Species niches, not traits, determine abundance and occupancy patterns: A multi-site synthesis
Corresponding Author
Nicholas A. C. Marino
Departamento de Ecologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
Programa de Pós-Graduação em Ecologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
Correspondence
Nicholas A. C. Marino, Avenida Carlos Chagas Filho, 373, Sala A0-008, Bloco A, Sub-Solo, Laboratório de Limnologia, Departamento de Ecologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil, CEP 21941-599.
Email: [email protected]
Search for more papers by this authorRégis Céréghino
ECOLAB, Université de Toulouse, CNRS, Toulouse, France
Search for more papers by this authorBenjamin Gilbert
Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
Search for more papers by this authorJana S. Petermann
Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
Department of Biosciences, University of Salzburg, Salzburg, Austria
Search for more papers by this authorDiane S. Srivastava
Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
Search for more papers by this authorPaula M. de Omena
Laboratório de Interações Multitróficas e Biodiversidade, Departamento de Biologia Animal, Instutito de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
Search for more papers by this authorFabiola Ospina Bautista
Department of Biological Sciences, University of the Andes, Bogotá, Colombia
Departamento de Ciencias Biológicas, Universidad de Caldas, Caldas, Colombia
Search for more papers by this authorLaura Melissa Guzman
Department of Biosciences, University of Salzburg, Salzburg, Austria
Search for more papers by this authorGustavo Q. Romero
Laboratório de Interações Multitróficas e Biodiversidade, Departamento de Biologia Animal, Instutito de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
Search for more papers by this authorM. Kurtis Trzcinski
Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
Search for more papers by this authorIgnacio M. Barberis
Facultad de Ciencias Agrarias, Instituto de Investigaciones en Ciencias Agrarias de Rosario, Universidad Nacional de Rosario, Consejo de Investigaciones Científicas y Técnicas, Zavalla, Argentina
Search for more papers by this authorBruno Corbara
Laboratoire Microorganismes, Génome et Environnement, Université Clermont Auvergne, Aubière, France
Search for more papers by this authorVanderlei J. Debastiani
Departamento de Ecologia e Programa de Pós-Graduação em Ecologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
Search for more papers by this authorOlivier Dézerald
UMR ESE, Ecology and Ecosystem Health, INRA, Rennes, France
Search for more papers by this authorPavel Kratina
School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
Search for more papers by this authorCéline Leroy
AMAP, IRD, CIRAD, CNRS, INRA, Université de Montpellier, Montpellier, France
EcoFoG, AgroParisTech, CIRAD, CNRS, INRA, Université de Guyane, Université des Antilles, Kourou, France
Search for more papers by this authorArthur Andrew M. MacDonald
ECOLAB, Université de Toulouse, CNRS, Toulouse, France
Centre for the Synthesis and Analysis of Biodiversity (CESAB-FRB), Aix-en-Provence, France
Search for more papers by this authorGuillermo Montero
Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
Search for more papers by this authorValério D. Pillar
Departamento de Ecologia e Programa de Pós-Graduação em Ecologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
Search for more papers by this authorBarbara A. Richardson
Luquillo LTER, Institute for Tropical Ecosystem Studies, College of Natural Sciences, University of Puerto Rico at Rio Piedras, San Juan, Puerto Rico
Search for more papers by this authorMichael J. Richardson
Luquillo LTER, Institute for Tropical Ecosystem Studies, College of Natural Sciences, University of Puerto Rico at Rio Piedras, San Juan, Puerto Rico
Search for more papers by this authorStanislas Talaga
Unité d’Entomologie Médicale, Institut Pasteur de la Guyane, Cayenne, France
Search for more papers by this authorAna Z. Gonçalves
Departmento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
Search for more papers by this authorGustavo C. O. Piccoli
Departmento de Zoologia e Botânica, Universidade Estadual Paulista, São José do Rio Preto, São Paulo, SP, Brazil
Search for more papers by this authorMerlijn Jocqué
Aquatic and Terrestrial Ecology, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
Search for more papers by this authorVinicius F. Farjalla
Departamento de Ecologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
Search for more papers by this authorCorresponding Author
Nicholas A. C. Marino
Departamento de Ecologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
Programa de Pós-Graduação em Ecologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
Correspondence
Nicholas A. C. Marino, Avenida Carlos Chagas Filho, 373, Sala A0-008, Bloco A, Sub-Solo, Laboratório de Limnologia, Departamento de Ecologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil, CEP 21941-599.
