VARIATION OF ENZYME ACTIVITIES AT A BRANCHED PATHWAY INVOLVED IN THE UTILIZATION OF GLUCONATE IN ESCHERICHIA COLI
Ing-Nang Wang
Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843 E-mail: [email protected]
Search for more papers by this authorDaniel E. Dykhuizen
Department of Ecology and Evolution, State University of New York at Stony Brook, Stony Brook, New York 11794–5245 E-mail: [email protected]
Search for more papers by this authorIng-Nang Wang
Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843 E-mail: [email protected]
Search for more papers by this authorDaniel E. Dykhuizen
Department of Ecology and Evolution, State University of New York at Stony Brook, Stony Brook, New York 11794–5245 E-mail: [email protected]
Search for more papers by this authorAbstract
Abstract.— Twenty-four strains of Escherichia coli from the ECOR collection were characterized for growth rate in gluconate minimal salts medium and for Vmax and Km of the three enzymes (gluconokinase, 6-phosphogluconate dehydrogenase, and 6-phosphogluconate dehydratase) that form a branch point for the utilization of gluconate. A total of 11 characters–growth rate, three Vmax values, four Km values, and three Vmax/Km values–were determined for these 24 ECOR strains. Most of the characters were normally distributed. Statistical tests showed that growth rate is significantly less variable than enzyme activities. Also, analyses of variance showed significant differences among strains and among the extant five genetic groups of E. coli for the characters measured. A Mantel test showed that, for some characters, closely related strains shared similar character values. Two hypotheses regarding the relationships between growth rate and enzyme activity and between various enzyme activities were tested. None of the expected correlations between growth rate and enzyme activity or between enzyme activities was detected. The results were discussed in terms of metabolic control analysis and neutral theory.
Literature Cited
- Bachi, B., and H. L. Kornberg. 1975. Genes involved in the uptake and catabolism of gluconate by Escherichia coli. J. Gen. Microbiol. 90: 321–335.
- Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.
- Burns, J. A., A. Cornish-Bowden, A. K. Groen, R. Heinrich, H. Kacser, J. W. Porteous, S. M. Rapoport, T. A. Rapoport, J. W. Stucki, J. M. Tager, R. J. A. Wanders, and H. V. Westerhoff. 1985. Control of metabolic systems. Trends Biochem. Sci. 10: 16.
- Clark, A. G. 1989. Causes and consequences of variation in energy storage in Drosophila melanogaster. Genetics 123: 131–144.
- Clark, A. G. 1990. Genetic components of variation in energy storage in Drosophila melanogaster. Evolution 44: 637–650.
- Clark, A. G., and L. E. Keith. 1989. Rapid enzyme kinetic assays of individual Drosophila and comparisons of field-caught Drosophila melanogaster and Drosophila simulans. Biochem. Genet. 27: 263–278.
- Cohen, S. S. 1951. Gluconokinase and the oxidative path of glucose-6-phosphate utilization. J. Biol. Chem. 189: 617–628.
- Cornish-Bowden, A., and R. Eisenthal. 1974. Statistical considerations in the estimation of enzyme kinetic parameters by the direct linear plot and other methods. Biochem. J. 139: 721–730.
- Cornish-Bowden, A., and R. Eisenthal. 1978. Estimation of Michaelis constant and maximum velocity from the direct linear plot. Biochim. Biophys. Acta 523: 268–272.
- Crawford, D. L., and D. A. Powers. 1989. Molecular basis of evolutionary adaptation at the lactate dehydrogenase-B locus in the fish Fundulus heteroclitus. Proc. Natl. Acad. Sci. USA 86: 9365–9369.
- Csonka, L. N., and D. G. Fraenkel. 1977. Pathways of NADPH formation in Escherichia coli. J. Biol. Chem. 252: 3382–3391.
- Davis, B. D., and E. S. Mingioli. 1950. Mutants of Escherichia coli requiring methionine or vitamin B12. J. Bacteriol. 60: 17–28.
- Dean, A. M. 1989. Selection and neutrality in lactose operons of Escherichia coli. Genetics 123: 441–454.
- Dykhuizen, D. E., and D. L. Hartl. 1980. Selective neutrality of 6PGD allozymes in E. coli and the effects of genetic background. Genetics 96: 801–817.
- Dykhuizen, D. E., A. M. Dean, and D. L. Hartl. 1987. Metabolic flux and fitness. Genetics 115: 25–31.
- Eanes, W. F., L. Katona, and M. Longtine. 1990. Comparison of in vitro and in vivo activities associated with the G6PD allozyme polymorphism in Drosophila melanogaster. Genetics 125: 845–853.
