Using existing landscape data to assess the ecological potential of Miscanthus cultivation in a marginal landscape
Corresponding Author
Sarah Harvolk
Division of Landscape Ecology and Landscape Planning, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
Correspondence: Sarah Harvolk, tel. +49 641 9937172, fax +49 641 9937169, e-mail: [email protected]Search for more papers by this authorPeter Kornatz
Institute for Business Operations in Agriculture and Food Industry, Justus-Liebig-University Giessen, Senckenbergstrasse 3, D-35390 Giessen, Germany
Search for more papers by this authorAnnette Otte
Division of Landscape Ecology and Landscape Planning, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
Search for more papers by this authorDietmar Simmering
Division of Landscape Ecology and Landscape Planning, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
Search for more papers by this authorCorresponding Author
Sarah Harvolk
Division of Landscape Ecology and Landscape Planning, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
Correspondence: Sarah Harvolk, tel. +49 641 9937172, fax +49 641 9937169, e-mail: [email protected]Search for more papers by this authorPeter Kornatz
Institute for Business Operations in Agriculture and Food Industry, Justus-Liebig-University Giessen, Senckenbergstrasse 3, D-35390 Giessen, Germany
Search for more papers by this authorAnnette Otte
Division of Landscape Ecology and Landscape Planning, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
Search for more papers by this authorDietmar Simmering
Division of Landscape Ecology and Landscape Planning, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
Search for more papers by this authorAbstract
Marginal landscapes often feature high biodiversity that is threatened by either intensification or land abandonment. This is particularly the case in mountainous regions with diverse environmental conditions and a mosaic of land use. Frequently, the use of marginal or set-aside farmland for biofuel crops is proposed to meet the increasing demand for biofuels, but avoid conflicts with food production. Potential ecological effects of enhanced bioenergy production in diverse landscapes are, however, still controversial, and a proper assessment requires the consideration of local and regional specifics. We used a yield prediction model to determine the potential yield of Miscanthus on individual fields in a small municipality. Widely available spatial data, conclusions drawn from literature, and local landscape planning data were used to assess the potential ecological effects of Miscanthus cultivation. The specific landscape planning data for the study area provided detailed information on conservation values and land-use-related functional deficits. All information was used to classify each field by suitability for Miscanthus production, considering biodiversity, soil erosion, and landscape structure. A subsequent field-level and landscape-level evaluation of the potential Miscanthus yields in the suitability classes revealed that overall yield would not be reduced if ecological restrictions were considered and only ‘suitable’ or ‘recommended’ fields were selected for Miscanthus cultivation. Instead of defining one threshold value for an ‘optimal’ amount of Miscanthus in a landscape, we developed different scenarios for increasing amounts of Miscanthus. Our scenario maps and recommendations can be used in regional planning processes as the basis for discussions with stakeholders. The methods applied in our case study combine economic and ecological approaches, are based on existing data and methods, and allow effective evaluation of the sustainable landscape potential of an energy crop at a scale relevant for biodiversity conservation and landscape planning.
References
- Bellamy PE, Croxton PJ, Heard MS et al. (2009) The impact of growing Miscanthus for biomass on farmland bird populations. Biomass and Bioenergy, 33, 191–199.
- Beringer T, Lucht W, Schaphoff S (2011) Bioenergy production potential of global biomass plantations under environmental and agricultural constraints. Global Change Biology Bioenergy, 3, 299–312.
- BMELV & BMU (2010) Nationaler Biomasseaktionsplan für Deutschland. German Federal Ministry of Nutrition, Agriculture and Consumer Protection (BMELV) & German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), Berlin.
- BNatschG (2009) Gesetz über Naturschutz und Landschaftspflege (German Federal Nature Conservation Act). Bundesgesetzblatt, 1, 2542–2579.
- Boelcke B, Beuch S, Zacharias S, Kahle P, Belau L, Amelung D (1998) Bewertung der Umweltwirkung des Anbaus von Miscanthus als nachwachsender Rohstoff. Bericht zum Forschungsprojekt. Mitteilungen der Landesforschungsanstalt für Landwirtschaft und Fischerei Mecklenburg-Vorpommern, 16. (ed. Landesforschungsanstalt für Landwirtschaft und Fischerei Mecklenburg-Vorpommern), Gülzow.
- Christian DG, Riche AB (1998) Nitrate leaching losses under Miscanthus grass planted on a silty clay loam soil. Soil Use and Management, 14, 131–135.
- Cohen A (2012) Rescaling environmental governance: watersheds as boundary objects at the intersection of science, neoliberalism, and participation. Environment and Planning A, 44, 2207–2224.