Email: [email protected]
Search for more papers by this authorRégis Céréghino
ECOLAB, Université de Toulouse, CNRS, Toulouse, France
Search for more papers by this authorBenjamin Gilbert
Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
Search for more papers by this authorJana S. Petermann
Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
Department of Biosciences, University of Salzburg, Salzburg, Austria
Search for more papers by this authorDiane S. Srivastava
Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
Search for more papers by this authorPaula M. de Omena
Laboratório de Interações Multitróficas e Biodiversidade, Departamento de Biologia Animal, Instutito de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
Search for more papers by this authorFabiola Ospina Bautista
Department of Biological Sciences, University of the Andes, Bogotá, Colombia
Departamento de Ciencias Biológicas, Universidad de Caldas, Caldas, Colombia
Search for more papers by this authorLaura Melissa Guzman
Department of Biosciences, University of Salzburg, Salzburg, Austria
Search for more papers by this authorGustavo Q. Romero
Laboratório de Interações Multitróficas e Biodiversidade, Departamento de Biologia Animal, Instutito de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
Search for more papers by this authorM. Kurtis Trzcinski
Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
Search for more papers by this authorIgnacio M. Barberis
Facultad de Ciencias Agrarias, Instituto de Investigaciones en Ciencias Agrarias de Rosario, Universidad Nacional de Rosario, Consejo de Investigaciones Científicas y Técnicas, Zavalla, Argentina
Search for more papers by this authorBruno Corbara
Laboratoire Microorganismes, Génome et Environnement, Université Clermont Auvergne, Aubière, France
Search for more papers by this authorVanderlei J. Debastiani
Departamento de Ecologia e Programa de Pós-Graduação em Ecologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
Search for more papers by this authorOlivier Dézerald
UMR ESE, Ecology and Ecosystem Health, INRA, Rennes, France
Search for more papers by this authorPavel Kratina
School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
Search for more papers by this authorCéline Leroy
AMAP, IRD, CIRAD, CNRS, INRA, Université de Montpellier, Montpellier, France
EcoFoG, AgroParisTech, CIRAD, CNRS, INRA, Université de Guyane, Université des Antilles, Kourou, France
Search for more papers by this authorArthur Andrew M. MacDonald
ECOLAB, Université de Toulouse, CNRS, Toulouse, France
Centre for the Synthesis and Analysis of Biodiversity (CESAB-FRB), Aix-en-Provence, France
Search for more papers by this authorGuillermo Montero
Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
Search for more papers by this authorValério D. Pillar
Departamento de Ecologia e Programa de Pós-Graduação em Ecologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
Search for more papers by this authorBarbara A. Richardson
Luquillo LTER, Institute for Tropical Ecosystem Studies, College of Natural Sciences, University of Puerto Rico at Rio Piedras, San Juan, Puerto Rico
Search for more papers by this authorMichael J. Richardson
Luquillo LTER, Institute for Tropical Ecosystem Studies, College of Natural Sciences, University of Puerto Rico at Rio Piedras, San Juan, Puerto Rico
Search for more papers by this authorStanislas Talaga
Unité d’Entomologie Médicale, Institut Pasteur de la Guyane, Cayenne, France
Search for more papers by this authorAna Z. Gonçalves
Departmento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
Search for more papers by this authorGustavo C. O. Piccoli
Departmento de Zoologia e Botânica, Universidade Estadual Paulista, São José do Rio Preto, São Paulo, SP, Brazil
Search for more papers by this authorMerlijn Jocqué
Aquatic and Terrestrial Ecology, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
Search for more papers by this authorVinicius F. Farjalla
Departamento de Ecologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
Search for more papers by this authorAbstract
Aim
Locally abundant species are usually widespread, and this pattern has been related to properties of the niches and traits of species. However, such explanations fail to account for the potential of traits to determine species niches and often overlook statistical artefacts. Here, we examine how trait distinctiveness determines the abilities of species to exploit either common habitats (niche position) or a range of habitats (niche breadth) and how niche position and breadth, in turn, affect abundance and occupancy. We also examine how statistical artefacts moderate these relationships.
