Sleep quality assessment of adults in care settings using non-wearable sleep trackers: Scoping review
Miyae Yamakawa PhD, RN
Associate Professor
Department of Evidence-Based Clinical Nursing, Division of Health Sciences, Graduate School of Medicine, Osaka University, Suita, Japan
The Japan Centre for Evidence-Based Practice: An affiliated Centre of the Joanna Briggs Institute, Osaka, Japan
Search for more papers by this authorCorresponding Author
Hee Sun Kang PhD, RN
Professor
Red Cross College of Nursing, Chung-Ang University, Seoul, South Korea
Correspondence
Hee Sun Kang, PhD, RN, Red Cross College of Nursing, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 156-756, South Korea.
Email: [email protected]
Search for more papers by this authorHuiting Wang MS, RN
Doctoral student
Department of Evidence-Based Clinical Nursing, Division of Health Sciences, Graduate School of Medicine, Osaka University, Suita, Japan
Search for more papers by this authorRie Konno PhD, RN
Professor
School of Nursing, Hyogo University of Health Sciences, Hyogo, Japan
Search for more papers by this authorMiyae Yamakawa PhD, RN
Associate Professor
Department of Evidence-Based Clinical Nursing, Division of Health Sciences, Graduate School of Medicine, Osaka University, Suita, Japan
The Japan Centre for Evidence-Based Practice: An affiliated Centre of the Joanna Briggs Institute, Osaka, Japan
Search for more papers by this authorCorresponding Author
Hee Sun Kang PhD, RN
Professor
Red Cross College of Nursing, Chung-Ang University, Seoul, South Korea
Correspondence
Hee Sun Kang, PhD, RN, Red Cross College of Nursing, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 156-756, South Korea.
Email: [email protected]
Search for more papers by this authorHuiting Wang MS, RN
Doctoral student
Department of Evidence-Based Clinical Nursing, Division of Health Sciences, Graduate School of Medicine, Osaka University, Suita, Japan
Search for more papers by this authorRie Konno PhD, RN
Professor
School of Nursing, Hyogo University of Health Sciences, Hyogo, Japan
Search for more papers by this authorFunding information: None.
Abstract
Aims
This review aimed to explore and map the literature on sleep quality assessments of adults in care settings using non-wearable sleep trackers.
Background
Sleep-monitoring technology is advancing, and sleep quality assessments using non-wearable sleep trackers can provide objective evidence for quality care.
Design
This was a scoping review.
Data sources
Four electronic databases (PubMed, CINAHL, PsycInfo and Embase) were searched on 23 September 2022.
Review methods
This review followed the Joanna Briggs Institute's methodology and used the PRISMA-ScR checklist.
Results
Thirty studies met our inclusion criteria. Sleep quality was assessed at home and in acute, non-acute and long-term care facilities. Physiological (heart rate and respiratory rate) and sleep parameters were assessed alone or in combination during patient care using non-wearable sleep trackers. Sleep parameters representing sleep quality varied across studies. Real-time monitoring with non-wearable sleep-tracking devices effectively shortened the length of hospital stay. However, studies investigating caregivers and nursing outcomes are lacking in the literature.
Conclusion
Sleep quality assessments using non-wearable sleep trackers may facilitate the provision of quality care in home-based and clinical care settings. Future studies should focus on caregivers and care outcomes that could contribute to evidence-based nursing practice for sleep care in adults.
Summary statement
What is already known about this topic?
- Sleep quality (SQ) is a public health concern, and the prevalence of poor SQ is increasing.
- Sleep-monitoring devices, including wearable and non-wearable sleep trackers (NWS), are gaining popularity because they are convenient and non-invasive.
- SQ can be objectively assessed according to sleep parameters using NWS that enables real-time and continuous sleep monitoring.
- This review provides an overview of physiological parameters (such as heart rate and respiratory rate) and sleep parameters (such as sleep efficiency) assessed using NWS in home-based and clinical care settings.
- Patients' SQ and health conditions (including in states of health deterioration or pain) could be assessed according to physiological and sleep parameters using NWS. However, sleep parameters representing SQ varied across studies.