- Cook J, Beyea J (2000) Bioenergy in the United States: progress and possibilities. Biomass and Bioenergy, 18, 441–455.
- Cornelsen J (2012) Online-Energieausweis. Statistiken zum Verbrauchsausweis. Hamburg [online]. Available at: http://www.online-energieausweis.org/energieausweis-bedarfsausweis-wohngebaeude-statistiken.htm (accessed 10 October 2012).
- CSIRO Land and Water (2006) ASRIS Australian Soil Resource Information System. Canberra [online]. Available at: http://www.asris.csiro.au/index_other.html (accessed 22 March 2013).
- Danhardt J, Green M, Lindstrom A, Rundlof M, Smith HG (2010) Farmland as stopover habitat for migrating birds - effects of organic farming and landscape structure. Oikos, 119, 1114–1125.
- Dauber J, Jones MB, Stout JC (2010) The impact of biomass crop cultivation on temperate biodiversity. Global Change Biology Bioenergy, 2, 289–309.
- Davis SC, House JI, Diaz-Chavez RA, Molnar A, Valin H, Delucia EH (2011) How can land-use modelling tools inform bioenergy policies? Interface Focus, 1, 212–223.
- De Longueville F, Tychon B, Leteinturier B, Ozer P (2007) An approach to optimise the establishment of grassy headlands in the Belgian Walloon region: a tool for agri-environmental schemes. Land Use Policy, 24, 443–450.
- Donnelly A, Styles D, Fitzgerald J, Finnan J (2011) A proposed framework for determining the environmental impact of replacing agricultural grassland with Miscanthus in Ireland. Global Change Biology Bioenergy, 3, 247–263.
- Dornburg V, Van Vuuren D, Van De Ven G et al. (2010) Bioenergy revisited: key factors in global potentials of bioenergy. Energy & Environmental Science, 3, 258–267.
- EC (2012) Integrated Administration and Control System (IACS). European Commission, Bruxelles, Belgium.
- EUBIA (2007) Biomass Resources and Production Potential. European Biomass Industry Association, Bruxelles, Belgium.
- FAO (1999) CGIAR Research priorities for marginal lands. Consultative Group on International Agricultural Research (CGIAR) [online]. Available at: http://www.fao.org/Wairdocs/TAC/X5784E/x5784e00.htm#Contents (accessed 17 January 2013).
- FAO (2006) World reference base for soil resources 2006. A framework for international classification, correlation and communication. World Soil Resources Reports, 103, FAO, Rome.
- Felten D, Emmerling C (2011) Effects of bioenergy crop cultivation on earthworm communities-A comparative study of perennial (Miscanthus) and annual crops with consideration of graded land-use intensity. Applied Soil Ecology, 49, 167–177.
- Fernando AL, Duarte MP, Almeida J, Boléo S, Mendes B (2010) Environmental impact assessment of energy crops cultivation in Europe. Biofuels, Bioprod. Bioref, 4, 594–604.
- Fiorese G, Guariso G (2010) A GIS-based approach to evaluate biomass potential from energy crops at regional scale. Environmental Modelling & Software, 25, 702–711.
- Firbank LG (2008) Assessing the ecological impacts of bioenergy projects. Bioenergy Research, 1, 12–19.
- Gauder M, Graeff-Honninger S, Lewandowski I, Claupein W (2012) Long-term yield and performance of 15 different Miscanthus genotypes in southwest Germany. Annals of Applied Biology, 160, 126–136.
- Gevers J, Hoye TT, Topping CJ, Glemnitz M, Schroder B (2011) Biodiversity and the mitigation of climate change through bioenergy: impacts of increased maize cultivation on farmland wildlife. Global Change Biology Bioenergy, 3, 472–482.
- Greef JM, Deuter M (1993) Syntaxonomy of Miscanthus × giganteus GREEF et DEU. Journal of Applied Botany and Food Quality/Angewandte Botanik, 67, 87–90.
- Gruehn D (2006) Landscape planning as a tool for sustainable development of the territory - German Methodology and Experience. In: Environmental Security and Sustainable Land Use - With Special Reference to Central Asia (eds H Vogtmann, N Dobretsov), pp. 297–307. Springer, Dordrecht.
- Guo D, Wang H (2011) Automatic region building for spatial analysis. Transactions in GIS, 15, 29–45.
- Han W, Yang Z, Di L, Mueller R (2012) CropScape: a web service based application for exploring and disseminating US conterminous geospatial cropland data products for decision support. Computers and Electronics in Agriculture, 84, 111–123.
