EPISTASIS BETWEEN NEW MUTATIONS AND GENETIC BACKGROUND AND A TEST OF GENETIC CANALIZATION
Santiago F. Elena
Institut Cavanilles de Biodiversitat i Biologia Evolutiva and Departament de Genètica, Universitat de Valeècia, Apartat 2085, 46071 València, Spain E-mail: [email protected]
Search for more papers by this authorRichard E. Lenski
Center for Microbial Ecology, Michigan State University, East Lansing, Michigan 48824 E-mail: [email protected]
Search for more papers by this authorSantiago F. Elena
Institut Cavanilles de Biodiversitat i Biologia Evolutiva and Departament de Genètica, Universitat de Valeècia, Apartat 2085, 46071 València, Spain E-mail: [email protected]
Search for more papers by this authorRichard E. Lenski
Center for Microbial Ecology, Michigan State University, East Lansing, Michigan 48824 E-mail: [email protected]
Search for more papers by this authorAbstract
Abstract The importance for fitness of epistatic interactions among mutations is poorly known, yet epistasis can exert important effects on the dynamics of evolving populations. We showed previously that epistatic interactions are common between pairs of random insertion mutations in the bacterium Escherichia coli. In this paper, we examine interactions between these mutations and other mutations by transducing each of twelve insertion mutations into two genetic backgrounds, one ancestral and the other having evolved in, and adapted to, a defined laboratory environment for 10,000 generations. To assess the effect of the mutation on fitness, we allowed each mutant to compete against its unmutated counterpart in that same environment. Overall, there was a strong positive correlation between the mutational effects on the two genetic backgrounds. Nonetheless, three of the twelve mutations had significantly different effects on the two backgrounds, indicating epistasis. There was no significant tendency for the mutations to be less harmful on the derived background. Thus, there is no evidence supporting the hypothesis that the derived bacteria had adapted, in part, by becoming buffered against the harmful effects of mutations.
References
- Barkai, N., and S. Leibler. 1997. Robustness in simple biochemical networks. Nature 387: 913–917.
-
Bauman, L. F.
1959. Evidence for non-allelic gene interaction in determining yield, ear height, and kernel row number in corn.
Agron. J. 51: 531–534.
10.2134/agronj1959.00021962005100090007x Google Scholar
- Björkman, J., D. Hughes, and D. I. Anderson. 1998. Virulence of antibiotic-resistant Salmonella typhimurium. Proc. Natl. Acad. Sci. USA 95: 3949–3953.
- Burch, C. L., and L. Chao. 1999. Evolution by small steps and rugged landscapes in the RNA virus φ6. Genetics 151: 921–927.
- Cheverud, J. M., and E. J. Routman. 1996. Epistasis as a source of increased additive genetic variance at population bottlenecks. Evolution 50: 1042–1051.
- Cockerham, C. C. 1984. Additive by additive variance with inbreeding and linkage. Genetics 108: 487–500.
- Cohan, F. M., E. C. King, and P. Zawedzki. 1994. Amelioration of the deleterious pleiotropic effects of an adaptive mutation in Bacillus subtilis. Evolution 48: 81–95.
- Cooper, V. S., and R. E. Lenski. 2000. The population genetics of ecological specialization in evolving E. coli populations. Nature 407: 736–739.
- Cooper, V. S., D. Schneider, M. Blot, and R. E. Lenski. 2001. Mechanisms causing rapid and parallel losses of ribose catabolism in evolving populations of E. coli B. J. Bacteriol. 183: 2834–2841.
- Coyne, J. A. 1992. The genetics of speciation. Nature 355: 511–515.
- Coyne, J. A., N. H. Barton, and M. Turelli. 1997. A critique of Sewall Wright's shifting balance theory of evolution. Evolution 51: 643–671.
- Coyne, J. A., N. H. Barton, and M. Turelli. 2000. Is Wright's shifting balance process important in evolution Evolution 54: 306–317.
-
de Visser, J. A. G. M.,
R. F. Hoekstra, and
H. van den Ende. 1996. The effect of sex and deleterious mutations on fitness in Chlamydomonas.
Proc. R. Soc. Lond. B
263: 193–200.
10.1098/rspb.1996.0031 Google Scholar
- de Visser, J. A. G. M., R. F. Hoekstra, and H. van den Ende. 1997. Test of interaction between genetic markers that affect fitness in Aspergillus niger. Evolution 51: 1499–1505.
