DIRECT AND INDIRECT SEXUAL SELECTION AND QUANTITATIVE GENETICS OF MALE TRAITS IN GUPPIES (POECILIA RETICULATA)
Robert Brooks
School of Tropical Biology, James Cook University, Townsville, 4811, Australia
Present address: School of Biological Science, The University of New South Wales, Sydney 2052, New South Wales, Australia; E-mail: [email protected]
Search for more papers by this authorJohn A. Endler
School of Tropical Biology, James Cook University, Townsville, 4811, Australia
Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, California 93106 E-mail: [email protected]
Search for more papers by this authorRobert Brooks
School of Tropical Biology, James Cook University, Townsville, 4811, Australia
Present address: School of Biological Science, The University of New South Wales, Sydney 2052, New South Wales, Australia; E-mail: [email protected]
Search for more papers by this authorJohn A. Endler
School of Tropical Biology, James Cook University, Townsville, 4811, Australia
Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, California 93106 E-mail: [email protected]
Search for more papers by this authorAbstract
Abstract.— The ornamentation and displays on which sexual attractiveness and thus mating success are based may be complex and comprise several traits. Predicting the outcome of sexual selection on such complex phenotypes requires an understanding of both the direct operation of selection on each trait and the indirect consequences of selection operating directly on genetically correlated traits. Here we report the results of a quantitative genetic analysis of the ornamentation, sexual attractiveness, and mating success of male guppies (Poecilia reticulata). We analyze male ornamentation both from the point of view of single ornamental traits (e.g., the area of each color) and of composite measures of the way the entire pattern is likely to be perceived by females (e.g., the mean and contrast in chroma). We demonstrate that there is substantial additive genetic variation in almost all measures of male ornamentation and that much of this variation may be Y linked. Attractiveness and mating success are positively correlated at the phenotypic and genetic level. Orange area and chroma, the area of a male's tail, and the color contrast of his pattern overall are positively correlated with attractiveness and/or mating success at the phenotypic and genetic levels. Using attractiveness and mating success as measures of fitness, we estimate gradients of linear directional sexual selection operating on each male trait and use equations of multivariate evolutionary change to predict the response of male ornamentation to this sexual selection. From these analyses, we predict that indirect selection may have important effects on the evolution of male guppy color patterns.
Literature Cited
- Alatalo, R. V., J. Mappes, and M. A. Elgar. 1997. Heritabilities and paradigm shifts. Nature 385: 402–403.
- Andersson, M. 1994. Sexual selection. Princeton Univ. Press, Princeton , NJ .
- Angus, R. A. 1989. A genetic overview of Poeciliid fishes. Pp. 51–68 in G. K. Meffe and F. F. Snelson, eds. Ecology and evolution of livebearing fishes (Poeciliidae). Prentice Hall, Englewood Cliffs , NJ .
- Becker, W. A. 1992. Manual of quantitative genetics. 5th ed. Academic Enterprises, Pullman , WA .
- Blows, M. W., and R. A. Allan. 1998. Levels of mate recognition within and between two Drosophila species and their hybrids. Am. Nat. 152: 826–837.
- Brodie, E. D. I., A. J. Moore, and F. J. Janzen. 1995. Visualizing and quantifiying natural selection. Trends Ecol. Evol. 10: 313–318.
- Brooks, R. 1996. Melanin as a visual signal amplifier in male guppies. Naturwiss. 83: 39–41.
- Brooks, R. 2000. Negative genetic correlation between male sexual attractiveness and survival. Nature 406: 67–70.
- Brooks, R., and N. Caithness. 1995. Female choice in a feral guppy population: are there multiple cues Anim. Behav. 50: 301–307.
- Brooks, R., and N. Caithness. 1999. Intersexual and intrasexual selection, sneak copulation and male ornamentation in guppies (Poecilia reticulata). S. Afr. Journ. Zool. 34: 48–52.