- Hastings A, Clifton-Brown J, Wattenbach M, Stampfl P, Mitchell CP, Smith P (2008) Potential of Miscanthus grasses to provide energy and hence reduce greenhouse gas emissions. Agronomy for Sustainable Development, 28, 465–472.
- Hastings A, Clifton-Brown J, Wattenbach M, Mitchell P, Smith P (2009a) The development of MISCANFOR, a new Miscanthus crop growth model: towards more robust yield predictions under different climatic and soil conditions. Global Change Biology Bioenergy, 1, 154–170.
- Hastings A, Clifton-Brown J, Wattenbach M, Mitchell P, Stampfl P, Smith P (2009b) Future energy potential of Miscanthus in Europe. Global Change Biology Bioenergy, 1, 180–196.
- Haughton AJ, Bond AJ, Lovett AA et al. (2009) A novel, integrated approach to assessing social, economic and environmental implications of changing rural land use: a case study of perennial biomass crops. Journal of Applied Ecology, 46, 315–322.
- Heaton EA, Dohleman FG, Miguez AF et al. (2010) Miscanthus: a promising biomass crop. Advances in Botanical Research, 56, 75–137.
- Hennenberg KJ, Dragisic C, Haye S et al. (2010) The power of bioenergy-related standards to protect biodiversity. Conservation Biology, 24, 412–423.
- Hensgen F, Richter F, Wachendorf M (2011) Integrated generation of solid fuel and biogas from green cut material from landscape conservation and private households. Bioresource Technology, 102, 10441–10450.
- Hessische Staatskanzlei (2010) Verordnung zur Einteilung landwirtschaftlicher Flächen nach dem Grad der Erosionsgefährdung. Gesetz- und Verordnungsblatt für das Land Hessen, 16, 300–303. Hessian State Agency.
- Hessisches Statistisches Landesamt (2012). Hessische Gemeindestatistik (Hessian State Office of Statistics), Wiesbaden.
- HLUG (2002) Soil Map of Hesse 1:50 000. Hessian State Office for Environment and Geology (HLUG), Wiesbaden.
- HLUG (2012a) Cross Compliance - Kulisse Erosionsgefährdungsklassen. Hessian State Office for Environment and Geology (HLUG), Wiesbaden.
- HLUG (2012b) Umweltatlas Hessen. Environmental Atlas Hesse [Online]. Hessian State Office for Environment and Geology (HLUG), Wiesbaden. Available at: http://atlas.umwelt.hessen.de/atlas/ (accessed 5 February 2013).
- Hood GM (2011) PopTools Version 3.2.5 [online]. Available at: http://www.poptools.org/ (accessed 23 March 2013).
- Howarth RW, Bringezu S, Bekunda M, de Fraiture C, Maene L, Martinelli L, Sala O (2009) Rapid assessment on biofuels and environment: overview and key findings. In: Biofuels: Environmental Consequences and Interactions with Changing Land Use (eds RW Howarth, S Bringezu), pp. 1–13. Cornell University, Ithaca, NY, USA. Proceedings of the Scientific Committee on Problems of the Environment (SCOPE) International Biofuels Project Rapid Assessment, 22–25 September 2008, Gummersbach, Germany. Available at: http://cip.cornell.edu/biofuels/ (accessed 22 March 2013).
- Hughes JK, Lloyd AJ, Huntingford C, Finch JW, Harding RJ (2010) The impact of extensive planting of Miscanthus as an energy crop on future CO2 atmospheric concentrations. Global Change Biology Bioenergy, 2, 79–88.
- Jodl S, Eppel-Hotz A, Kuhn W (2004) Miscanthus als nachwachsender Rohstoff. Veitshöcheimer Berichte, 77, 1–34.
- Jörgensen K (2012) Governance for Sustainable Development in the German Bundesländer. In: Sustainable Development and Subnational Governments. Policy-Making and Multi-Level Interactions (eds H Bruyninckx, S Happaerts, K Ven Den Brande), pp. 103–119. Houndmills, Palgrave Macmillan.
- Kahle P, Beuch S, Boelcke B, Leinweber P, Schulten HR (2001) Cropping of Miscanthus in Central Europe: biomass production and influence on nutrients and soil organic matter. European Journal of Agronomy, 15, 171–184.
- Kaplowitz MD, Lupi F (2012) Stakeholder preferences for best management practices for non-point source pollution and stormwater control. Landscape and Urban Planning, 104, 364–372.
- Kayser M, Seidel K, Mueller J, Isselstein J (2008) The effect of succeeding crop and level of N fertilization on N leaching after break-up of grassland. European Journal of Agronomy, 29, 200–207.