- NWS may help caregivers in providing care that considers sleep-related factors.
- SQ assessments can be improved using NWS in home-based and clinical care settings. However, protocols and guidelines for assessing SQ using NWS need to be developed.
- Caregivers need to be competent in understanding various sleep parameters, interpreting visualized NWS data and translating these data to provide quality care.
CONFLICT OF INTEREST STATEMENT
The authors declare no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
Supporting Information
Filename | Description |
---|---|
ijn13240-sup-0001-Supporting Information.docxWord 2007 document , 16.2 KB |
Data S1. Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Akazawa, N., Kobayashi, N., Nakamura, Y., Kumagai, H., Choi, Y., & Maeda, S. (2019). Effect of sleep efficiency on salivary metabolite profile and cognitive function during exercise in volleyball athletes. European Journal of Applied Physiology, 119, 2215–2223. https://doi.org/10.1007/s00421-019-04205-7, PMID:31407087.
- Alessi, C. A., Schnelle, J. F., Traub, S., & Ouslander, J. G. (1995). Psychotropic medications in incontinent nursing home residents: Association with sleep and bed mobility. Journal of the American Geriatrics Society, 43, 788–792. https://doi.org/10.1111/j.1532-5415.1995.tb07052.x PMID:7602033
- American Academy of Sleep Medicine. (2014). International classification of sleep disorders ( 3rd ed.). American Academy of Sleep Medicine.
- Andrisani, G., & Andrisani, G. (2023). Sleep apnea pathophysiology. Sleep & Breathing. Advance online publication. https://doi.org/10.1007/s11325-023-02783-7, PMID:36976413.
- Aparício, C., & Panin, F. (2020). Interventions to improve inpatients' sleep quality in intensive care units and acute wards: A literature review. British Journal of Nursing (Mark Allen Publishing), 29, 770–776. https://doi.org/10.12968/bjon.2020.29.13.770, PMID:32649254.
- Au-Yeung, W. M., Miller, L., Beattie, Z., Dodge, H. H., Reynolds, C., Vahia, I., & Kaye, J. (2020). Sensing a problem: Proof of concept for characterizing and predicting agitation. Alzheimer's & Dementia: Translational Research & Clinical Interventions, 6, e12079. https://doi.org/10.1002/trc2.12079, PMID:32864417.
- Baron, K. G., Duffecy, J., Berendsen, M. A., Cheung Mason, I., Lattie, E. G., & Manalo, N. C. (2018). Feeling validated yet? A scoping review of the use of consumer-targeted wearable and mobile technology to measure and improve sleep. Sleep Medicine Reviews, 40, 151–159. https://doi.org/10.1016/j.smrv.2017.12.002, PMID:29395985.
- Bennett, M. K., Shao, M., & Gorodeski, E. Z. (2017). Home monitoring of heart failure patients at risk for hospital readmission using a novel under-the-mattress piezoelectric sensor: A preliminary single Centre experience. Journal of Telemedicine and Telecare, 23, 60–67. https://doi.org/10.1177/1357633X15618810, PMID:26670209.
- Bianchi, M. T. (2018). Sleep devices: Wearables and nearables, informational and interventional, consumer and clinical. Metabolism, Clinical and Experimental, 84, 99–108. https://doi.org/10.1016/j.metabol.2017.10.008, PMID:29080814.
- Breteler, M. J. M., KleinJan, E., Numan, L., Ruurda, J. P., Van Hillegersberg, R., Leenen, L. P. H., Hermans, M., Kalkman, C. J., & Blokhuis, T. J. (2020). Are current wireless monitoring systems capable of detecting adverse events in high-risk surgical patients? A descriptive study. Injury, 51(Suppl 2), S97–S105. https://doi.org/10.1016/j.injury.2019.11.018, PMID:31761422.
- Broers, E. R., Gavidia, G., Wetzels, M., Ribas, V., Ayoola, I., Piera-Jimenez, J., Widdershoven, J. W. M. G., Habibović, M., & the Do CHANGE consortium. (2020). Usefulness of a lifestyle intervention in patients with cardiovascular disease. The American Journal of Cardiology, 125, 370–375. https://doi.org/10.1016/j.amjcard.2019.10.041, PMID:31761149.
