Creep-fatigue behaviour of single-crystal Ni-base superalloy CMSX-8
Ernesto A. Estrada Rodas
The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
Present address: Ernesto A. Estrada Rodas, Exponent, Inc, Atlanta, GA.Search for more papers by this authorSanam Gorgannejad
The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
Search for more papers by this authorCorresponding Author
Richard W. Neu
The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia
Correspondence
Richard W. Neu, The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA.
Email: [email protected]
Search for more papers by this authorErnesto A. Estrada Rodas
The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
Present address: Ernesto A. Estrada Rodas, Exponent, Inc, Atlanta, GA.Search for more papers by this authorSanam Gorgannejad
The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
Search for more papers by this authorCorresponding Author
Richard W. Neu
The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia
Correspondence
Richard W. Neu, The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA.
Email: [email protected]
Search for more papers by this authorAbstract
The creep-fatigue behaviour of a lower cost, reduced rhenium Ni-base superalloy, CMSX-8, a variant of CMSX-4, cast in a single crystal was experimentally evaluated over a broad range of conditions, from room temperature to 1100°C, and for two loading orientations: <001> and <111>. The fatigue lives depend on the orientation, cycle type, and temperature. The relative importance of these parameters on influencing the life is identified and discussed. From this understanding, a simple life model is constructed to capture the influence of these broad test conditions. The results are compared with those of the higher Re superalloy, CMSX-4.
REFERENCES
- 1Perepezko JH. Materials science. The hotter the engine, the better. Science. 2009; 326(5956): 1068-1069.
- 2Gurrappa I, Rao AS. Thermal barrier coatings for enhanced efficiency of gas turbine engines. Surf Coat Technol. 2006; 201(6): 3016-3029.
- 3Padture NP, Gell M, Jordan EH. Thermal barrier coatings for gas-turbine engine applications. Science. 2002; 296(5566): 280-284.
- 4Wahl JB, Harris K. New single crystal superalloys, CMSX-7 and CMSX-8. In: ES Huron, RC Reed, MC Hardy, et al., eds. Superalloys 2012 TMS. Seven Springs, PA: Seven Springs Mountain Resort; 2012: 179-188.
10.1002/9781118516430.ch20 Google Scholar
- 5Ott M, Mughrabi H. Dependence of the high-temperature low-cycle fatigue behaviour of the monocrystalline nickel-base superalloys CMSX-4 and CMSX-6 on the [gamma]/[gamma]′-morphology. Mater Sci Eng A. 1999; 272(1): 24-30.
- 6MacLachlan DW, Knowles DM. Fatigue behaviour and lifing of two single crystal superalloys. Fatigue Fract Eng Mater Struct. 2001; 24(8): 503-521.
- 7Okazaki M, Sakaguchi M. Thermo-mechanical fatigue failure of a single crystal Ni-based superalloy. Int J Fatigue. 2008; 30(2): 318-323.
- 8Hong HU, Kang JG, Choi BG, Kim IS, Yoo YS, Jo CY. A comparative study on thermomechanical and low cycle fatigue failures of a single crystal nickel-based superalloy. Int J Fatigue. 2011; 33(12): 1592-1599.
- 9Amaro RL, Antolovich SD, Neu RW. Mechanism-based life model for out-of-phase thermomechanical fatigue in single crystal Ni-base superalloys. Fatigue Fract Eng Mater Struct. 2012; 35(7): 658-671.
- 10Amaro RL, Antolovich SD, Neu RW, Fernandez-Zelaia P, Hardin W. Thermomechanical fatigue and bithermal-thermomechanical fatigue of a nickel-base single crystal superalloy. Int J Fatigue. 2012; 42: 165-171.
- 11Barnard NC, MacLachlan DW, Jones N, Mason-Flucke J, Bagnall SM, Bache MR. Low cycle fatigue of CMSX-4 in off-axis orientations and the effect of a multi-axial stress state. In: ES Huron, RC Reed, MC Hardy, et al., eds. Superalloys 2012: 12th International Symposium on Superalloys. TMS. Hoboken, New Jersey: Published by John Wiley & Sons, Inc.,; 2012.