Location
Sixteen sites in the Neotropics.
Time period
1993–2014.
Major taxa studied
Aquatic invertebrates from tank bromeliads.
Methods
We measured the environmental niche position and breadth of each species and calculated its trait distinctiveness as the average trait difference from all other species at each site. Then, we used a combination of structural equation models and a meta-analytical approach to test trait–niche relationships and a null model to control for statistical artefacts.
Results
The trait distinctiveness of each species was unrelated to its niche properties, abundance and occupancy. In contrast, niche position was the main predictor of abundance and occupancy; species that used the most common environmental conditions found across bromeliads were locally abundant and widespread. Contributions of niche breadth to such patterns were attributable to statistical artefacts, indicating that effects of niche breadth might have been overestimated in previous studies.
Main conclusions
Our study reveals the generality of niche position in explaining one of the most common ecological patterns. The robustness of this result is underscored by the geographical extent of our study and our control of statistical artefacts. We call for a similar examination across other systems, which is an essential task to understand the drivers of commonness across the tree of life.
CONFLICT OF INTEREST
The authors declare no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
All the raw data we used in this manuscript are available in the R package fwdata. Instructions for downloading the package and data can be found at https://github.com/SrivastavaLab/fwdata. The processed data used to perform all analyses has been deposited at the Dryad Digital Repository, and can be accessed at https://doi.org/10.5061/dryad.4mw6m906g; any other query related to additional data should be submitted directly to the corresponding author.
Supporting Information
Filename | Description |
---|---|
geb13029-sup-0001-AppendixS1.docxWord document, 3.3 MB | |
geb13029-sup-0002-AppendixS2.xlsxapplication/excel, 11.3 KB | |
geb13029-sup-0003-AppendixS3.docxWord document, 22.2 KB |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Bernard-Verdier, M., Navas, M. L., Vellend, M., Violle, C., Fayolle, A., & Garnier, E. (2012). Community assembly along a soil depth gradient: Contrasting patterns of plant trait convergence and divergence in a Mediterranean rangeland. Journal of Ecology, 100, 1422–1433. https://doi.org/10.1111/1365-2745.12003
- Blackburn, T. M., Cassey, P., & Gaston, K. J. (2006). Variations on a theme: Sources of heterogeneity in the form of the interspecific relationship between abundance and distribution. Journal of Animal Ecology, 75, 1426–1439. https://doi.org/10.1111/j.1365-2656.2006.01167.x
- Borregaard, M. K., & Rahbek, C. (2010). Causality of the relationship between geographic distribution and species abundance. The Quarterly Review of Biology, 85, 3–25. https://doi.org/10.1086/650265
- Brown, J. H. (1984). On the relationship between abundance and distribution of species. The American Naturalist, 124, 255–279. https://doi.org/10.1086/284267
- Céréghino, R., Pillar, V. D., Srivastava, D. S., de Omena, P. M., MacDonald, A. A. M., Barberis, I. M., … Montero, G. (2018). Constraints on the functional trait space of aquatic invertebrates in bromeliads. Functional Ecology, 32, 2435–2447. https://doi.org/10.1111/1365-2435.13141
- Dallas, T., Decker, R. R., & Hastings, A. (2017). Species are not most abundant in the centre of their geographic range or climatic niche. Ecology Letters, 20, 1526–1533. https://doi.org/10.1111/ele.12860
- Dézerald, O., Céréghino, R., Corbara, B., Dejean, A., & Leroy, C. (2015). Functional trait responses of aquatic macroinvertebrates to simulated drought in a Neotropical bromeliad ecosystem. Freshwater Biology, 60, 1917–1929. https://doi.org/10.1111/fwb.12621
- Dézerald, O., Leroy, C., Corbara, B., Dejean, A., Talaga, S., & Céréghino, R. (2017). Environmental drivers of invertebrate population dynamics in Neotropical tank bromeliads. Freshwater Biology, 62, 229–242. https://doi.org/10.1111/fwb.12862
- Dézerald, O., Talaga, S., Leroy, C., Carrias, J.-F., Corbara, B., Dejean, A., & Céréghino, R. (2013). Environmental determinants of macroinvertebrate diversity in small water bodies: Insights from tank-bromeliads. Hydrobiologia, 723, 77–86. https://doi.org/10.1007/s10750-013-1464-2
- Dolédec, S., Chessel, D., & Gimaret-Carpentier, C. (2000). Niche separation in community analysis: A new method. Ecology, 81, 2914–2927. https://doi.org/10.1890/0012-9658(2000)081[2914:NSICAA]2.0.CO;2
- Dray, S., & Dufour, A.-B. (2007). The ade4 package: Implementing the duality diagram for ecologists. Journal of Statistical Software, 22, 1–20.