- Brooks, R., and V. Couldridge. 1999. Multiple sexual ornaments coevolve with multiple mating preferences. Am. Nat. 154: 37–45.
- Buchanan, K. L., and C. K. Catchpole. 1997. Female choice in the sedge warbler, Acrocephalus schoenobaenus: multiple cues from song and territory quality. Proc. R. Soc. Lond. B. 264: 521–526.
- Bull, J. J. 1983. Evolution of sex determining mechanisms. Benjamin Cummings, London .
- Burley, N. 1981. Mate choice by multiple criteria in a monogamous species. Am. Nat. 117: 515–528.
- Charlesworth, B. 1978. A model for the evolution of Y chromosomes and dosage compensation. Proc. Natl. Acad. Sci. USA 75: 5618–5622.
- Cheverud, J. M. 1988. A comparison of genetic and phenotypic correlations. Evolution 42: 958–968.
- Crespi, B. J., and F. L. Bookstein. 1989. A path-analytic model for the measurement of selection on morphology. Evolution 43: 18–28.
- Curtsinger, J. W., P. M. Service, and T. Prout. 1994. Antagonistic pleiotropy, reversal of dominance, and genetic polymorphism. Am. Nat. 144: 210–228.
-
Endler, J. A.
1978. A predator's view of animal colour patterns.
Evol Biol.
11: 319–364.
10.1007/978-1-4615-6956-5_5 Google Scholar
- Endler, J. A. 1980. Natural selection on color patterns in Poecilia reticulata. Evolution 34: 76–91.
- Endler, J. A. 1983. Natural and sexual selection on color patterns in poeciliid fishes. Enviorn. Biol. Fishes 9: 173–190.
- Endler, J. A. 1987. Predation, light intensity and courtship behaviour in Poecilia reticulata (Pisces: Poeciliidae). Anim. Behav. 35: 1376–1385.
- Endler, J. A. 1990. On the measurement and classification of colour in studies of animal colour patterns. Biol. J. Linn. Soc. 41: 315–352.
- Endler, J. A. 1991. Variation in the appearance of guppy color patterns to guppies and their predators under different visual conditions. Vis. Res. 31: 587–608.
- Endler, J. A., and A. E. Houde. 1995. Geographic variation in female preferences for male traits in Poecilia reticulata. Evolution 49: 456–468.
- Etges, W. J. 1996. Sexual selection operating in a wild population of Drosophila robusta. Evolution 50: 2095–2100.
- Falconer, D. S., and T. F. C. Mackay. 1996. Introduction to quantitative genetics. 4th ed. Longman, New York .
-
Fisher, R. A.
1930. The genetical theory of natural selection. Oxford Univ. Press,
Oxford
,
U.K.
10.1890/0012-9658(2006)87[1445:SOEFDD]2.0.CO;2 Google Scholar
- Gilmour, A. R., B. R. Cullis, S. J. Welham, and R. Thompson. 1999. ASREML. Available via http://ftp.res.bbsrc.ac.uk/aar.
- Grant, P. R., and B. R. Grant. 1995. Predicting microevolutionary responses to directional selection on heritable variation. Evolution 49: 241–251.
- Gray, D. A., and W. H. Cade. 1999. Sex, death and genetic variation: natural and sexual selection on cricket song. Proc. R. Soc. Lond. B. 266: 707–709.
- Grether, G. F., J. Hudon, and D. F. Millie. 1999. Carotenoid limitation of sexual coloration along an environmental gradient in guppies. Proc. R. Soc. Lond. B. 266: 1317–1322.
- Haskins, C. P., P. Young, R. E. Hewitt, and E. F. Haskins. 1970. Stabilised heterozygosis of supergenes mediating certain Y-linked colour patterns in populations of Lebistes reticulatus. Heredity 25: 575–588.
- Hastings, I. M. 1994. Manifestations of sexual selection may depend on the genetic basis of sex determination. Proc. R. Soc. Lond. B. 258: 83–87.