- Brown, H., Terrence, J., Vasquez, P., Bates, D. W., & Zimlichman, E. (2014). Continuous monitoring in an inpatient medical-surgical unit: A controlled clinical trial. The American Journal of Medicine, 127, 226–232. https://doi.org/10.1016/j.amjmed.2013.12.004, PMID:24342543.
- Chinoy, E. D., Cuellar, J. A., Huwa, K. E., Jameson, J. T., Watson, C. H., Bessman, S. C., Hirsch, D. A., Cooper, A. D., Drummond, S. P. A., & Markwald, R. R. (2021). Performance of seven consumer sleep-tracking devices compared with polysomnography. Sleep, 44, zsaa291. Advance online publication. https://doi.org/10.1093/sleep/zsaa291, PMID:33378539.
- Fukuda, C., Higami, Y., Shigenobu, K., Kanemoto, H., & Yamakawa, M. (2022). Using a non-wearable actigraphy in nursing care for dementia with lewy bodies. American Journal of Alzheimer's Disease and Other Dementias, 37, 15333175221082747. https://doi.org/10.1177/15333175221082747, PMID:35343815.
- Fukui, S., Ikuta, K., Maeda, I., Hattori, S., Hatano, Y., Yamakawa, M., Utsumi, M., Higami, Y., Tanaka, H., & Higuchi, A. (2022). Association between respiratory and heart rate fluctuations and death occurrence in dying cancer patients: Continuous measurement with a non-wearable monitor. Supportive Care in Cancer, 30, 77–86. https://doi.org/10.1007/s00520-021-06346-y, PMID:34232391.
- Fukui, S., Ohama, E., & Hattori, S. (2022). Environmental factors related to sleep latency among inpatients in rehabilitation wards according to functional independence measure cognitive scores. International Journal of Nursing Practice, 28, e12964. https://doi.org/10.1111/ijn.12964, PMID:33977600.
- Gottlieb, D. J., & Punjabi, N. M. (2020). Diagnosis and management of obstructive sleep apnea: A review. Jama, 323(14), 1389–1400. https://doi.org/10.1001/jama.2020.3514
- Grandner, M. A. (2022). Sleep, health, and society. Sleep Medicine Clinics, 17, 117–139. https://doi.org/10.1016/j.jsmc.2022.03.001, PMID:35659068.
- Green, S. F., Frame, T., Banerjee, L. V., Gimson, A., Blackman, J., Morrison, H., Lloyd, K., Rudd, S., Frederick Fotherby, W. G., Bartsch, U., Purcell, S., Jones, M., & Coulthard, L. (2022). A systematic review of the validity of non-invasive sleep-measuring devices in mid-to-late life adults: Future utility for Alzheimer's disease research. Sleep Medicine Reviews, 65, 101665. https://doi.org/10.1016/j.smrv.2022.101665, PMID:36208588.
- Haghayegh, S., Khoshnevis, S., Smolensky, M. H., Diller, K. R., & Castriotta, R. J. (2019). Accuracy of wristband Fitbit models in assessing sleep: Systematic review and meta-analysis. Journal of Medical Internet Research, 21(11), e16273. https://doi.org/10.2196/16273, PMID:31778122.
- Han, W. H., Sohn, D. K., Hwangbo, Y., Park, H. J., Kim, M., Choi, Y., Shin, I. W., Lee, J. M., Jeon, H., Ryu, K. C., Yoon, T., & Kim, J. H. (2022). Effect of a wireless vital sign monitoring system on the rapid response system in the general ward. Journal of Medical Systems, 46, 64. https://doi.org/10.1007/s10916-022-01846-8, PMID:36018468.
- Higami, Y., Higuchi, A., Tanaka, H., Moriki, Y., Utsumi, M., Yamakawa, M., Ito, Y., Hatano, Y., Maeda, I., & Fukui, S. (2022). Nonwearable actigraphy to assess changes in motor activity before and after rescue analgesia in terminally ill patients with cancer: A pilot study. International Journal of Nursing Practice, 28, e13019. https://doi.org/10.1111/ijn.13019, PMID:34651388.