- Khalsa J, Fricke T, Weisser WW, Weigelt A, Wachendorf M (2012) Effects of functional groups and species richness on biomass constituents relevant for combustion: results from a grassland diversity experiment. Grass and Forage Science, 67, 569–588. In Press.
- Liu W, Yan J, Li J, Sang T (2012) Yield potential of Miscanthus energy crops in the Loess Plateau of China. Global Change Biology Bioenergy, 4, 545–554.
- Lovett AA, Sunnenberg GM, Richter GM, Dailey AG, Riche AB, Karp A (2009) Land use implications of increased biomass production identified by GIS-based suitability and yield mapping for Miscanthus in England. Bioenergy Research, 2, 17–28.
- Malisauskas A, Haneklaus S, Sileika AS (2005) Nitrogen leaching from grassland in Lithuania. Landbauforschung Volkenrode, 55, 71–78.
- Manly BFJ (2001) Randomization, Bootstrap and Monte Carlo Methods in Biology. Chapman & Hall, London.
- Maughan M, Bollero G, Lee DK et al. (2012) Miscanthus × giganteus productivity: the effects of management in different environments. GCB Bioenergy, 4, 253–265.
- Meeus JHA (1995) Pan-European landscapes. Landscape and Urban Planning, 31, 57–79.
- Muecher CA, Klijn JA, Wascher DM, Schaminee JHJ (2010) A new European landscape classification (LANMAP): a transparent, flexible and user-oriented methodology to distinguish landscapes. Ecological Indicators, 10, 87–103.
- Müller-Sämann KM, Reinhardt G, Vetter R, Gärtner S (2003) Nachwachsende Rohstoffe in Baden- Württemberg: Identifizierung vorteilhafter Produktlinien zur stofflichen Nutzung unter besonderer Berücksichtigung umweltgerechter Anbauverfahren. Forschungsbericht FZKA-BWPLUS, Forschungszentrum Karlsruhe, Land Baden- Württemberg.
- Nassauer JI, Corry RC (2004) Using normative scenarios in landscape ecology. Landscape Ecology, 19, 343–356.
- Ng TL, Eheart JW, Cai XM, Braden JB (2011) An agent-based model of farmer decision-making and water quality impacts at the watershed scale under markets for carbon allowances and a second-generation biofuel crop. Water Resources Research, 47.
- Nitsch H, Osterburg B, Roggendorf W, Laggner B (2012) Cross compliance and the protection of grassland - illustrative analyses of land use transitions between permanent grassland and arable land in German regions. Land Use Policy, 29, 440–448.
- NJDEP (2012) New Jersey's Landscape Project. Wildlife habitat mapping for community land-use planning and species conservation. New Jersey Department of Environmental Protection, Division of Fish & Wildlife [online]. Available at: http://www.state.nj.us/dep/fgw/ensp/landscape/index.htm (accessed 22 March 2013).
- Osterburg B, Nitsch H, Laggner B, Roggendorf W (2009) Auswertung von Daten des Integrierten Verwaltungs- und Kontrollsystems zur Abschätzung von Wirkungen der Agrarreform auf Umwelt und Landschaft. Braunschweig, Institut für Ländliche Räume (Institute of Rural Studies).
- Panagos P, Jones A, Bosco C, Senthil Kumar PS (2011) European digital archive on soil maps (EuDASM): preserving important soil data for public free access. International Journal of Digital Earth, 4, 434–443.
- Pfeiffenberger M, Fock T (2012) Risikopotenziale landwirtschaftlicher Nutzung für den Naturschutz erfassen und bewerten. Naturschutz und Landschaftsplanung, 44, 83–89.
- Pogson M (2011) Modelling Miscanthus yields with low resolution input data. Ecological Modelling, 222, 3849–3853.
- Preetz H (2003) Bewertung von Bodenfunktionen für die praktische Umsetzung des Bodenschutzes (Dargestellt am Beispiel eines Untersuchungsgebiets in Sachsen-Anhalt). Martin-Luther-University Halle-Wittenberg, Halle (Saale), Dissertation.
- Reger B, Sheridan P, Simmering D, Otte A, Waldhardt R (2009) Potential effects of direct transfer payments on farmland habitat diversity in a marginal European landscape. Environmental Management, 43, 1026–1038.
- Robertson BA, Porter C, Landis DA, Schemske DW (2012) Agroenergy crops influence the diversity, biomass, and guild structure of terrestrial arthropod communities. Bioenergy Research, 5, 179–188.
- Rösch C, Raab K, Skarka J, Stelzer V (2007) Energy from grassland - a sustainable development? Wissenschaftliche Berichte FZKA, 7333.