- 12Yandt S, Wu X-J, Tsuno N, Sato A. Cyclic dwell fatigue behaviour of single crystal Ni-base superalloys with/without rhenium. In: ES Huron, RC Reed, MC Hardy, et al., eds. Superalloys 2012. Seven Springs Mountain Resort, Seven Springs, PA: TMS; 2012: 501-508.
10.1002/9781118516430.ch55 Google Scholar
- 13Amaro RL, Antolovich SD, Neu RW, et al. Towards the development of a physics-based thermo-mechanical fatigue life prediction model for a single crystalline Ni-base superalloy. Mater Perform Character. 2014; 3: 1-15.
- 14Leverant GR, Gell M. The influence of temperature and cyclic frequency on the fatigue fracture of cube oriented nickel-base superalloy single crystals. Metall Trans A. 1975; 6A: 367-371.
- 15Wright PK. Oxidation-fatigue interactions in a single-crystal superalloy. In: HD Solomon, GR Halford, LR Kaisand, BN Leis, eds. Low Cycle Fatigue, ASTM STP 942. Philadelphia: American Society for Testing and Materials; 1988: 558-575.
- 16Anton DL. Low cycle fatigue characteristics of 〈001〉 and randomly aligned superalloy single crystals. Acta Metall. 1984; 32(10): 1669-1679.
- 17Gabb TP, Gayda J, Miner RV. Orientation and temperature dependence of some mechanical properties of the single-crystal nickel-base superalloy Rene N4: part II. Low Cycle Fatigue Behavior. Metall Trans A. 1986; 17A: 497-505.
- 18Milligan WW, Jayaraman N, Hill RC. Low cycle fatigue of MAR-M 200 single crystals with a bimodal γ′ distribution at 760 and 870°C. Mater Sci Eng A. 1986; 82: 127-139.
- 19Chieragatti R, Remy L. Influence of orientation on the low cycle fatigue of MAR-M 200 single crystals at 650°C I: fatigue life behaviour. Mater Sci Eng A. 1991; 141(1): 1-9.
- 20Fleury E, RÈmy L. Low cycle fatigue damage in nickel-base superalloy single crystals at elevated temperature. Mater Sci Eng A. 1993; 167(1-2): 23-30.
- 21Amaro RL, Antolovich SD, Neu RW, Staroselsky A. Physics-based modeling of thermo-mechanical fatigue in PWA 1484. In: ES Huron, RC Reed, MC Hardy, et al., eds. Superalloys 2012: 12th International Symposium on Superalloys. TMS. Hoboken, New Jersey: Published by John Wiley & Sons, Inc.,; 2012: 481-490.
- 22Rémy L, Geuffrard M, Alam A, Köster A, Fleury E. Effects of microstructure in high temperature fatigue: lifetime to crack initiation of a single crystal superalloy in high temperature low cycle fatigue. Int J Fatigue. 2013; 57: 37-49.
- 23Telesman J, Ghosn LJ. Fatigue crack growth behavior of PWA 1484 single crystal superalloy at elevated temperatures. J Eng Gas Turbines Power. 1996; 118(2): 399-405.
- 24Evans AG, He MY, Suzuki A, Gigliotti M, Hazel B, Pollock TM. A mechanism governing oxidation-assisted low-cycle fatigue of superalloys. Acta Mater. 2009; 57(10): 2969-2983.
- 25Patil S, Huang S, Karadge M, Konitzer D, Suzuki A. Damage evolution during compressive hold sustained peak low cycle fatigue of a Ni-based single-crystal superalloy. In: M Hardy, E Huron, U Glatzel, et al., eds. Superalloys 2016. PA: Seven Springs; 2016: 959-967.
10.1002/9781119075646.ch102 Google Scholar
- 26Lafata MA, Rettberg LH, He MY, Pollock TM. Oxidation-assisted crack growth in single-crystal superalloys during fatigue with compressive holds. Metallurgical and Materials Transactions A. 2018; 49(1): 105-116.
- 27Fährmann M, Fährmann E, Paris O, Fratzl P, Pollock TM. An experimental study of the role of plasticity in the rafting kinetics of a single crystal Ni-base superalloy. In: RD Kissinger, DJ Deye, DL Anton, et al., eds. Superalloys 1996. The minerals, Metals & Materials Society. Pittsburgh, PA: Published by TMS; 1996: 191-200.