- Hedrick, P. W. 1999. Antagonistic pleiotropy and genetic polymorphism: a perspective. Heredity 82: 126–133.
- Houde, A. E. 1987. Mate choice based upon naturally occurring colour-pattern variation in a guppy population. Evolution 41: 1–10.
- Houde, A. E. 1988. The effects of female choice and male-male competition on the mating success of male guppies. Anim. Behav. 36: 888–896.
- Houde, A. E. 1992. Sex-linked heritability of a sexually selected character in a natural population of Poecilia reticulata (Pisces: Poeciliidae) (guppies). Heredity 69: 229–235.
- Houde, A. E. 1997. Sex, color and mate choice in guppies. Princeton Univ. Press, Princeton , NJ .
- Houde, A. E., and J. A. Endler. 1990. Correlated evolution of female mating preferences and male color patterns in the guppy Poecilia reticulata. Science 248: 1405–1408.
- Houle, D. 1991. Genetic covariance of fitness correlates: what genetic correlations are made of and why it matters. Evolution 45: 630–648.
- Hughes, K. A. 1995. The evolutionary genetics of male life-history characters in Drosophila melanogaster. Evolution 49: 521–537.
- Hughes, K. A., L. Du, F. H. Rodd, and D. N. Reznick. 1999. Familiarity leads to female mate preference for novel males in the guppy, Poecilia reticulata. Anim. Behav. 58: 907–916.
- Iwasa, Y., and A. Pomiankowski. 1991. The evolution of costly mate preferences. II. The “handicap” principle. Evolution 45: 1431–1442.
- Janzen, F. J., and H. Stern. 1998. Logistic regression analysis of selection. Evolution 52: 1564–1571.
- Johnstone, R. A. 1995. Honest advertisement of multiple qualities using multiple signals. J. Theor. Biol. 177: 87–94.
- Johnstone, R. A. 1996. Multiple displays in animal communication: ‘backup signals’ and ‘multiple messages. Phil. Trans. R. Soc. Lond. B 351: 329–338.
- Jones, T. M., R. J. Quinnell, and A. Balmford. 1998. Fisherian flies: benefits of female choice in a lekking sandfly. Proc. R. Soc. Lond. B. 265: 1651–1657.
- Kingsolver, J. G., and D. W. Schemske. 1991. Path analysis of selection. Trends Ecol. Evol. 6: 276–280.
- Kirkpatrick, M., and M. J. Ryan. 1991. The evolution of mating preferences and the paradox of the lek. Nature 350: 33–38.
- Kodric-Brown, A. 1989. Dietary carotenoids and male mating success in the guppy: an environmental component to female choice. Behav. Ecol. Sociobiol. 25: 393–401.
- Lande, R. 1979. Quantitative genetical analysis of multivariate evolution, applied to brain:body size allometry. Evolution 33: 402–416.
- Lande, R., and S. J. Arnold. 1983. The measurement of selection on correlated characters. Evolution 37: 1210–1226.
- Lynch, M., and B. Walsh. 1997. Genetics and analysis of quantitative traits. Sinauer, Sunderland , MA .
- Manly, B. F. J. 1991. Randomization and Monte Carlo methods in biology. Chapman and Hall, London .
- Møller, A. P., and A. Pomiankowski. 1993. Why have birds got multiple sexual ornaments Behav. Ecol. Sociobiol. 32: 167–176.
- Moore, A. J. 1994. Genetic evidence for the “good genes” process of sexual selection. Behav. Ecol. Sociobiol. 35: 235–241.
- Moore, A. J., and P. J. Moore. 1999. Balancing sexual selection through opposing mate choice and male competition. Proc. R Soc. Lond. B. 266: 711–716.
- Nayudu, P. L. 1979. Genetic studies of melanic color patterns and atypical sex determination in the guppy Poecilia reticulata. Copeia 2: 225–231.