- Drake, J. W. 1991. A constant rate of spontaneous mutation in DNA-based microbes. Proc. Natl. Acad. Sci. USA 88: 7160–7164.
- Elena, S. F., and R. E. Lenski. 1997. Test of synergistic interactions among deleterious mutations in bacteria. Nature 390: 395–398.
- Elena, S. F., V. S. Cooper, and R. E. Lenski. 1996. Punctuated evolution caused by selection of rare beneficial mutations. Science 272: 1802–1804.
- Elena, S. F., L. Ekunwe, N. Hajela, S. A. Oden, and R. E. Lenski. 1998. Distribution of fitness effects caused by random insertion mutations in Escherichia coli. Genetica 102/103: 349–358.
- Gavrilets, S. 1999. A dynamical theory of speciation on holey adaptive landscapes. Am. Nat. 154: 1–22.
-
Gibson, G., and
G. P. Wagner. 2000. Canalization in evolutionary genetics: a stabilizing theory
BioEssays
22: 372–380.
10.1002/(SICI)1521-1878(200004)22:4<372::AID-BIES7>3.0.CO;2-J CAS PubMed Web of Science® Google Scholar
- Goodnight, C. J. 1987. On the effect of founder events on epistatic genetic variance. Evolution 41: 80–91.
- Hill, W. G. 1982. Dominance and epistasis as components of heterosis. Sonderd. Z. Tierzüchtungsbiol. 99: 161–168.
- Kawecki, T. J. 2000. The evolution of genetic canalization under fluctuating selection. Evolution 54: 1–12.
- Kibota, T. T., and M. Lynch. 1996. Estimate of the genomic mutation rate deleterious to overall fitness in E. coli. Nature 381: 694–696.
- Kitigawa, O. 1966. Interactions in fitness between lethal genes in heterozygous condition in Drosophila melanogaster. Genetics 57: 809–820.
- Kleckner, N., J. Bender, and S. Gottesman. 1991. Uses of transposons with emphasis on Tn10. Methods Enzymol. 204: 139–181.
- Kondrashov, A. S. 1982. Selection against harmful mutations in large sexual and asexual populations. Genet. Res., Camb. 40: 325–332.
- Kondrashov, A. S. 1985. Deleterious mutations as an evolutionary factor II.. Facultative apomixis and selfing. Genetics 111: 635–653.
- Kondrashov, A. S., and J. F. Crow. 1991. Haploidy or diploidy: which is better Nature 351: 314–315.
- Lenski, R. E. 1988. Experimental studies of pleiotropy and epistasis in Escherichia coli II.. Compensation for maladaptive effects associated with resistance to virus T4. Evolution 42: 433–440.
- Lenski, R. E., and M. Travisano. 1994. Dynamics of adaptation and diversification: a 10,000-generation experiment with bacterial populations. Proc. Natl. Acad. Sci. USA 91: 6808–6814.
- Lenski, R. E., M. R. Rose, S. C. Simpson, and S. C. Tadler. 1991. Long-term experimental evolution in Escherichia coli I.. Adaptation and divergence during 2000 generation. Am. Nat. 138: 1315–1341.
- Lenski, R. E., S. C. Simpson, and T. T. Nguyen. 1994. Genetic analysis of a plasmid-encoded, host genotype-specific enhancement of bacterial fitness. J. Bacteriol. 176: 3140–3147.
- Lynch, M., and B. Walsh. 1998. Genetics and analysis of quantitative traits. Sinauer, Sunderland , MA .
- Masters, M. 1996. Generalized transduction. Pp. 2421–2441.in H. E. Umbarger, eds. Escherichia coli and Salmonella: cellular and molecular biology, 2d ed. ASM Press, Washington , DC .
- McKenzie, J. A., M. J. Whitten, and M. A. Adena. 1982. The effect of genetic background on the fitness of diazinon resistance genotypes of the Australian sheep blowfly, Lucilia cuprina. Heredity 49: 1–9.
- Moore, F. B.-G., D. E. Rozen, and R. E. Lenski. 2000. Pervasive compensatory adaptation in Escherichia coli. Proc. R. Soc. Lond. B 267: 515–522.
- Mukai, T. 1969. The genetic structure of natural populations of Drosophila melanogaster. VII. Synergistic interaction of spontaneous mutant polygenes controlling viability. Genetics 61: 749–761.
- Nowak, M. A., M. C. Boerlijst, J. Cooke, and J. Maynard Smith. 1997. Evolution of genetic redundancy. Nature 388: 167–171.