- Hsiou, D. A., Gao, C., Matlock, R. C., & Scullin, M. K. (2022). Validation of a nonwearable device in healthy adults with normal and short sleep durations. Journal of Clinical Sleep Medicine, 18(3), 751–757. https://doi.org/10.5664/jcsm.9700, PMID:34608858.
- Hussain, Z., Sheng, Q. Z., Zhang, W. E., Ortiz, J., & Pouriyeh, S. A. (2022). Non-invasive techniques for monitoring different aspects of sleep: A comprehensive review. ACM Transactions on Computing for Healthcare, 3(2), 1–26. https://doi.org/10.1145/3491245
10.1145/3491245 Google Scholar
- Ikuta, K., Maeda, I., Hatano, Y., Mori, I., & Fukui, S. (2021). Feasibility and clinical usefulness of a novel nonwearable sheet-type monitor (Nemuri SCAN): Prognostic value of increased respiratory rate in actively dying patients. Journal of Palliative Medicine, 24, 1634–1640. https://doi.org/10.1089/jpm.2020.0508, PMID:33733880.
- Itoh, S., Tan, H. P., Kudo, K., & Ogata, Y. (2022). Comparison of the mental burden on nursing care providers with and without mat-type sleep state sensors at a nursing home in Tokyo, Japan: Quasi-experimental study. JMIR Aging, 5, e19641. https://doi.org/10.2196/19641, PMID:35319474.
- Jeon, C., Yan, D., Nakamura, M., Sekhon, S., Bhutani, T., Berger, T., & Liao, W. (2017). Frequency and management of sleep disturbance in adults with atopic dermatitis: A systematic review. Dermatology and Therapy, 7, 349–364. https://doi.org/10.1007/s13555-017-0192-3, PMID:28707054.
- Kapur, V. K., Auckley, D. H., Chowdhuri, S., Kuhlmann, D. C., Mehra, R., Ramar, K., & Harrod, C. G. (2017). Clinical practice guideline for diagnostic testing for adult obstructive sleep apnea: An American academy of sleep medicine clinical practice guideline. Journal of Clinical Sleep Medicine, 13(3), 479–504. https://doi.org/10.5664/jcsm.6506, PMID:28162150.
- Khater, W., Masha'al, D., & Al-Sayaheen, A. (2019). Sleep assessment and interventions for patients living with cancer from the patients' and nurses' perspective. International Journal of Palliative Nursing, 25, 316–324. https://doi.org/10.12968/ijpn.2019.25.7.316, PMID:31339821.
- Kholghi, M., Ellender, C. M., Zhang, Q., Gao, Y., Higgins, L., & Karunanithi, M. (2021). Home-based sleep sensor measurements in an older Australian population: Before and during a pandemic. Sensors (Basel), 21, 5993. https://doi.org/10.3390/s21185993, PMID:34577202.
- Ko, P. R., Kientz, J. A., Choe, E. K., Kay, M., Landis, C. A., & Watson, N. F. (2015). Consumer sleep technologies: A review of the landscape. Journal of Clinical Sleep Medicine, 11(12), 1455–1461. https://doi.org/10.5664/jcsm.5288, PMID:26156958.
- Kocevska, D., Lysen, T. S., Dotinga, A., Koopman-Verhoeff, M. E., Luijk, M. P. C. M., Antypa, N., Biermasz, N. R., Blokstra, A., Brug, J., Burk, W. J., Comijs, H. C., Corpeleijn, E., Dashti, H. S., de Bruin, E. J., de Graaf, R., Derks, I. P. M., Dewald-Kaufmann, J. F., Elders, P. J. M., Gemke, R. J. B. J., & Tiemeier, H. (2021). Sleep characteristics across the lifespan in 1.1 million people from the Netherlands, United Kingdom and United States: A systematic review and meta-analysis. Nature Human Behaviour, 5, 113–122. https://doi.org/10.1038/s41562-020-00965-x, PMID:33199855.