- Farjalla, V. F., Srivastava, D. S., Marino, N. A. C., Azevedo, F. D., Dib, V., Lopes, P. M., … Esteves, F. A. (2012). Ecological determinism increases with organism size. Ecology, 93, 1752–1759. https://doi.org/10.1890/11-1144.1
- Gaston, K. J., Blackburn, T. M., Greenwood, J. J. D., Gregory, R. D., Quinn, R. M., & Lawton, J. H. (2000). Abundance–occupancy relationships. Journal of Applied Ecology, 37, 39–59. https://doi.org/10.1046/j.1365-2664.2000.00485.x
- Grenié, M., Denelle, P., Tucker, C. M., Munoz, F., & Violle, C. (2017). funrar: An R package to characterize functional rarity. Diversity and Distributions, 23, 1365–1371. https://doi.org/10.1111/ddi.12629
- Gurevitch, J. (2013). Meta-analysis of results from multisite studies. In J. Koricheva, J. Gurevitch, & K. Mengersen (Eds.), Handbook of meta-analysis in ecology and evolution (pp. 313–320). Princeton, NJ: Princeton University Press.
10.1515/9781400846184-021 Google Scholar
- Hammill, E. D. D., Atwood, T. B., Corvalan, P., & Srivastava, D. S. (2015). Behavioural responses to predation may explain shifts in community structure. Freshwater Biology, 60, 125–135. https://doi.org/10.1111/fwb.12475
- Hanski, I. (1993). Three explanations of the positive relationship between distribution and abundance of species. In R. E. Ricklefs & D. Schluter (Eds.), Species diversity in ecological communities: Historical and geographical perspectives (pp. 108–116). Chicago, IL: University of Chicago Press.
- Heino, J., & Grönroos, M. (2014). Untangling the relationships among regional occupancy, species traits, and niche characteristics in stream invertebrates. Ecology and Evolution, 4, 1931–1942. https://doi.org/10.1002/ece3.1076
- Heino, J., & Tolonen, K. T. (2018). Ecological niche features override biological traits and taxonomic relatedness as predictors of occupancy and abundance in lake littoral macroinvertebrates. Ecography, 41, 2092–2103. https://doi.org/10.1111/ecog.03968
- Higgins, J. P. T. T., & Thompson, S. G. (2002). Quantifying heterogeneity in a meta-analysis. Statistics in Medicine, 21, 1539–1558. https://doi.org/10.1002/sim.1186
- Lavorel, S., & Garnier, E. (2002). Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Functional Ecology, 16, 545–556. https://doi.org/10.1046/j.1365-2435.2002.00664.x
- Lefcheck, J. S. (2016). piecewiseSEM: Piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods in Ecology and Evolution, 7, 573–579.