- Peck, J. R., and D. Waxman. 2000. Mutation and sex in a competitive world. Nature 406: 399–404.
- Peck, S. L., S. P. Ellner, and F. Gould. 1998. A spatially explicit stochastic model demonstrates the feasibility of Wright's shifting balance theory. Evolution 52: 1834–1839.
- Papadopoulos, D., D. Schneider, J. Meier-Eiss, W. Arber, R. E. Lenski, and M. Blot. 1999. Genomic evolution during a 10,000-generation experiment with bacteria. Proc. Natl. Acad. Sci. USA 96: 3807–3812.
- Rice, W. R. 1989. Analyzing tables of statistical tests. Evolution 43: 223–225.
- Rutherford, S. L., and S. Lindquist. 1998. Hsp90 as a capacitor for morphological evolution. Nature 396: 336–342.
- Scharloo, W. 1991. Canalization: genetic and developmental aspects. Annu. Rev. Ecol. Syst. 22: 65–93.
- Schneider, D., E. Duperchy, E. Coursange, R. E. Lenski, and M. Blot. 2000. Long-term experimental evolution in Escherichia coli. IX. Characterization of insertion sequence-mediated mutations and rearrangements. Genetics 156: 477–488.
- Schrag, S. J., V. Perrot, and B. R. Levin. 1997. Adaptation to the fitness costs of antibiotic resistance in Escherichia coli. Proc. R. Soc. Lond. B 264: 1287–1291.
- Shabalina, S. A., L. Y. Yampolsky, and A. S. Kondrashov. 1997. Rapid decline of fitness in panmictic populations of Drosophila melanogaster maintained under relaxed natural selection. Proc. Natl. Acad. Sci. USA 94: 13034–13039.
- Shaw, A. J., B. S. Weir, and F. H. Shaw. 1997. The occurrence and significance of epistatic variance for quantitative characters and its measurement in haploids. Evolution 51: 348–353.
- Sniegowski, P. D., P. J. Gerrish, and R. E. Lenski. 1997. Evolution of high mutation rates in experimental populations of E. coli. Nature 387: 703–705.
-
Sprague, G. F.,
W. A. Russell,
L. H. Penny,
T. W. Horner, and
W. D. Hanson. 1962. Effect of epistasis on grain yield in maize.
Crop Sci. 2: 205–208.
10.2135/cropsci1962.0011183X000200030009x Google Scholar
- Stearns, S. C. and T. J. Kawecki. 1994. Fitness sensitivity and the canalization of life-history traits. Evolution 48: 1438–1450.
- Travisano, M., and R. E. Lenski. 1996. Long-term experimental evolution in Escherichia coli. IV. Targets of selection and the specificity of adaptation. Genetics 143: 15–26.
- Waddington, C. H. 1959. Canalization of development and genetic assimilation of acquired characters. Nature 183: 1654–1655.
- Wade, M. J., and C. J. Goodnight. 1998. The theories of Fisher and Wright in the context of metapopulations: when nature does many small experiments. Evolution 52: 1537–1553.
- Wagner, A. 1999. Redundant gene functions and natural selection. J. Evol. Biol. 12: 1–16.
-
Wagner, A., and
P. F. Stadler. 1999. Viral RNA and evolved mutational robustness.
J. Exp. Zool. 285: 119–127.
10.1002/(SICI)1097-010X(19990815)285:2<119::AID-JEZ4>3.0.CO;2-D CAS PubMed Web of Science® Google Scholar
- Wagner, G. P., G. Booth, and H. Bagheri-Chaichian. 1997. A population genetic theory of canalization. Evolution 51: 329–347.
- Whitlock, M. C., and P. C. Phillips. 2000. The exquisite corpse: a shifting view of the shifting balance. Trends Ecol. Evol. 15: 347–348.
- Whitlock, M. C., P. C. Phillips, F. B.-G. Moore, and S. J. Tonsor. 1995. Multiple fitness peaks and epistasis. Annu. Rev. Ecol. Syst. 26: 601–629.
- Wilke, C. O., J. Wang, C. Ofria, R. E. Lenski, and C. Adami. 2001. Evolution of digital organisms at high mutation rate leads to survival of the flattest. Nature 412: 331–333.
- Wright, S. 1931. Evolution in Mendelian populations. Genetics 16: 97–159.
- Zyskind, J. W., and S. I. Bernstein. 1989. Recombinant DNA laboratory manual. Academic Press, San Diego , CA .