- Egan, S. E., R. Fliege, S. Tong, A. Shibata, R. E. Wolf, Jr., and T. Conway. 1992. Molecular characterization of the Entner-Doudoroff pathway in Escherichia coli: sequence analysis and localization of promoters for the edd-eda operon. J. Bacteriol. 174: 4638–4646.
- Eisenberg, R. C., and W. J. Dobrogosz. 1967. Gluconate metabolism in Escherichia coli. J. Bacteriol. 93: 941–949.
- Eisenthal, R., and A. Cornish-Bowden. 1974. The direct linear plot: a new graphical procedure for estimating enzyme kinetic parameters. Biochem J. 139: 715–720.
- Faik, P., and H. L. Kornberg. 1973. Isolation and properties of E. coli mutants affected in gluconate uptake. FEBS Lett. 32: 260–264.
- Fell, D. A. 1992. Metabolic control analysis: a survey of its theoretical and experimental development. Biochem. J. 286: 313–330.
- Fell, D. A., and H. M. Sauro. 1985. Metabolic control and its analysis: additional relationships between elasticities and control coefficients. Eur. J. Biochem. 148: 555–561.
- Flint, H. J., D. J. Porteous, and H. Kacser. 1980. Control of the flux in the arginine pathway of Neurospora crassa: the flux from citrulline to arginine. Biochem. J. 190: 1–15.
- Flint, H. J., R. W. Tateson, I. B. Barthelmess, D. J. Porteous, W. D. Donachie, and H. Kacser. 1981. Control of the flux in the arginine pathway of Neurospora crassa: modulations of enzyme activity and concentration. Biochem. J. 200: 231–246.
- Fraenkel, D. G. 1987. Glycolysis, pentose phosphate pathway, and Entner-Doudoroff pathway. Pp. 142–150 in F. C. Neidhardt, J. L. Ingraham, K. B. Low, B. Magasanik, M. Schaechter, and H. E. Umbarger, eds. Escherichia coli and Salmonella typhimurium cellular and molecular biology. American Society for Microbiology, Washington , DC .
- Fraenkel, D. G., and B. L. Horecker. 1964. Pathways of D-glucose metabolism in Salmonella typhimurium: a study of a mutant lacking phosphoglucose isomerase. J. Biol. Chem. 239: 2765–2771.
- Fraenkel, D. G., and S. R. Levisohn. 1967. Glucose and gluconate metabolism in an Escherichia coli mutant lacking phosphoglucose isomerase. J. Bacteriol. 93: 1571–1578.
- Groen, A. K., R. J. A. Wanders, H. V. Westerhoff, R. van der Meer, and J. M. Tager. 1982. Quantification of the contribution of various steps to the control of mitochondrial respiration. J. Biol. Chem. 257: 2754–2757.
- Hartl, D. L., and D. E. Dykhuizen. 1981. Potential for selection among nearly neutral allozymes of 6-phosphogluconate dehydrogenase in Escherichia coli. Proc. Natl. Acad. Sci. USA 78: 6344–6348.
- Hartl, D. L., D. E. Dykhuizen, and A. M. Dean. 1985. Limits of adaptation: the evolution of selective neutrality. Genetics 111: 655–674.
- Heinrich, R., and T. A. Rapoport. 1974. A linear steady state treatment of enzyme chains: general properties, control and effector strength. Eur. J. Biochem. 42: 89–102.
- Herzer, P. J., S. Inouye, M. Inouye, and T. S. Whittam. 1990. Phylogenetic distribution of branched RNA-linked multicopy single-stranded DNA among natural isolates of Escherichia coli. J. Bacteriol. 172: 6175–6181.
- Hung, A., A. Orozco, and N. Zwaig. 1970. Evidence for two gluconokinase activities in Escherichia coli. Bacteriol. Proc. Abstract, p. 146.
- Isturiz, T., E. Palmero, and J. Vitelli-Flores. 1986. Mutations affecting gluconate catabolism in Escherichia coli: genetic mapping of the locus for the thermosensitive gluconokinase. J. Gen. Microbiol. 132: 3209–3219.
- Izu, H., O. Adachi, and M. Yamada. 1997. Gene organization and transcriptional regulation of the gntRKU operon involved in gluconate uptake and catabolism of Escherichia coli. J. Mol. Biol. 267: 778–793.
- Juhnke, H., B. Krems, P. Kotter, and K.-D. Entian. 1996. Mutants that show increased sensitivity to hydrogen peroxide reveal am important role for the pentose phosphate pathway in protection of yeast against oxidative stress. Mol. Gen. Genet. 252: 456–464.
- Kacser, H., and J. A. Burns. 1973. The control of flux. Symp. Soc. Exp. Biol. 27: 65–104.
