Nonlocal approach to fatigue analysis of a welded bicycle frame joint
Corresponding Author
Tomasz Tomaszewski
Faculty of Mechanical Engineering, University of Science and Technology, Bydgoszcz, Poland
Correspondence
Tomasz Tomaszewski, Faculty of Mechanical Engineering, University of Science and Technology, al. Prof. S. Kaliskiego 7, Bydgoszcz 85-796, Poland.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Tomasz Tomaszewski
Faculty of Mechanical Engineering, University of Science and Technology, Bydgoszcz, Poland
Correspondence
Tomasz Tomaszewski, Faculty of Mechanical Engineering, University of Science and Technology, al. Prof. S. Kaliskiego 7, Bydgoszcz 85-796, Poland.
Email: [email protected]
Search for more papers by this authorAbstract
The paper attempts to predict the probabilistic fatigue strength scatter bands of a welded bicycle frame joint. The experimental data of the base material and the weld material were approximated by a nonlinear probabilistic model of the Weibull distribution. The fatigue strength for the material at the fatigue crack location was estimated considering the mean stress, residual stress, fatigue notch factor, and hardness profile. The output finite element numerical data of the real welded joint were compared with a nonlocal multiaxial fatigue criterion. The implementation of the volumetric method takes into account the stress gradient effect in the three-dimensional geometry of the weld toe. The comparative localization of the minimum stress and the real crack indicates the validity of the numerical model. The predicted fatigue strength determines the possible failure of a welded joint at 5·105 cycles.
Highlights
- The P–S–N curves are obtained for miniature specimens of the base and weld material.
- The Crossland equivalent stress distribution is averaged over a curvilinear weld toe.
- The failure probability is predicted for a welded bicycle frame joint.
Open Research
DATA AVAILABILITY STATEMENT
Research data are not shared.
REFERENCES
- 1Hobbacher AF. Recommendations for Fatigue Design of Welded Joints and Components. Springer; 2016.
10.1007/978-3-319-23757-2 Google Scholar
- 2Niemi E, Fricke W, Maddox SJ. Fatigue Analysis of Welded Components: Designer's Guide to the Structural Hot-Spot Stress Approach. Woodhead Publishing; 2006.
- 3Niemi E. Stress Determination for Fatigue Analysis of Welded Components. Woodhead Publishing; 1995.
10.1533/9780857093202 Google Scholar
- 4Fricke W. Recommended hot spot analysis procedure for structural details of ships and FPSOs based on round-robin FE analyses. Int J Offshore Polar Eng. 2002; 12(1): 40-47.
- 5Doerk O, Fricke W, Weissenborn C. Comparison of different calculation methods for structural stresses at welded joints. Int J Fatigue. 2003; 25(5): 359-369. doi:10.1016/S0142-1123(02)00167-6
- 6Radaj D, Sonsino CM, Fricke W. Recent developments in local concepts of fatigue assessment of welded joints. Int J Fatigue. 2009; 31(1): 2-11. doi:10.1016/j.ijfatigue.2008.05.019
- 7Dong P, Hong JK, Cao Z. Structural Stress Based Master S–N Curve for Welded Joints. IIW; 2002.
- 8Xiao ZG, Yamada K. A method of determining geometric stress for fatigue strength evaluation of steel welded joints. Int J Fatigue. 2004; 26(12): 1277-1293. doi:10.1016/j.ijfatigue.2004.05.001
- 9Pei X, Dong P. An analytically formulated structural strain method for fatigue evaluation of welded components incorporating nonlinear hardening effects. Fatigue Fract Eng Mater Struct. 2019; 42(1): 239-255. doi:10.1111/ffe.12900
- 10Callens A, Bignonnet A. Fatigue design of welded bicycle frames using a multiaxial criterion. Procedia Eng. 2012; 34: 640-645. doi:10.1016/j.proeng.2012.04.109
10.1016/j.proeng.2012.04.109 Google Scholar
- 11Dong P. A structural stress definition and numerical implementation for fatigue analysis of welded joints. Int J Fatigue. 2001; 23(10): 865-876. doi:10.1016/S0142-1123(01)00055-X
- 12Taylor D. Geometrical effects in fatigue: a unifying theoretical model. Int J Fatigue. 1999; 21(5): 413-420. doi:10.1016/S0142-1123(99)00007-9
- 13Taylor D, Bologna P, Bel KK. Prediction of fatigue failure location on a component using a critical distance method. Int J Fatigue. 2000; 22(9): 735-742. doi:10.1016/S0142-1123(00)00062-1
- 14Frost NE, Marsh KJ, Pook LP. Metal Fatigue. Dover Publications; 1999.