- Legendre, P., & Gallagher, E. D. (2001). Ecologically meaningful transformations for ordination of species data. Oecologia, 129, 271–280. https://doi.org/10.1007/s004420100716
- Loughnan, D., & Gilbert, B. (2017). Trait-mediated community assembly: Distinguishing the signatures of biotic and abiotic filters. Oikos, 126, 1112–1122. https://doi.org/10.1111/oik.03945
- Marino, N. A. C., Srivastava, D. S., & Farjalla, V. F. (2013). Aquatic macroinvertebrate community composition in tank-bromeliads is determined by bromeliad species and its constrained characteristics. Insect Conservation and Diversity, 6, 372–380. https://doi.org/10.1111/j.1752-4598.2012.00224.x
- Marino, N. A. C., Srivastava, D. S., & Farjalla, V. F. (2016). Predator kairomones change food web structure and function, regardless of cues from consumed prey. Oikos, 125, 1017–1026. https://doi.org/10.1111/oik.02664
- Marino, N. A. C., Srivastava, D. S., MacDonald, A. A. M., Leal, J. S., Campos, A. B. A., & Farjalla, V. F. (2017). Rainfall and hydrological stability alter the impact of top predators on food web structure and function. Global Change Biology, 23, 673–685. https://doi.org/10.1111/gcb.13399
- Marks, C. O., & Lechowicz, M. J. (2006). Alternative designs and the evolution of functional diversity. The American Naturalist, 167, 55–66. https://doi.org/10.1086/498276
- Martinez-Meyer, E., Diaz-Porras, D., Peterson, A. T., & Yanez-Arenas, C. (2013). Ecological niche structure and rangewide abundance patterns of species. Biology Letters, 9, 20120637. https://doi.org/10.1098/rsbl.2012.0637
- McGill, B. J., Enquist, B. J., Weiher, E., & Westoby, M. (2006). Rebuilding community ecology from functional traits. Trends in Ecology and Evolution, 21, 178–185. https://doi.org/10.1016/j.tree.2006.02.002
- Merritt, R. W., & Cummins, K. W. (1996). An introduction to the aquatic insects of North America ( 3rd ed.). Dubuque, IA: Kendall/Hunt Publishing Company.
- Petermann, J. S., Farjalla, V. F., Jocque, M., Kratina, P., MacDonald, A. A. M., Marino, N. A. C., … Srivastava, D. S. (2015). Dominant predators mediate the impact of habitat size on trophic structure in bromeliad invertebrate communities. Ecology, 96, 428–439. https://doi.org/10.1890/14-0304.1
- Pilière, A. F. H., Verberk, W. C. E. P., Gräwe, M., Breure, A. M., Dyer, S. D., Posthuma, L., … Schipper, A. M. (2016). On the importance of trait interrelationships for understanding environmental responses of stream macroinvertebrates. Freshwater Biology, 61, 181–194. https://doi.org/10.1111/fwb.12690
- Poff, N. L., Olden, J. D., Vieira, N. K. M., Finn, D. S., Simmons, M. P., & Kondratieff, B. C. (2006). Functional trait niches of North American lotic insects: Traits-based ecological applications in light of phylogenetic relationships. Journal of the North American Benthological Society, 25, 730–755. https://doi.org/10.1899/0887-3593(2006)025[0730:FTNONA]2.0.CO;2
- Poisot, T., Stouffer, D. B., & Gravel, D. (2015). Beyond species: Why ecological interaction networks vary through space and time. Oikos, 124, 243–251. https://doi.org/10.1111/oik.01719
- R Development Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
- Richardson, B. A. (1999). The bromeliad microcosm and the assessment of faunal diversity in a Neotropical forest. Biotropica, 31, 321–336.
- Rocha, M. P., Bini, L. M., Siqueira, T., Hjort, J., Grönroos, M., Lindholm, M., … Heino, J. (2018). Predicting occupancy and abundance by niche position, niche breadth and body size in stream organisms. Oecologia, 186, 205–216. https://doi.org/10.1007/s00442-017-3988-z
- Rosenberg, M. S., Rothstein, H. S., & Gurevitch, J. (2013). Effect sizes: Conventional choices and calculations. In J. Koricheva, J. Gurevitch, & K. Mengersen (Eds.), Handbook of meta-analysis in ecology and evolution (pp. 61–71). Princeton, NJ: Princeton University Press.