- Kell, D. B., K. van Dam, and H. V. Westerhoff. 1989. Control analysis of microbial growth and productivity. Pp. 61–93 in S. Baumberg, I. Hunter, and M. Rhodes, eds. Microbial products: new approach. Cambridge Univ. Press, Cambridge , U.K.
- Kovachevich, R., and W. A. Wood. 1955. Carbohydrate metabolism by Pseudomonas fluorescens. III. Purification and properties of a 6-phosphogluconate dehydrase. J. Biol. Chem. 213: 745–756.
- Krems, B., C. Charizanis, and K.-D. Entian. 1995. Mutants of Saccharomyces cerevisiae sensitive to oxidative and osmotic stress. Curr. Genet. 27: 427–434.
- Laurie-Ahlberg, C. C., G. Maroni, G. C. Bewley, J. C. Lucchesi, and B. S. Weir. 1980. Quantitative genetic variation of enzyme activities in natural population of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 77: 1073–1077.
- Laurie-Ahlberg, C. C., A. N. Wilton, J. W. Curtsinger, and T. H. Emigh. 1982. Naturally occurring enzyme activity variation in Drosophila melanogaster. I. Sources of variation for 23 enzymes. Genetics 102: 191–206.
- Laurie-Ahlberg, C. C., P. T. Barnes, J. W. Curtsinger, T. H. Emigh, B. Karlin, R. Morris, R. A. Norman, and A. N. Wilton. 1985. Genetic variability of flight metabolism in Drosophila melanogaster. II. Relationship between power output and enzyme activity levels. Genetics 111: 845–868.
- Levene, H. 1960. Robust tests for equality of variances. Pp. 278–292 in I. Olkin, S. G. Ghurye, W. Hoeffding, W. G. Madow, and H. B. Mann, eds. Contributions to probability and statistics. Stanford Univ. Press, Stanford , CA .
- Lewontin, R. C. 1974. The genetic basis of evolutionary change. Columbia Univ. Press, New York .
- Milkman, R. 1973. Electrophoretic variation in Escherichia coli from natural sources. Science 182: 1024–1026.
- Miller, J. H. 1972. Experiments in molecular genetics. Cold Spring Harbor Press, Cold Spring Harbor , NY .
- Moses, V., and P. B. Sharp. 1972. Intermediary metabolite levels in Escherichia coli. J. Gen. Microbiol. 71: 181–190.
- Neidhardt, F. C., P. L. Bloch, and D. F. Smith. 1974. Culture medium for enterobacteria. J. Bacteriol. 119: 736–747.
- Ochman, H., and R. K. Selander. 1984. Standard reference strains of Escherichia coli from a natural population. J. Bacteriol. 157: 690–693.
- Orozco, A., and D. F. Fraenkel. 1979. The 6-phosphogluconate dehydrogenase reaction in Escherichia coli. J. Biol. Chem. 254: 10237–10242.
- Page, R. A., K. E. Kitson, and M. J. Hardman. 1991. The importance of alcohol dehydrogenase in regulation of ethanol metabolism in rat liver cells. Biochem. J. 278: 659–665.
- Peekhaus, N., and T. Conway. 1998a. Positive and negative transcriptional regulation of the Escherichia coli gluconate regulon gene gntT by GntR and cyclic AMP (cAMP)-cAMP receptor protein complex. J. Bacteriol. 1998: 1777–1785.
- Peekhaus, N., and T. Conway. 1998b. What's for dinner? Entner-Doudoroff metabolism in Escherichia coli. J. Bacteriol. 180: 3495–3502.
- Peyru, G., and D. G. Fraenkel. 1968. Genetic mapping of loci for glucose-6-phosphate dehydrogenase, gluconate-6-phosphate dehydrogenase, and gluconate-6-phosphate dehydrase in Escherichia coli. J. Bacteriol. 1968: 1272–1278.
- Pierce, V. A., and D. L. Crawford. 1994. Rapid enzyme assays investigating the variation in the glycolytic pathway in fieldcaught populations of Fundulus heteroclitus. Biochem. Genet. 32: 315–330.
- Pierce, V. A., and D. L. Crawford. 1997. Phylogenetic analysis of glycolytic enzyme expression. Science 276: 256–259.
- Pirt, S. J. 1965. The maintenance energy of bacteria in growing cultures. Proc. R. Soc. London Ser. B 163: 224–231.
- Place, A. R., and D. A. Powers. 1984. Kinetic characterization of the lactate dehydrogenase (LDH-B4) allozymes of Fundulus heteroclitus. J. Biol. Chem. 259: 1309–1318.
- Porco, A., N. Peekhaus, C. Bausch, S. Tong, T. Isturiz, and T. Conway. 1997. Molecular genetic characterization of the Escherichia coli gntT gene of GntI, the main system for gluconate metabolism. J. Bacteriol. 179: 1584–1590.