- 15Smith RA, Miller KJ. Prediction of fatigue regimes in notched components. Int J Mech Sci. 1978; 20(4): 201-206. doi:10.1016/0020-7403(78)90082-6
- 16Palin-Luc T, Lasserre S, Berard JY. Experimental investigation on the significance of the conventional endurance limit of a spheroidal graphite cast iron. Fatigue Fract Eng Mater Struct. 1998; 21(2): 191-200.
- 17Miller KJ. Materials science perspective of metal fatigue resistance. Mater Sci Technol. 1993; 9(6): 453-462.
- 18Morel F, Palin-Luc T. A non-local theory applied to high cycle multiaxial fatigue. Fatigue Fract Eng Mater Struct. 2002; 25(7): 649-665. doi:10.1046/j.1460-2695.2002.00527.x
- 19Taylor D. Applications of the theory of critical distances in failure analysis. Eng Fail Anal. 2011; 18(2): 543-549. doi:10.1016/j.engfailanal.2010.07.002
- 20Nadot Y, Billaudeau T. Multiaxial fatigue limit criterion for defective materials. Eng Fract Mech. 2006; 73(1): 112-133. doi:10.1016/j.engfracmech.2005.06.005
- 21Bonneric M, Brugger C, Saintier N. Investigation of the sensitivity of the fatigue resistance to defect position in aluminium alloys obtained by selective laser melting using artificial defects. Int J Fatigue. 2020; 134:105505. doi:10.1016/j.ijfatigue.2020.105505
- 22Tomaszewski T. Modelling of critical defect distributions for estimating the size effect of selective laser melted 316L stainless steel. Int J Fatigue. 2023; 167:107378. doi:10.1016/j.ijfatigue.2022.107378
- 23El May M, Saintier N, Palin-Luc T, Devos O. Non-local high cycle fatigue strength criterion for metallic materials with corrosion defects. Fatigue Fract Eng Mater Struct. 2015; 38(9): 1017-1025. doi:10.1111/ffe.12329
- 24Vayssette B, Saintier N, Brugger C, El May M, Pessard E. Numerical modelling of surface roughness effect on the fatigue behavior of Ti-6Al-4V obtained by additive manufacturing. Int J Fatigue. 2019; 123: 180-195. doi:10.1016/j.ijfatigue.2019.02.014
- 25Ghazanfari H, Naderi M, Iranmanesh M, Seydi M, Poshteban A. A comparative study of the microstructure and mechanical properties of HTLA steel welds obtained by the tungsten arc welding and resistance spot welding. Mater Sci Eng A. 2012; 534: 90-100. doi:10.1016/j.msea.2011.11.046
- 26Souza Neto F, Neves D, Silva OMM, Lima MSF, Abdalla AJ. An analysis of the mechanical behavior of AISI 4130 steel after TIG and laser welding process. Procedia Eng. 2015; 114: 181-188. doi:10.1016/j.proeng.2015.08.057
- 27Bandara CS, Siriwardane SC, Dissanayake UI, Dissanayake R. Full range S–N curves for fatigue life evaluation of steels using hardness measurements. Int J Fatigue. 2016; 82: 325-331. doi:10.1016/j.ijfatigue.2015.03.021
- 28Strzelecki P, Tomaszewski T. Analytical models of the S-N curve based on the hardness of the material. Procedia Struct Integr. 2017; 5: 832-839. doi:10.1016/j.prostr.2017.07.065
10.1016/j.prostr.2017.07.065 Google Scholar
- 29Çam G, Erim S, Yeni Ç, Koçak M. Determination of mechanical and fracture properties of laser beam welded steel joints. Weld J. 1990; 193-201.
- 30Boroński D. Cyclic material properties distribution in laser welded joints. Int J Fatigue. 2006; 28(4): 346-354. doi:10.1016/j.ijfatigue.2005.07.029
- 31Boroński D. Testing low-cycle material properties with micro-specimens. Mater Test. 2015; 57(2): 165-170. doi:10.3139/120.110693
- 32Nakayama E, Fukumoto M, Miyahara M, et al. Evaluation of local fatigue strength in spot weld by small specimen. Fatigue Fract Eng Mater Struct. 2010; 33(5): 267-275.
- 33Dang Van K, Bignonnet A, Fayard J-L. Assessment of welded structures by a structural multiaxial fatigue approach. ESIS. 2003; 31: 3-21.
- 34Bhadeshia HKDH. Effect of Materials and Processing—ASM Handbook of Residual Stress and Deformation of Steel. ASM International; 2002.
