In situ synchrotron ultrasonic fatigue testing device for 3D characterisation of internal crack initiation and growth
Alexandre Messager
Arts et Métiers ParisTech, I2M Bordeaux, CNRS, Université de Bordeaux, Esplanade des Arts et Métiers, Talence, France
Search for more papers by this authorCorresponding Author
Thierry Palin-Luc
Correspondence
Thierry Palin-Luc, Arts et Métiers ParisTech, I2M Bordeaux, CNRS, Université de Bordeaux, Esplanade des Arts et Métiers, 33405 Talence, France.
Email: [email protected]
Search for more papers by this authorJean-Yves Buffiere
INSA-Lyon, MATEIS, CNRS, Villeurbanne, France
Search for more papers by this authorNicolas Saintier
Arts et Métiers ParisTech, I2M Bordeaux, CNRS, Université de Bordeaux, Esplanade des Arts et Métiers, Talence, France
Search for more papers by this authorNicolas Ranc
Arts et Métiers ParisTech, PIMM, CNRS, Paris, France
Search for more papers by this authorMohamed El May
Arts et Métiers ParisTech, I2M Bordeaux, CNRS, Université de Bordeaux, Esplanade des Arts et Métiers, Talence, France
Search for more papers by this authorYves Gaillard
Centre Technique des Industries de la Fonderie (CTIF), Sèvres, Cedex, France
Search for more papers by this authorAndrew King
Synchrotron SOLEIL, L'Orme des Merisiers Saint-Aubin, Gif-sur-Yvette, France
Search for more papers by this authorAnne Bonnin
Swiss Ligth Source, Paul Scherrer Institut, Villigen, Switzerland
Search for more papers by this authorYves Nadot
Institut PPRIME ISAE-ENSMA, CNRS, Université de Poitiers, Futuroscope Chasseneuil Cedex, France
Search for more papers by this authorAlexandre Messager
Arts et Métiers ParisTech, I2M Bordeaux, CNRS, Université de Bordeaux, Esplanade des Arts et Métiers, Talence, France
Search for more papers by this authorCorresponding Author
Thierry Palin-Luc
Correspondence
Thierry Palin-Luc, Arts et Métiers ParisTech, I2M Bordeaux, CNRS, Université de Bordeaux, Esplanade des Arts et Métiers, 33405 Talence, France.
Email: [email protected]
Search for more papers by this authorJean-Yves Buffiere
INSA-Lyon, MATEIS, CNRS, Villeurbanne, France
Search for more papers by this authorNicolas Saintier
Arts et Métiers ParisTech, I2M Bordeaux, CNRS, Université de Bordeaux, Esplanade des Arts et Métiers, Talence, France
Search for more papers by this authorNicolas Ranc
Arts et Métiers ParisTech, PIMM, CNRS, Paris, France
Search for more papers by this authorMohamed El May
Arts et Métiers ParisTech, I2M Bordeaux, CNRS, Université de Bordeaux, Esplanade des Arts et Métiers, Talence, France
Search for more papers by this authorYves Gaillard
Centre Technique des Industries de la Fonderie (CTIF), Sèvres, Cedex, France
Search for more papers by this authorAndrew King
Synchrotron SOLEIL, L'Orme des Merisiers Saint-Aubin, Gif-sur-Yvette, France
Search for more papers by this authorAnne Bonnin
Swiss Ligth Source, Paul Scherrer Institut, Villigen, Switzerland
Search for more papers by this authorYves Nadot
Institut PPRIME ISAE-ENSMA, CNRS, Université de Poitiers, Futuroscope Chasseneuil Cedex, France
Search for more papers by this authorAbstract
This work presents a new ultrasonic fatigue testing device for studying the initiation and propagation mechanisms of internal microstructurally short fatigue cracks using in situ synchrotron tomography. Its principle is described as well as the method used for automatically detecting crack initiation and its subsequent growth. To promote internal crack initiation, specimens containing internal casting defects were tested between the high cycle and very high cycle fatigue regimes (107-109 cycles). Preliminary results show the ability of this new device to initiate an internal microstructurally short crack in a reasonable testing time and monitor its growth.