- Nicoletto, P. F. 1993. Female sexual response to condition-dependent ornaments in the guppy, Poecilia reticulata. Anim. Behav. 46: 441–450.
- Phillips, P. C., and S. J. Arnold. 1989. Visualizing multivariate selection. Evolution 43: 1209–1222.
- Pomiankowski, A., and Y. Iwasa. 1993. Evolution of multiple sexual preferences by Fisher's runaway process of sexual selection. Proc. R. Soc. Lond. B. 253: 173–181.
- Pomiankowski, A., and Y. Iwasa. 1998. Runaway ornament diversity caused by Fisherian sexual selection. Proc. Natl. Acad. Sci. USA 95: 5106–5111.
- Pomiankowski, A., and A. P. Møller. 1995. A resolution of the lek paradox. Proc. R. Soc. Lond. B. 260: 21–29.
- Pomiankowski, A., Y. Iwasa, and S. Nee. 1991. The evolution of costly mate preferences. I. Fisher and biased mutation. Evolution 45: 1422–1430.
- Rausher, M. D. 1992. The measurement of selection on quantitative traits: biases due to environmental covariances between traits and fitness. Evolution 46: 616–626.
- Reinhold, K. 1998. Sex linkage among genes controlling sexually selected traits. Behav. Ecol. Sociobiol. 44: 1–7.
- Rice, W. R. 1984. Sex chromosomes and the evolution of sexual dimorphism. Evolution 38: 735–742.
- Rice, W. R. 1987a. The accumulation of sexually antagonistic genes as a selective agent promoting the evolution of reduced recombination between primitive sex chromosomes. Evolution 41: 911–914.
- Rice, W. R. 1987b. Genetic hitchiking and the evolution of reduced genetic activity of the Y sex chromosome. Genetics 116: 161–167.
- Rice, W. R. 1989. Analyzing tables of statistical tests. Evolution 43: 223–225.
- Rice, W. R. 1996. Evolution of the Y sex chromosome in animals. Bioscience 46: 331–343.
-
Roff, D. A.
1997. Evolutionary quantitative genetics. Chapman and Hall,
New York
.
10.1111/j.0014-3820.2004.tb01726.x Google Scholar
- Roldan, E. R. S., and M. Gomendio. 1999. The Y chromosome as a battle ground for sexual selection. Trends Ecol. Evol. 14: 58–62.
- Rose, M. R. 1982. Antagonistic pleiotropy, dominance, and genetic variation. Heredity 48: 63–78.
- Rowe, L., and D. Houle. 1996. The lek paradox and the capture of genetic variance by condition dependent traits. Proc. R. Soc. Lond. B. 263: 1415–1421.
- Schluter, D. 1988. Estimating the form of natural selection on a quantitative trait. Evolution 42: 849–861.
- Taylor, P. D., and G. C. Williams. 1982. The lek paradox is not resolved. Theor. Popul. Biol. 22: 392–409.
- Wedell, N., and T. Tregenza. 1999. Successful fathers sire successful sons. Evolution 53: 620–625.
- Wilkinson, G. S., D. C. Presgraves, and L. Crymes. 1998. Male eye span in stalk-eyed flies indicates genetic quality by meiotic drive suppression. Nature 386: 276–279.
- Winge, Ö. 1922a. One-sided masculine and sex-linked inheritance in Lebistes reticulatus. J. Genet. 12: 145–162.
- Winge, Ö. 1922b. A peculiar mode of inheritance and its cytological explanation. J. Genet. 12: 137–144.
- Winge, Ö. 1927. The location of eighteen genes in Lebistes reticulatus. J. Genet. 18: 1–42.
- Winge, Ö., and E. Ditlevsen. 1947. Colour inheritance and sex determination in Lebistes. Heredity 1: 65–83.
- Yamamoto, T. 1975. The medaka, Oryzias latipes, and the guppy, Lebistes reticularis. Pp. 134–149 in R. C. King, ed. Handbook of Genetics. Plenum Press, New York .