10.7449/1996/Superalloys_1996_191_200 Google Scholar
- 28Epishin A, Link T, Klinglehöffer H, Fedelich B, Portella P. Creep damage of single-crystal nickel base superalloys: mechanisms and effect on low cycle fatigue. Mater High Temp. 2010; 27(1): 53-59.
- 29Gorgannejad S, Estrada Rodas EA, Neu RW. Ageing kinetics of Ni-base superalloys. Mater High Temp. 2016; 33(4-5): 291-300.
- 30Neu RW. Crack paths in single-crystal Ni-base superalloys under isothermal and thermomechanical fatigue. Int J Fatigue. 2019; 123: 268-278.
- 31Chan KS, Leverant GR. Elevated-temperature fatigue crack growth behavior of MAR-M200 single crystals. Metall Trans A. 1987; 18A: 593-602.
- 32Reed PAS, Wu XD, Sinclair I. Fatigue crack path prediction in UDIMET 720 nickel-based alloy single crystals. Metallurgical and Materials Transactions A. 2000; 31A: 109-123.
- 33Wahl JB, Harris K. New single crystal superalloys, CMSX-7 and CMSX-8. In: ES Huron, RC Reed, MC Hardy, et al., eds. Superalloys 2012: 12th International Symposium on Superalloys. Seven Springs Mountain Resort, Champion, PA: TMS; 2012.
10.1002/9781118516430.ch20 Google Scholar
- 34Estrada Rodas EA, Gorgannejad S, Neu RW, Dyer Z, Draa PM, Shinde SR. On the development of ICME tools for creep and aging of CMSX-8. In: M Hardy, E Huron, U Glatzel, et al., eds. Superalloys 2016: Proceedings of the 13th International Symposium on Superalloys. Seven Springs, PA: TMS; 2016: 665-674.
10.1002/9781119075646.ch71 Google Scholar
- 35Ford DA, Arthey RP. Development of single crystal alloys for specifit engine applications. In: RH Bricknell, WB Kent, M Gell, CS Kortovich, JF Radavich, eds. Superalloys 1984. Warrendale, PA: The metallurgical society of AIME; 1984: 114-124.
10.7449/1984/Superalloys_1984_115_124 Google Scholar
- 36Harris K, Erickson GL, Sikkenga SL, Brentnall WD, Aurrecoechea JM, Kubarych KG (1992) Development of the rhenium containing superalloys CMSX-4 and CM 186 LC for single crystal blade and directionally solidified vane applications in advanced turbine engines. In: SD Antolovich, RW Stusrud, MacKay RA, DL Anton, T Khan, RD Kissinger, DL Klarstrom, Eds Superalloys 1992 the Minerals, Metals and Materials Society (TMS), Warrendale, PA, 297–306.
10.7449/1992/Superalloys_1992_297_306 Google Scholar
- 37Giamei AF, Anton DL. Rhenium additions to a Ni-base superalloy: effects on microstructure. Metall Trans A. 1985; 16A: 1997-2005.
- 38Blavette D, Caron P, Khan T. An atom-probe study of some fine-scale microstructural features in Ni-based single crystal superalloys. In: S Reichman, DN Duhl, G Maurer, S Antolovich, C Lund, eds. Superalloys 1988. The Metallurgical Society of AIME. Pittsburgh, PA: Published by TMS; 305-314.
- 39Karunaratne MSA, Carter P, Reed RC. Interdiffusion in the face-centred cubic phase of the Ni-Re, Ni-Ta and Ni-W systems between 900 and 1300 degrees. C Mat Sci Eng a-Struct. 2000; 281(1-2): 229-233.
- 40Darolia R, Lahrman DF, Field RD. Formation of topologically closed packed phases in nickel base single crystal superalloys. In: S Reichman, DN Duhl, G Maurer, S Antolovich, C Lund, eds. Superalloys 1988. Pennsylvania, USA: The metallurgical society; 1988.
10.7449/1988/Superalloys_1988_255_264 Google Scholar
- 41Wilson BC, Fuchs GE. The effect of composition, misfit and heat treatment on the primary creep behavior of single crystal nickel base superalloys PWA 1480 and PWA 1484. In: RC Reed, KA Green, P Caron, et al., eds. Superalloys 2008. Pennsylvania, USA: The Minerals, Metals & Materials Society; 2008.
