Influence of mean stress and pressurized water reactor environment on the fatigue behavior of a 304L austenitic stainless steel
Ziling Peng
Pprime Institute, UPR 3346 CNRS ENSMA Université de Poitiers, ISAE-ENSMA, Chasseneuil-du-Poitou, France
EDF, R&D, MMC, Moret sur Loing, France
Contribution: Investigation, Writing - original draft
Search for more papers by this authorCorresponding Author
Gilbert Hénaff
Pprime Institute, UPR 3346 CNRS ENSMA Université de Poitiers, ISAE-ENSMA, Chasseneuil-du-Poitou, France
Correspondence
Gilbert Hénaff, Pprime Institute, UPR 3346 CNRS ENSMA Université de Poitiers, ISAE-ENSMA, 1 avenue Clément Ader, Futuroscope, Chasseneuil-du-Poitou 86961, France.
Email: [email protected]
Contribution: Supervision, Writing - review & editing
Search for more papers by this authorJean-Christophe Le Roux
EDF, R&D, MMC, Moret sur Loing, France
Contribution: Investigation, Writing - review & editing
Search for more papers by this authorRomain Verlet
EDF, R&D, MMC, Moret sur Loing, France
Contribution: Investigation, Writing - review & editing
Search for more papers by this authorZiling Peng
Pprime Institute, UPR 3346 CNRS ENSMA Université de Poitiers, ISAE-ENSMA, Chasseneuil-du-Poitou, France
EDF, R&D, MMC, Moret sur Loing, France
Contribution: Investigation, Writing - original draft
Search for more papers by this authorCorresponding Author
Gilbert Hénaff
Pprime Institute, UPR 3346 CNRS ENSMA Université de Poitiers, ISAE-ENSMA, Chasseneuil-du-Poitou, France
Correspondence
Gilbert Hénaff, Pprime Institute, UPR 3346 CNRS ENSMA Université de Poitiers, ISAE-ENSMA, 1 avenue Clément Ader, Futuroscope, Chasseneuil-du-Poitou 86961, France.
Email: [email protected]
Contribution: Supervision, Writing - review & editing
Search for more papers by this authorJean-Christophe Le Roux
EDF, R&D, MMC, Moret sur Loing, France
Contribution: Investigation, Writing - review & editing
Search for more papers by this authorRomain Verlet
EDF, R&D, MMC, Moret sur Loing, France
Contribution: Investigation, Writing - review & editing
Search for more papers by this authorAbstract
Uniaxial strain-controlled fatigue tests were carried out on a 304L austenitic stainless-steel specimens in air at 300°C and in pressurized water reactor (PWR), without or with the application of a mean stress, at different total strain amplitudes. For strain amplitude no less than 0.2%, a deleterious effect of PWR water on fatigue life is observed, associated with the enhancement of both crack initiation and propagation. Besides, the fatigue life is reduced by the application of a mean stress for a fixed strain amplitude in a given environment. In particular, due to the acceleration of crack initiation stage by an enhancement of the plastic strain accumulation, the PWR water effect on fatigue life is re-activated for strain amplitude below 0.2% in the presence of a mean stress. The fatigue life reduction under mean stress application is mostly related to the maximum stress level and strain amplitude, rather than the generated ratcheting strain.
Highlights
- The results of strain-controlled fatigue tests in air and in PWR water are presented.
- The application of a mean stress affects the fatigue strength in both environments.
- The effect of environment and mean stress on initiation and propagation is analyzed.
- A modified SWT equation is proposed.
CONFLICT OF INTEREST STATEMENT
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Open Research
DATA AVAILABILITY STATEMENT
Research data are not shared.
REFERENCES
- 1 ASME. Boiler and Pressure Vessel Code. ASME; 2010.
- 2 RCC-M. (2009). Règles de Conception et de Construction des Matériels Mécaniques des Ilots Nucléaires REP.
- 3Metais T, Courtin S, Genette P, De Baglion L, Gourdin C, Le Roux JC. Overview of French proposal of updated austenitic SS fatigue curves and of a methodology to account for EAF. In: ASME Pressure Vessels and Piping Conference, PVP-2015. American Society of Mechanical Engineers; 2015.
10.1115/PVP2015-45158 Google Scholar
- 4Higuchi M, Iida K. Fatigue strength correction factors for carbon and low-alloy steels in oxygen-containing high-temperature water. Nuclear Eng Des. 1991; 129(3): 293-306.
- 5Bernardconnolly M, Buiquoc T, Biron A. Multilevel strain controlled fatigue on a type-304 stainless-steel. J En Mater Technol-Trans ASME. 1983; 105(3): 188-194.
- 6de Baglion L. Comportement et endommagement en fatigue oligocyclique d'un acier inoxydable austénitique 304L en fonction de l'environnement (vide, air, eau primaire REP) à 300°C. Vol. 1 Doctoral dissertation. École Nationale Supérieure de Mécanique et d'Aérotechnique; 2011.