REFERENCES
- 1Murakami Y, Endo T. Effects of small defects on fatigue strength of metals. International Journal of Fatigue. 1980; 2: 23-30.
- 2Wilson P, Saintier N, Palin-Luc T, Bergamo S. Isothermal fatigue damage mechanisms at ambient and elevated temperature of a cast Al-Si-Cu aluminium alloy. International Journal of Fatigue. 2019; 121: 112-123.
- 3Wang QG, Apelian D, Lados DA. Fatigue behavior of A356-T6 aluminum cast alloys. Part I. Effect of casting defects. Journal of Light Metals. 2001; 1(1): 73-84.
- 4Koutiri I, Bellett D, Morel F, Augustins L, Adrien J. High cycle fatigue damage mechanisms in cast aluminium subject to complex loads. International Journal of Fatigue. 2013; 47: 44-57.
- 5Ammar HR, Samuel AM, Samuel FH. Effect of casting imperfections on the fatigue life of 319-F and A356-T6 Al–Si casting alloys. Mater Sci Eng A. 2008; 473: 65-75.
- 6Luo Y, Wu SC, Hu YN, Fu YN. Cracking evolution behaviors of lightweight materials based on in situ synchrotron X-ray tomography: a review. Frontiers of Mechanical Engineering. 2018; 13: 461-481.
- 7Zhang H, Toda H, Qu PC, et al. Three-dimensional fatigue crack growth behavior in an aluminum alloy investigated with in situ high-resolution synchrotron X-ray microtomography. Acta Mater. 2009; 57(11): 3287-3300.
- 8Withers PJ, Preuss M. Fatigue and damage in structural materials studied by X-ray tomography. Annu Rev Mat Res. 2012; 42: 81-103.
- 9Chapman TP, Kareh KM, Knop M, et al. Characterisation of short fatigue cracks in titanium alloy IMI 834 using X-ray microtomography. Acta Mater. 2015; 99: 49-62.
- 10Naragani D, Sangid MD, Shade PA, et al. Investigation of fatigue crack initiation from a non-metallic inclusion via high energy x-ray diffraction microscopy. Acta Mater. 2017; 137: 71-84.
- 11Yoshinaka F, Nakamura T, Nakayama S, Shiozawa D, Nakai Y, Uesugi K. Non-destructive observation of internal fatigue crack growth in Ti–6Al–4 V by using synchrotron radiation micro-CT imaging. International Journal of Fatigue. 2016; 93: 397-405.
- 12Serrano-Munoz I, Buffiere J-Y, Mokso R, Verdu C, Nadot Y. Location, location & size: defects close to surfaces dominate fatigue crack initiation. Sci Rep. 2017; 7: 45239.
- 13Bathias C, Drouillac L, Le Francois P. How and why the fatigue S–N curve does not approach a horizontal asymptote. International Journal of Fatigue. 2001; 23: 143-151.
- 14Zuo JH, Wang ZG, Han EH. Effect of microstructure on ultra-high cycle fatigue behavior of Ti6-Al4-V. Mater Sci Eng A. 2008; 473: 147-152.
- 15Nikitin A, Palin-Luc T, Shanyavskiy A. Crack initiation in VHCF regime on forged titanium alloy under tensile and torsion loading modes. International Journal of Fatigue. 2016; 93: 318-325.
- 16Bathias C, Pineau A. Fatigue of Materials and Structures. 1: Fundamentals. London: ISTE; 2010.
- 17Mughrabi H. Specific features and mechanisms of fatigue in the ultrahigh-cycle regime. International Journal of Fatigue. 2006; 28: 1501-1508.
- 18Hong Y, Sun C. The nature and the mechanism of crack initiation and early growth for very-high-cycle fatigue of metallic materials—an overview. Theoretical and Applied Fracture Mechanics. 2017; 92: 331-350.
- 19Bathias C, Paris PC. Gigacycle Fatigue in Mechanical Practice. New York. NY: Dekker; 2005.
- 20Murakami Y, Yokoyama NN, Nagata J. Mechanism of fatigue failure in ultralong life regime. Fatigue Fract Eng Mater Struct. 2002; 25: 735-746.