- Kogure, T., & Ebata, T. (2018). Activity during sleep measured by a sheet-shaped body vibrometer and the severity of atopic dermatitis in adults: A comparison with wrist actigraphy. Journal of Clinical Sleep Medicine, 14, 199–204. https://doi.org/10.5664/jcsm.6932, PMID:29351828.
- Kogure, T., Shirakawa, S., Shimokawa, M., & Hosokawa, Y. (2011). Automatic sleep/wake scoring from body motion in bed: Validation of a newly developed sensor placed under a mattress. Journal of Physiological Anthropology, 30(3), 103–109. https://doi.org/10.2114/jpa2.30.103, PMID:21636953.
- Lach, H. W., Lorenz, R. A., Palmer, J. L., Koedbangkham, J., & Noimontree, W. (2019). Home monitoring to track activity and sleep patterns among older adults: A feasibility study. Computers, Informatics, Nursing, Computers, Informatics, Nursing, 37, 628–637. https://doi.org/10.1097/CIN.0000000000000569, PMID:31524691.
- Lai, M. Y. C., Mong, M. S. A., Cheng, L. J., & Lau, Y. (2023). The effect of wearable-delivered sleep interventions on sleep outcomes among adults: A systematic review and meta-analysis of randomized controlled trials. Nursing & Health Sciences, 25(1), 44–62. https://doi.org/10.1111/nhs.13011, PMID:36572659.
- Lis, K., Sak-Dankosky, N., & Czarkowska-Pączek, B. (2022). Nurses' autonomy in sleep management improves patients' sleep quality: A cross-sectional study. Nursing in Critical Care, 27, 326–333. https://doi.org/10.1111/nicc.12579, PMID:33295120.
- Lujan, M. R., Perez-Pozuelo, I., & Grandner, M. A. (2021). Past, present, and future of multisensory wearable technology to monitor sleep and circadian rhythms. Frontiers in Digital Health, 3, 721919. https://doi.org/10.3389/fdgth.2021.721919, PMID:34713186.
- Mo, W., Yamakawa, M., Takahashi, S., Liu, X., Nobuhara, K., Kurakami, H., Takeya, Y., & Ikeda, M. (2023). Effect of sleep report feedback using information and communication technology combined with health guidance on improving sleep indicators in community-dwelling older people: A pilot trial. Psychogeriatrics. Advance online publication. https://doi.org/10.1111/psyg.12994, PMID:37312423.
- Mohedat, H., & Somayaji, D. (2023). Promoting sleep in hospitals: An integrative review of nurses' attitudes, knowledge and practices. Journal of Advanced Nursing, 79(8), 2815–2829. https://doi.org/10.1111/jan.15694, PMID:37151091.
- Murayama, R., Abe-Doi, M., Kogure, T., Takahashi, T., Kanno, C., Ishigaki, M., & Sanada, H. (2021). The influence of peripheral intravenous catheterization on the sleep quality of ophthalmic inpatients: An observational study. Journal of Nursing Science and Engineering, 8, 134–142. https://doi.org/10.24462/jnse.8.0_134
10.24462/jnse.8.0_134 Google Scholar
- Nonaka, T., Suto, S., Yamakawa, M., Shigenobu, K., & Makimoto, K. (2014). Quantitative evaluation of changes in the clock-watching behavior of a patient with semantic dementia. American Journal of Alzheimer's Disease and Other Dementias, 29, 540–547. https://doi.org/10.1177/1533317514523486, PMID:24650896.
- Obayashi, K., Kodate, N., & Masuyama, S. (2020). Can connected technologies improve sleep quality and safety of older adults and care-givers? An evaluation study of sleep monitors and communicative robots at a residential care home in Japan. Technology in Society, 62, 101318. https://doi.org/10.1016/j.techsoc.2020.101318
- Odachi, R., Yamakawa, M., Nakashima, K., Kajiwara, T., Takeshita, Y., Iwase, M., Tsukuda, J., & Ikeda, M. (2022). Feasibility study of comfort with and use of sleep visualisation data from non-wearable actigraphy among psychiatric unit staff. Psychogeriatrics, 22, 764–766. https://doi.org/10.1111/psyg.12859, PMID:35661345.