- 7Nikitin I, Besel M. Correlation between residual stress and plastic strain amplitude during low cycle fatigue of mechanically surface treated austenitic stainless steel AISI 304 and ferritic-pearlitic steel SAE 1045. Mater Sci Eng A-Struct Mater Properties Microstruc Process. 2008; 491(1–2): 297-303.
- 8Petitjean S. Influence de l'état de surface sur le comportement en fatigue à grand nombre de cycles de l'acier inoxydable austénitique 304L. Doctoral dissertation. Université de Poitiers; 2003.
- 9Kuroda M, Marrow TJ. Modelling the effects of surface finish on fatigue limit in austenitic stainless steels. Fatigue Fract Eng Mater Struct. 2008; 31(7): 581-598.
- 10Poulain T, Mendez J, Henaff G, de Baglion L. Analysis of the ground surface finish effect on the LCF life of a 304L austenitic stainless steel in air and in PWR environment. Eng Fracture Mech. 2017; 185: 258-270.
- 11Huin N, Couvant T, Legras L, Loisnard D, Mendez J, Henaff G. Environmental effect on fatigue of austenitic stainless steels exposed to PWR primary water. In: ASME Pressure Vessels and Piping Conference 2012. ASME; 2012.
- 12Colin J, Fatemi A, Taheri S. Fatigue behavior of stainless steel 304L including strain hardening, prestraining, and mean stress effects. J Eng Mater Technol-Trans ASME. 2010; 132(2):021008
- 13Chen W, Spätig P, Seifert HP. Role of mean stress on fatigue behavior of a 316L austenitic stainless steel in LWR and air environments. Int J Fatigue. 2020; 145:106111
- 14Kamaya M. Mean stress effect on fatigue properties of type 316 stainless steel (part I: in high-temperature air environment). In: ASME Pressure Vessels and Piping Conference. American Society of Mechanical Engineers; 2017.
10.1115/PVP2017-65135 Google Scholar
- 15Kamaya M. Mean stress effect on fatigue properties of type 316 stainless steel (part II: in pwr primary water environment). In: ASME Pressure Vessels and Piping Conference. American Society of Mechanical Engineers; 2017.
10.1115/PVP2017-65136 Google Scholar
- 16Solomon HD, Amzallag C, Vallee AJ, De Lair RE,
Asme. Influence of mean stress on the fatigue behavior of 304L SS in air and PWR water. In: ASME Pressure Vessels and Piping Conference. American Society of Mechanical Engineers; 2005: 87-97.
10.1115/PVP2005-71064 Google Scholar
- 17Poncelet M, Barbier G, Raka B, et al. Biaxial high cycle fatigue of a type 304L stainless steel: cyclic strains and crack initiation detection by digital image correlation. Eur J Mech A-Solids. 2010; 29(5): 810-825.
- 18Vincent L, Le Roux JC, Taheri S. On the high cycle fatigue behavior of a type 304L stainless steel at room temperature. Int J Fatigue. 2012; 38: 84-91.
- 19Huin N. Environmental Effect on Cracking of an 304L Austenitic Stainless Steels in PWR Primary Environment Under Cyclic Loading. ISAE-ENSMA École Nationale Supérieure de Mécanique et d'Aérotechnique; 2013.
- 20Chopra OK, Stevens GL. Effect of LWR Water Environments on the Fatigue Life of Reactor Materials, Final Report. United States Nuclear Regulatory Commission; 2018.
- 21Hasegawa H. Nuclear Power Generation Facilities—Environmental Fatigue Evaluation Method for Nuclear Power Plants. Japan Nuclear Energy Safety Organization; 2011.
- 22Le Duff JA, Lefrancois A, Vernot JP. Effects of surface finish and loading conditions on the low cycle fatigue behavior of austenitic stainless steel in PWR environment comparison of LCF test results with NUREG/CR-6909 life estimations. In: CD Rodery, ed. Proceedings of the ASME Pressure Vessels and Piping Conference. Vol. 3. American Society of Mechanical Engineers; 2009: 453-462.
- 23Chopra OK, Shack WJ. Effect of LWR Coolant Environments on the Fatigue Life of Reactor Materials, Final Report. Argonne National Laboratory; 2007.
- 24Chopra OK, Stevens GL (2014) Effect of LWR Coolant Environments on the Fatigue Life of Reactor Materials, Draft Report for Comment. Nuclear Regulatory Commission.
- 25Vincent L. Essais de Fatigue à Grand Nombre de Cycles et à 300°C Sur Un Acier Inoxydable Austénitique AISI 304L: Premiers Résultats Sur l'effet d'une Contrainte Moyenne et d'une Déformation Moyenne. Commissariat à l'énergie atomique et aux énergies alternatives; 2012.
- 26Byun TS, Hashimoto N, Farrell K. Temperature dependence of strain hardening and plastic instability behaviors in austenitic stainless steels. Acta Mater. 2004; 52(13): 3889-3899.