- Santelmann MV, White D, Freemark K et al. (2004) Assessing alternative futures for agriculture in Iowa, USA. Landscape Ecology, 19, 357–374.
- Sauer S, Miller R, Vorderbrügge T (2003) Bodenfunktionsbezogene Auswertung von Bodenschätzungsdaten für Hessen und Rheinland-Pfalz - Methodenentwicklung. DGB-Mitteilungen, 102, 557–558.
- Schröder R, Wascher D, Odell S, Smith C (2010) Comparing landscape planning in England, Germany and the Netherlands - Policy contexts and three case study plans. Alterra-report 2040, Wageningen [online]. Available at: http://www.catpaisatge.net/docs/landscape%20planning.pdf (accessed 22 March 2013).
- Schwarz K-U, Greef M, Schnug E (1995) Untersuchungen zur Etablierung und Biomassebildung von Miscanthus giganteus unter verschiedenen Umweltbedingungen. Wissenschaftliche Mitteilungen der Bundesforschungsanstalt für Landwirtschaft Braunschweig-Völkenrode (FAL), Braunschweig, Institute of Plant Nutrition and Soil Science of the Federal Agricultural Research Centre Braunschweig-Völkenrode (FAL), Braunschweig.
- Sheridan P (2010) Das Landnutzungsmodell ProLand - Erweiterungen, Operationalisierungen. Inaugural Dissertation, Justus-Liebig-University, Giessen, Anwendungen.
- Sheridan P, Waldhardt R (2006) Spatially explicit approaches in integrated land use and phytodiversity modelling at multiple scales. In: Sustainable Land Use in Intensively Used Agricultural Regions. Landscape Europe (ed. BC Meyer), pp. 68–72. Alterra, Wageningen. Alterra Report No. 1338.
- Simmering D, Waldhardt R, Otte A (2006) Quantifying determinants contributing to plant species richness in mosaic landscapes: a single- and multi-patch perspective. Landscape Ecology, 21, 1233–1251.
- Stampfl PF, Clifton-Brown JC, Jones MB (2007) European-wide GIS-based modelling system for quantifying the feedstock from Miscanthus and the potential contribution to renewable energy targets. Global Change Biology, 13, 2283–2295.
- Steubing B, Zah R, Waeger P, Ludwig C (2010) Bioenergy in Switzerland: assessing the domestic sustainable biomass potential. Renewable & Sustainable Energy Reviews, 14, 2256–2265.
- Thomas ARC, Bond AJ, Hiscock KM (2012) A Multi-Criteria Based Review of Models That Predict Environmental Impacts of Land use-Change for Perennial Energy Crops on Water, Carbon and Nitrogen Cycling. Global Change Biology Bioenergy, Early View.
- US Forest Service (2013) LANDFIRE Landscape Fire and Resource Management Planning Tools [online]. Available at: http://www.landfire.gov/index.php (accessed 22 March 2013).
- Verburg PH, Schulp CJE, Witte N, Veldkamp A (2006) Downscaling of land use change scenarios to assess the dynamics of European landscapes. Agriculture Ecosystems & Environment, 114, 39–56.
- Waldhardt R, Simmering D, Otte A (2004) Estimation and prediction of plant species richness in a mosaic landscape. Landscape Ecology, 19, 211–226.
- Waldhardt R, Bach M, Borresch R et al. (2010) Evaluating today's landscape multifunctionality and providing an alternative future: a normative scenario approach. Ecology and Society, 15.
- Wellstein C, Otte A, Waldhardt R (2007) Impact of site and management on the diversity of central European mesic grassland. Agriculture, Ecosystems & Environment, 122, 203–210.
- Wiehe J, Von Ruschkowski E, Rode M, Kanning H, Von Haaren C (2009) Effects of the cultivation of energy plants on the landscape – the example of maize production for biomethanation in Lower Saxony. Naturschutz und Landschaftsplanung, 41, 107–113.
- Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses - a guide to conservation planning. Agriculture Handbook, 537 (ed. US Department of Agriculture).
- Wu YP, Liu SG (2012) Impacts of biofuels production alternatives on water quantity and quality in the Iowa River Basin. Biomass and Bioenergy, 36, 182–191.
- You L, Johnson M (2010) Exploring strategic priorities for regional agricultural R&D investments in East and Central Africa. Agricultural Economics, 41, 177–190.
- Zimmermann J, Dauber J, Jones MB (2012) Soil carbon sequestration during the establishment phase of Miscanthus x giganteus: a regional-scale study on commercial farms using C-13 natural abundance. Global Change Biology Bioenergy, 4, 453–461.