- Ohayon, M., Wickwire, E. M., Hirshkowitz, M., Albert, S. M., Avidan, A., Daly, F. J., Dauvilliers, Y., Ferri, R., Fung, C., Gozal, D., Hazen, N., Krystal, A., Lichstein, K., Mallampalli, M., Plazzi, G., Rawding, R., Scheer, F. A., Somers, V., & Vitiello, M. V. (2017). National Sleep Foundation's sleep quality recommendations: First report. Sleep Health, 3, 6–19. https://doi.org/10.1016/j.sleh.2016.11.006, PMID:28346153
- Peters, M. D. J., Marnie, C., Tricco, A. C., Pollock, D., Munn, Z., Alexander, L., McInerney, P., Godfrey, C. M., & Khalil, H. (2021). Updated methodological guidance for the conduct of scoping reviews. JBI Evidence Implementation, 19, 3–10. https://doi.org/10.1097/XEB.0000000000000277, PMID:33570328.
- Robbins, R., Seixas, A., Masters, L. W., Chanko, N., Diaby, F., Vieira, D., & Jean-Louis, G. (2019). Sleep tracking: A systematic review of the research using commercially available technology. Current Sleep Medicine Reports, 5(3), 156–163. https://doi.org/10.1007/s40675-019-00150-1, PMID:33134038.
- Sadek, I., Demarasse, A., & Mokhtari, M. (2020). Internet of things for sleep tracking: Wearables vs. nonwearables. Health and Technology, 10, 333–340. https://doi.org/10.1007/s12553-019-00318-3
- Sadek, I., & Mohktari, M. (2018). Nonintrusive remote monitoring of sleep in home-based situation. Journal of Medical Systems, 42, 64. https://doi.org/10.1007/s10916-018-0917-6, PMID:29497864.
- Saner, H., Schütz, N., Botros, A., Urwyler, P., Buluschek, P., du Pasquier, G., & Nef, T. (2020). Potential of ambient sensor systems for early detection of health problems in older adults. Frontiers in Cardiovascular Medicine, 7, 110. https://doi.org/10.3389/fcvm.2020.00110, PMID:32760739.
- Schütz, N., Saner, H., Botros, A., Pais, B., Santschi, V., Buluschek, P., Gatica-Perez, D., Urwyler, P., Müri, R. M., & Nef, T. (2021). Contactless sleep monitoring for early detection of health deteriorations in community-dwelling older adults: Exploratory study. JMIR mHealth and uHealth, 9, e24666. https://doi.org/10.2196/24666, PMID:34114966.
- Schwab, K. E., Ronish, B., Needham, D. M., To, A. Q., Martin, J. L., & Kamdar, B. B. (2018). Actigraphy to evaluate sleep in the intensive care unit. A systematic review. Annals of the American Thoracic Society, 15(9), 1075–1082. https://doi.org/10.1513/AnnalsATS.201801-004OC, PMID:29944386.
- Scott, H., Lack, L., & Lovato, N. (2020). A systematic review of the accuracy of sleep wearable devices for estimating sleep onset. Sleep Medicine Reviews, 49, 101227. https://doi.org/10.1016/j.smrv.2019.101227, PMID:31901524.
- Takeda, A., Watanuki, E., & Koyama, S. (2017). Effects of inhalation aromatherapy on symptoms of sleep disturbance in the elderly with dementia. Evidence-Based Complementary and Alternative Medicine: eCAM, 2017, 1902807. https://doi.org/10.1155/2017/1902807
- Tal, A., Shinar, Z., Shaki, D., Codish, S., & Goldbart, A. (2017). Validation of contact-free sleep monitoring device with comparison to polysomnography. Journal of Clinical Sleep Medicine, 13(3), 517–522. https://doi.org/10.5664/jcsm.6514, PMID:27998378.
- Tan, X., Alén, M., Wiklund, P., Partinen, M., & Cheng, S. (2016). Effects of aerobic exercise on home-based sleep among overweight and obese men with chronic insomnia symptoms: A randomized controlled trial. Sleep Medicine, 25, 113–121. https://doi.org/10.1016/j.sleep.2016.02.010, PMID:27823703.