- 27Kim JW, Byun TS. Analysis of tensile deformation and failure in austenitic stainless steels: part I—temperature dependence. J Nuclear Mater. 2010; 396(1): 1-9.
- 28Soares GC, Rodrigues MCM, Santos LA. Influence of temperature on mechanical properties, fracture morphology and strain hardening behavior of a 304 stainless steel. Mater Res. 2017; 20(suppl 2): 141-151.
10.1590/1980-5373-mr-2016-0932 Google Scholar
- 29Paris PC, Erdogan F. A critical analysis of crack propagation laws. Trans ASME, J Bas Eng. 1963; 85(4): 528-534.
- 30Kamaya M. Low-cycle fatigue crack growth prediction by strain intensity factor. Int J Fatigue. 2015; 72: 80-89.
- 31Kamaya M, Kawakubo M. Strain-based modeling of fatigue crack growth—an experimental approach for stainless steel. Int J Fatigue. 2012; 44: 131-140.
- 32Cussac P. Influence d'imperfections surfaciques sur la tenue en fatigue de composants nucléaires. Doctoral dissertation. École Nationale Supérieure de Mécanique et d'Aérotechnique; 2020.
- 33Poulain T, de Baglion L, Mendez J, Hénaff G. Influence of strain rate and Waveshape on environmentally-assisted cracking during low-cycle fatigue of a 304L austenitic stainless steel in a PWR water environment. Metals. 2019; 9(2):197
- 34Cussac P, Gardin C, Pelosin V, et al. Low-cycle fatigue crack initiation and propagation from controlled surface imperfections in nuclear steels. Int J Fatigue. 2020; 139:105703
- 35Poulain T, Mendez J, Henaff G, De Baglion L. Characterization of damage during low cycle fatigue of a 304L austenitic stainless steel as a function of environment (air, PWR environment) and surface finish (polished, ground). Proc Eng. 2016; 160: 123-130.
- 36Poulain T, Mendez J, Hénaff G, de Baglion L. Influence of the strain rate on the low cycle fatigue life of an austenitic stainless steel with a ground surface finish in different environments. Adv Mater Res. 2014; 891–892: 1320-1326.
10.4028/www.scientific.net/AMR.891-892.1320 Google Scholar
- 37Suresh S. Fatigue of Materials. Cambridge University Press; 1991.
- 38Ould-Amer A. Endommagement à différentes échelles d'un acier austénitique inoxydable en fatigue à amplitude constante et variable. ENSTA; 2014.
- 39Mineur M, Villechaise P, Mendez J. Influence of the crystalline texture on the fatigue behavior of a 316L austenitic stainless steel. Mater Sci Eng A: Struct Mater Properties Microstruct Process. 2000; 286(2): 257-268.
- 40Poulain T. Low Cycle Fatigue of a 304L Austenitic Stainless Steel: Influence of Surface Finish and Load Signals in PWR Water Environment. ISAE-ENSMA École Nationale Supérieure de Mécanique et d'Aérotechnique; 2015.
- 41Chopra OK. Mechanism and Estimation of Fatigue Crack Initiation in Austenitic Stainless Steels in LWR Environments. Argonne National Laboratory; 2002.
10.2172/925035 Google Scholar
- 42Huin N, Tsutsumi K, Legras L, et al. Fatigue crack initiation of 304L stainless steel in simulated PWR primary environment: relative effect of strain rate. In: ASME Pressure Vessels and Piping Conference. American Society of Mechanical Engineers; 2012: 165-171.
10.1115/PVP2012-78340 Google Scholar
- 43Couvant T, Legras L, Herbelin A, et al. Development of understanding of the interaction between localized deformation and SCC of austenitic stainless steels exposed to primary environment. In: 14th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors. Curran Associates, Inc.; 2008: 182-194.
- 44Ford FP. Slip dissolution model. In: D Desjardin, R Oltra, eds. Corrosion Sous Contrainte—phénoménologie et mécanismes. les Editions de Physique; 1992: 307-344.
- 45Legras L, Vogin A, Radiguet B, et al. Using microscopy to help with the understanding of degradation mechanisms observed in materials of pressurized water reactors. J Mater Sci Eng B. 2017; 7: 187-220.
- 46Kamaya M. Environmental effect on fatigue strength of stainless steel in PWR primary water—role of crack growth acceleration in fatigue life reduction. Int J Fatigue. 2013; 55: 102-111.
- 47Kamaya M, Kawakubo M. Damage assessment of low-cycle fatigue by crack growth prediction (development of growth prediction model and its application). Trans Jpn Soc Mech Eng Ser A. 2012; 78(795): 1518-1533.
- 48Kamaya M, Kawakubo M. Mean stress effect on fatigue strength of stainless steel. Int J Fatigue. 2015; 74: 20-29.
- 49Spätig P, Heczko M, Kruml T, Seifert HP. Influence of mean stress and light water reactor environment on fatigue life and dislocation microstructures of 316L austenitic steel. J Nuclear Mater. 2018; 509: 15-28.