- Portor, W. R., and W. F. Trager. 1977. Improved non-parametric statistical methods for the estimation of Michaelis-Menten kinetic parameters by the direct linear plot. Biochem. J. 161: 293–302.
- Pouyssegur, J. M., P. Faik, and H. L. Kornberg. 1974. Utilization of gluconate by Escherichia coli: uptake of D-gluconate by a mutant impaired in gluconate kinase activity and by membrane vesicles derived therefrom. Biochem. J. 140: 193–203.
- Rohlf, F. J., and D. E. Slice. 1996. BIOMstat: statistical software for biologists. Exeter Software, Setauket , NY .
- Russell, J. B., and G. M. Cook. 1995. Energetics of bacterial growth: balance of anabolic and catabolic reactions. Microbiol. Rev. 59: 48–62.
- Salter, M., R. G. Knowles, and C. I. Pogson. 1986. Quantification of the importance of individual steps in the control of aromatic amino acid metabolism. Biochem. J. 234: 635–647.
- Sauro, H. M., J. R. Small, and D. A. Fell. 1987. Metabolic control and its analysis: extensions to the theory and matrix method. Eur. J. Biochem. 165: 215–221.
- Selander, R. K., D. A. Caugant, and T. S. Whittam. 1987. Genetic structure and variation in natural populations of Escherichia coli. Pp. 1625–1648 in F. C. Neidhardt, J. L. Ingraham, K. B. Low, B. Magasanik, M. Schaechter, and H. E. Umbarger, eds. Escherichia coli and Salmonella typhimurium cellular and molecular biology. American Society for Microbiology, Washington , D.C.
- Sokal, R. R., and C. A. Braumann. 1980. Significance tests for coefficients of variation and variability profiles. Syst. Zool. 29: 50–66.
- Sokal, R. R., and F. J. Rohlf. 1981. Biometry. W. H. Freeman, New York .
-
Sokal, R. R., and
F. J. Rohlf. 1995. Biometry. 3rd ed.
W. H. Freeman,
New York
.
10.1577/1548-8659(1986)115<149:LOPDOR>2.0.CO;2 Google Scholar
- Sweeney, N. J., D. C. Laux, and P. S. Cohen. 1996. Escherichia coli F-18 and E. coli K-12 eda mutants do not colonize the streptomycin-treated mouse large intestine. Infect. Immun. 64: 3504–3511.
- Tempest, D. W., and O. M. Neijssel. 1984. The status of YATP and maintenance energy as biologically interpretable phenomena. Annu. Rev. Microbiol. 38: 459–486.
- Tipton, K. F. 1992. Principles of enzyme assay and kinetic studies. Pp. 1–58 in R. Eisenthal and M. J. Danson, eds. Enzyme assays. Oxford Univ. Press, Oxford , U.K.
- Tong, S., A. Poroco, T. Isturiz, and T. Conway. 1996. Cloning and molecular genetic characterization of the Escherichia coli gntR, gntK, and gntU genes of GntI, the main system for gluconate metabolism. J. Bacteriol. 178: 3260–3269.
- van Dam, K., M. M. Mulder, J. Teixeira de Mattos, and H. V. Westerhoff. 1988. A thermodynamic view of bacterial growth. Pp. 25–48 in M. J. Bazin and J. I. Prosser, eds. Physiological models in microbiology. CRC Press, Boca Raton , FL .
- Watt, W. B. 1983. Adaptation at specific loci. II. Demographic and biochemical elements in the maintenance of the Colias PGI polymorphism. Genetics 103: 691–724.
- Westerhoff, H. V., J. S. Lolkema, R. Otto, and K. J. Hellingwerf. 1982. Thermodynamics of growth: non-equilibrium thermodynamics of bacterial growth, the phenomenological and the mosaic approach. Biochim. Biophys. Acta 683: 181–220.
- Wilton, A. N., C. C. Laurie-Ahlberg, T. H. Emigh, and J. W. Curtsinger. 1982. Naturally occurring enzyme activity variation in Drosophila melanogaster. II. Relationships among enzymes. Genetics 102: 207–221.
- Zera, A. J., R. K. Koehn, and J. G. Hall. 1985. Allozymes and biochemical adaptation. Pp. 633–674 in G. A. Kerkut and L. I. Gilbert, eds. Comprehensive insect physiology biochemistry and pharmacology. Pergamon Press, New York .
- Zwaig, N., R. Nagel de Zwaig, T. Isturiz, and M. Wecksler. 1973. Regulatory mutations affecting the gluconate system in Escherichia coli. J. Bacteriol. 114: 469–473.