10.7449/2008/Superalloys_2008_149_158 Google Scholar
- 42Wilson BC, Fuchs GE. The effect of secondary gamma-prime on the primary creep behavior of single-crystal nickel-base superalloys. Metall and Mat Trans A. 2010; 41(5): 1235-1245.
- 43 International A. ASTM E2714-13 Standard Test Method for Creep-Fatigue Testing. West Conshohocken, PA: ASTM International; 2013.
- 44 International A. ASTM E606/E606M-12 Standard Test Method for Strain-Controlled Fatigue Testing. West Conshohocken, PA: ASTM International; 2012.
- 45Yamashita M, Kakehi K. Tension/compression asymmetry in yield and creep strengths of Ni-based superalloy with a high amount of tantalum. Scr Mater. 2006; 55(2): 139-142.
- 46Tsuno N, Shimabayashi S, Kakehi K, Rae CMF, Reed RC. Tension/compression asymmetry in yield and creep strengths of Ni-based superalloys. Superalloys. 2008; 2008: 433-442.
- 47le Graverend J-B, Cormier J, Gallerneau F, Villechaise P, Kruch S, Mendez J. A microstructure-sensitive constitutive modeling of the inelastic behavior of single crystal nickel-based superalloys at very high temperature. Int J Plasticity. 2014; 59: 55-83.
- 48Donachie MJ, Donachie SJ. Superalloys: A Technical Guide. 2nd ed. ASM International. OH Cambridge, UK: Materials Park; 2002.
10.31399/asm.tb.stg2.9781627082679 Google Scholar
- 49Shah DM, Duhl DN. The effect of orientation, temperature and gamma prime size on the yield strength of a single crystal nickel base superalloy. In: M Gell, ed. Superalloys 1984. Champion, Pennsylvania: Metallurgical Society of AIME, 1984, Seven Springs Mountain Resort; 1984.
10.7449/1984/Superalloys_1984_105_114 Google Scholar
- 50Wang-Koh YM. Understanding the yield behaviour of L12-ordered alloys. Mater Sci Technol. 2017; 33(8): 934-943.
- 51Veyssière P, Saada G. Chapter 53 microscopy and plasticity of the L12 γphase. In: FRN Nabarro, MS Duesbery, eds. Dislocations in Solids. Elsevier; 1996: 253-441. https://doi.org/10.1016/S1572-4859(96)80008-8
- 52Caillard D, Molénat G, Paidar V. On the role of incomplete Kear-Wilsdorf locks in the yield stress anomaly of Ni3Al. Mater Sci Eng A. 1997; 234–236: 695-698.
- 53Veyssière P. Yield stress anomalies in ordered alloys: a review of microstructural findings and related hypotheses. Mater Sci Eng A. 2001; 309–310: 44-48.
- 54Reed RC. Superalloys—Fundamentals and Applications. Cambridge, UK: Cambridge University Press; 2006.
10.1017/CBO9780511541285 Google Scholar
- 55Shenoy MM, Gordon AP, McDowell DL, Neu RW. Thermomechanical fatigue behavior of a directionally solidified Ni-base superalloy. J Eng Mater Technol. 2005; 127(3): 325-336.
- 56Dowling NE. Mean stress effects in strain–life fatigue. Fatigue Fract Eng Mater Struct. 2009; 32(12): 1004-1019.
- 57Fleury E, Rémy L. Behavior of nickel-base superalloy single crystals under thermal-mechanical fatigue. Metallurgical and Materials Transactions A. 1994; 25A: 99-109.
- 58Esmaeili S, Engler-Pinto CC Jr, Ilschner B, Rézaï-Aria F. Interaction between oxidation and thermo-mechanical fatigue in IN738LC superalloy - I. Scripta Metallurgica et Materialia. 1995; 32(11): 1777-1781.
- 59Kupkovits RA, Neu RW. Thermomechanical fatigue of a directionally-solidified Ni-base superalloy: smooth and cylindrically-notched specimens. Int J Fatigue. 2010; 32(8): 1330-1342.
- 60Estrada Rodas EA, Neu RW. Crystal viscoplasticity model for the creep-fatigue interactions in single-crystal Ni-base superalloy CMSX-8. Int J Plasticity. 2018; 100: 14-33.