- 35Kocak M, Webster S, Janosch JJ, Ainsworth RA, Koers R. FITNET fitness-for-service procedure—final draft MK7. 2006.
- 36Tomaszewski T. Fatigue life analysis of steel bicycle frame according to ISO 4210. Eng Fail Anal. 2021; 122:105195. doi:10.1016/j.engfailanal.2020.105195
- 37Papadopoulos IV, Panoskaltsis VP. Invariant formulation of a gradient dependent multiaxial high-cycle fatigue criterion. Eng Fract Mech. 1996; 55(4): 513-528. doi:10.1016/S0013-7944(96)00047-1
- 38Kaffenberger M, Vormwald M. Considering size effects in the notch stress concept for fatigue assessment of welded joints. Comput Mater Sci. 2012; 64: 71-78. doi:10.1016/j.commatsci.2012.02.047
- 39Sonsino CM, Kueppers M. Multiaxial fatigue of welded joints under constant and variable amplitude loadings. Fatigue Fract Eng Mater Struct. 2001; 24(5): 309-327.
- 40 ISO 6892-1:2016 Metallic materials—tensile testing—part 1: method of test at room temperature.
- 41 ISO-1099 Metallic materials—fatigue testing—axial force-controlled method.
- 42 ISO-12107 Metallic materials—fatigue testing—statistical planning and analysis of data.
- 43Tomaszewski T, Sempruch J. Verification of the fatigue test method applied with the use of mini specimen. Key Eng Mater. 2014; 598: 243-248. doi:10.4028/www.scientific.net/KEM.598.243
10.4028/www.scientific.net/KEM.598.243 Google Scholar
- 44Vollertsen F. Categories of size effects. Prod Eng. 2008; 2(4): 377-383.
10.1007/s11740-008-0127-z Google Scholar
- 45Kohout J, Vĕchet S. A new function for fatigue curves characterization and its multiple merits. Int J Fatigue. 2001; 23(2): 175-183. doi:10.1016/S0142-1123(00)00082-7
- 46Weibull W. A statistical theory of the strength of materials. R Swedish Inst Eng Res. 1939; 151(545):7.
- 47Sonsino CM. Course of SN-curves especially in the high-cycle fatigue regime with regard to component design and safety. Int J Fatigue. 2007; 29(12): 2246-2258. doi:10.1016/j.ijfatigue.2006.11.015
- 48Lie D, Sung C-K. Synchronous brake analysis for a bicycle. Mech Mach Theory. 2010; 45(4): 543-554. doi:10.1016/j.mechmachtheory.2009.11.006
- 49 ISO 4210 Cycles—safety requirements for bicycles.
- 50Li D, Zhu Z, Xiao S, Zhang G, Lu Y. Plastic flow behavior based on thermal activation and dynamic constitutive equation of 25CrMo4 steel during impact compression. Mater Sci Eng A. 2017; 707: 459-465. doi:10.1016/j.msea.2017.09.077
- 51Bellett D, Taylor D, Marco S, Mazzeo E, Guillois J, Pircher T. The fatigue behaviour of three-dimensional stress concentrations. Int J Fatigue. 2005; 27(3): 207-221. doi:10.1016/j.ijfatigue.2004.07.006
- 52Taylor D. The theory of critical distances. Eng Fract Mech. 2008; 75(7): 1696-1705. doi:10.1016/j.engfracmech.2007.04.007
- 53Taylor D, Barrett N, Lucano G. Some new methods for predicting fatigue in welded joints. Int J Fatigue. 2002; 24(5): 509-518. doi:10.1016/S0142-1123(01)00174-8
- 54Crossland B. Effect of large hydrostatic pressures on the torsional fatigue strength of fan alloy steel. Proc Int Conf Fat Met. 1956; 138-149.
- 55Papadopoulos IV, Avoli P, Gorla C, Filippini M, Bernasconi A. A comparative study of multiaxial high-cycle fatigue criteria for metals. Int J Fatigue. 1997; 19(3): 219-235. doi:10.1016/S0142-1123(96)00064-3
- 56Goodman J. Mechanics Applied to Engineering. Longmans. Green & Company; 1930.
- 57Sines G. Behaviour of metals under complex stresses. Metal Fatigue. 1959; 145-169.
- 58Sidhom N, Laamouri A, Fathallah R, Braham C, Lieurade HP. Fatigue strength improvement of 5083 H11 Al-alloy T-welded joints by shot peening: experimental characterization and predictive approach. Int J Fatigue. 2005; 27(7): 729-745. doi:10.1016/j.ijfatigue.2005.02.001