10.23943/princeton/9780691137285.003.0006 Google Scholar
- Saito, V. S., Laroche, F., Siqueira, T., & Pavoine, S. (2018). Ecological versatility and the assembly of multiple competitors: Cautionary notes for assembly inferences. Ecology, 99, 1173–1183. https://doi.org/10.1002/ecy.2197
- Shipley, B. (2000). A new inferential test for path models based on directed acyclic graphs. Structural Equation Modeling: A Multidisciplinary Journal, 7, 206–218. https://doi.org/10.1207/S15328007SEM0702_4
- Siqueira, T., Bini, L. M., Cianciaruso, M. V., Roque, F. O., & Trivinho-Strixino, S. (2009). The role of niche measures in explaining the abundance–distribution relationship in tropical lotic chironomids. Hydrobiologia, 636, 163–172. https://doi.org/10.1007/s10750-009-9945-z
- Slatyer, R. A., Hirst, M., & Sexton, J. P. (2013). Niche breadth predicts geographical range size: A general ecological pattern. Ecology Letters, 16, 1104–1114. https://doi.org/10.1111/ele.12140
- Srivastava, D. S., Kolasa, J., Bengtsson, J., Gonzalez, A., Lawler, S. P., Miller, T. E., … Trzcinski, M. K. (2004). Are natural microcosms useful model systems for ecology? Trends in Ecology and Evolution, 19, 379–384. https://doi.org/10.1016/j.tree.2004.04.010
- Starzomski, B. M., Suen, D., & Srivastava, D. S. (2010). Predation and facilitation determine chironomid emergence in a bromeliad-insect food web. Ecological Entomology, 35, 53–60. https://doi.org/10.1111/j.1365-2311.2009.01155.x
- Tales, E., Keith, P., & Oberdorff, T. (2004). Density-range size relationships in French riverine fishes. Oecologia, 138, 360–370. https://doi.org/10.1007/s00442-003-1430-1
- Tomanova, S., & Usseglio-Polatera, P. (2007). Patterns of benthic community traits in Neotropical streams: Relationship to mesoscale spatial variability. Fundamental and Applied Limnology, 170, 243–255. https://doi.org/10.1127/1863-9135/2007/0170-0243
- Ulrich, W., & Gotelli, N. J. (2010). Null model analysis of species associations using abundance data. Ecology, 91, 3384–3397. https://doi.org/10.1890/09-2157.1
- Usseglio-Polatera, P., Bournaud, M., Richoux, P., & Tachet, H. (2000). Biological and ecological traits of benthic freshwater macroinvertebrates: Relationships and definition of groups with similar traits. Freshwater Biology, 43, 175–205. https://doi.org/10.1046/j.1365-2427.2000.00535.x
- Venier, L. A., & Fahrig, L. (1996). Habitat availability causes the species abundance–distribution relationship. Oikos, 76, 564–570. https://doi.org/10.2307/3546349
- Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 36, 1–48.
- Weber, M. M., Stevens, R. D., Diniz-Filho, J. A. F., & Grelle, C. E. V. (2017). Is there a correlation between abundance and environmental suitability derived from ecological niche modelling? A meta-analysis. Ecography, 40, 817–828. https://doi.org/10.1111/ecog.02125
- Winemiller, K. O., Fitzgerald, D. B., Bower, L. M., & Pianka, E. R. (2015). Functional traits, convergent evolution, and periodic tables of niches. Ecology Letters, 18, 737–751. https://doi.org/10.1111/ele.12462
- Yañez-Arenas, C., Martínez-Meyer, E., Mandujano, S., & Rojas-Soto, O. (2012). Modelling geographic patterns of population density of the white-tailed deer in central Mexico by implementing ecological niche theory. Oikos, 121, 2081–2089. https://doi.org/10.1111/j.1600-0706.2012.20350.x