying machines. Sci. Am. 192: 88–96.