- 21Kim J-Y, Jacobs LJ, Qu J, Littles JW. Experimental characterization of fatigue damage in a nickel-base superalloy using nonlinear ultrasonic waves. J Acoust Soc Am. 2006; 120: 1266-1273.
- 22Frouin J, Matikas TE, Na JK, Sathish S. In situ monitoring of acoustic linear and nonlinear behavior of titanium alloys during cycling loading. In: Nondestructive Evaluation of Aging Materials and Composites III. 1999; 3585. International Society for Optics and Photonics: 107-117.
- 23Cantrell JH, Yost WT. Nonlinear ultrasonic characterization of fatigue microstructures. International Journal of Fatigue. 2001; 23: 487-490.
- 24Hikata A, Elbaum C. Generation of ultrasonic second and third harmonics due to dislocations. Phys Rev. 1966; 144: 469-477.
- 25Matlack KH, Kim J-Y, Jacobs LJ, Qu J. Review of second harmonic generation measurement techniques for material state determination in metals. Journal of Nondestructive Evaluation. 2015; 34(1): 273.
- 26Kumar A, Torbet CJ, Jones JW, Pollock TM. Nonlinear ultrasonics for in situ damage detection during high frequency fatigue. J Appl Phys. 2009; 106:024904.
- 27Campos-Pozuelo C, Vanhille C, Gallego-Juarez JA. Comparative study of the nonlinear behavior of fatigued and intact samples of metallic alloys. IEEE Trans Ultrason Ferroelectr Freq Control. 2006; 53(1): 175-184.
- 28Krewerth D, Weidner A, Biermann H. Application of in situ thermography for evaluating the high-cycle and very high-cycle fatigue behaviour of cast aluminium alloy AlSi7Mg (T6). Ultrasonics. 2013; 53(8): 1441-1449.
- 29Wagner D, Ranc N, Bathias C, Paris PC. Fatigue crack initiation detection by an infrared thermography method. Fatigue Fract Eng Mater Struct. 2009; 33: 12-21.
- 30Guennec B, Ueno A, Sakai T, Takanashi M, Itabashi Y. Effect of the loading frequency on fatigue properties of JIS S15C low carbon steel and some discussions based on micro-plasticity behavior. International Journal of Fatigue. 2014; 66: 29-38.
- 31King A, Guignot N, Zerbino P, et al. Tomography and imaging at the PSICHE beam line of the SOLEIL synchrotron. Rev Sci Instrum. 2016; 87(9):093704.
- 32Lovric G, Mokso R, Schlepütz CM, Stampanoni M. A multi-purpose imaging endstation for high-resolution micrometer-scaled sub-second tomography. Phys Med. 2016; 32(12): 1771-1778.
- 33Serrano-Munoz I. Influence of casting defects on the fatigue behaviour of an A357-T6 aerospace alloy. November 2014.
- 34Murakami Y, Endo M. Quantitative evaluation of fatigue strength of metals containing various small defects or cracks. Engineering Fracture Mechanics. 1983; 17: 1-15.
- 35Klingbeil N. A total dissipated energy theory of fatigue crack growth in ductile solids. International Journal of Fatigue. 2003; 25: 117-128.
- 36Ranc N, Wagner D, Paris PC. Study of thermal effects associated with crack propagation during very high cycle fatigue tests. Acta Mater. 2008; 56: 4012-4021.
- 37Serrano-Munoz I, Buffiere J-Y, Verdu C, Gaillard Y, Mu P, Nadot Y. Influence of surface and internal casting defects on the fatigue behaviour of A357-T6 cast aluminium alloy. International Journal of Fatigue. 2016; 82: 361-370.
- 38Brochu M, Verreman Y, Ajersch F, Bouchard D. Propagation of short fatigue cracks in permanent and semi-solid mold 357 aluminum alloy. International Journal of Fatigue. 2012; 36: 120-129.
- 39Richard S, Gasquères C, Sarrazin-Baudoux C, Petit J. Coupled influence of microstructure and atmosphere environment on fatigue crack path in new generation Al alloys. Engineering Fracture Mechanics. 2010; 77: 1941-1952.