- Tanaka, H., Fukui, S., Maeda, I., Hatano, Y., Higuchi, A., Higami, Y., Yamakawa, M., & Utsumi, M. (2021). The change over time of vital signs with consideration for opioid use in the last 2 weeks of life among cancer patients in a palliative care unit: Continuous measurement of vital signs using a non-wearable monitor. Cancer Medicine, 10(24), 8799–8807. https://doi.org/10.1002/cam4.4382, PMID:34845870.
- Tricco, A. C., Lillie, E., Zarin, W., O'Brien, K. K., Colquhoun, H., Levac, D., Moher, D., Peters, M. D. J., Horsley, T., Weeks, L., Hempel, S., Akl, E. A., Chang, C., McGowan, J., Stewart, L., Hartling, L., Aldcroft, A., Wilson, M. G., Garritty, C., … Straus, S. E. (2018). PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Annals of Internal Medicine, 169, 467–473. https://doi.org/10.7326/M18-0850, PMID:30178033.
- Wilfling, D., Berg, A., Dörner, J., Bartmann, N., Klatt, T., Meyer, G., Halek, M., Möhler, R., Köpke, S., & Dichter, M. N. (2023). Attitudes and knowledge of nurses working at night and sleep promotion in nursing home residents: Multicenter cross-sectional survey. BMC Geriatrics, 23(1), 206. https://doi.org/10.1186/s12877-023-03928-9, PMID:37003974.
- Yamakawa, M., Utsumi, M., Suto, S., Okumoto, M., Higuchi, A., & Fukui, S. (2020). Which factors affect sleep efficacy among long-term hospitalized older patients in rehabilitation ward? Continuous 14-day monitoring using non-wearable devices. SSRN. Advance online publication. https://doi.org/10.2139/ssrn.3566175
10.2139/ssrn.3566175 Google Scholar
- Yamakawa, M., Yoshida, Y., Higami, Y., Shigenobu, K., & Makimoto, K. (2014). Caring for early-onset dementia with excessive wandering of over 30 kilometres per day: A case report. Psychogeriatrics, 14, 255–260. https://doi.org/10.1111/psyg.12075, PMID:25369874.
- de Zambotti, M., Cellini, N., Goldstone, A., Colrain, I. M., & Baker, F. C. (2019). Wearable sleep technology in clinical and research settings. Medicine and Science in Sports and Exercise, 51(7), 1538–1557. https://doi.org/10.1249/MSS.0000000000001947, PMID:30789439.
- Zhai, H., Yan, Y., He, S., Zhao, P., & Zhang, B. (2023). Evaluation of the accuracy of contactless consumer sleep-tracking devices application in human experiment: A systematic review and meta-analysis. Sensors (Basel, Switzerland), 23(10), 4842. https://doi.org/10.3390/s23104842, PMID:37430756.
- Zhang, X., Wang, X., Le, S., Ojanen, X., Tan, X., Wiklund, P., & Cheng, S. (2020). Effects of exercise and dietary interventions on serum metabolites in men with insomnia symptoms: A 6-month randomized controlled trial. Sports Medicine and Health Science, 2, 95–101. https://doi.org/10.1016/j.smhs.2020.05.002, PMID:35784182.
- Zimlichman, E., Shinar, Z., Rozenblum, R., Levkovich, S., Skiano, S., Szyper-Kravitz, M., Altman, A., Amital, H., & Shoenfeld, Y. (2011). Using continuous motion monitoring technology to determine patient's risk for development of pressure ulcers. Journal of Patient Safety, 7, 181–184. https://doi.org/10.1097/PTS.0b013e318230e6ef, PMID:21926639.
- Zimlichman, E., Szyper-Kravitz, M., Shinar, Z., Klap, T., Levkovich, S., Unterman, A., Rozenblum, R., Rothschild, J. M., Amital, H., & Shoenfeld, Y. (2012). Early recognition of acutely deteriorating patients in non-intensive care units: Assessment of an innovative monitoring technology. Journal of Hospital Medicine, 7, 628–633. https://doi.org/10.1002/jhm.1963, PMID:22865462.