Lifetime estimation of mechanical assemblies under constant amplitude fretting fatigue loading
Corresponding Author
Andrea Carpinteri
Department of Engineering and Architecture, University of Parma, Parma, Italy
Correspondence
Andrea Carpinteri, Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy.
Email: [email protected]
Search for more papers by this authorSabrina Vantadori
Department of Engineering and Architecture, University of Parma, Parma, Italy
Search for more papers by this authorAndrea Zanichelli
Department of Engineering and Architecture, University of Parma, Parma, Italy
Search for more papers by this authorCorresponding Author
Andrea Carpinteri
Department of Engineering and Architecture, University of Parma, Parma, Italy
Correspondence
Andrea Carpinteri, Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy.
Email: [email protected]
Search for more papers by this authorSabrina Vantadori
Department of Engineering and Architecture, University of Parma, Parma, Italy
Search for more papers by this authorAndrea Zanichelli
Department of Engineering and Architecture, University of Parma, Parma, Italy
Search for more papers by this authorAbstract
In the present paper, a new analytical methodology to estimate both crack path and lifetime of metallic structural components under fretting fatigue elastic partial slip loading condition is proposed. Such a methodology consists in the joint application of (a) the criterion by Carpinteri et al for metallic structures under multiaxial constant amplitude fatigue loading in high-cycle fatigue regime, (b) the critical direction method by Araújo et al, and (c) the critical distance method by Taylor, in the form of the line method. The accuracy of the above methodology is evaluated through experimental tests available in the literature, performed employing two cylindrical fretting pads pressed with a constant normal load against a dog-bone type test specimen subjected to a cyclic axial load. All these components are made of Al 7075-T651 aluminium alloy.
REFERENCES
- 1Szolwinski MP, Farris TN. Mechanics of fretting fatigue crack formation. Int J Fatigue. 1997; 19: 39-49.
- 2Waterhouse RB. Fretting Corrosion. UK: Pergamon; 1972.
- 3Waterhouse RB. Fretting fatigue. Int Mater Rev. 1992; 37: 77-97.
- 4Farrahi GH, Majzoubi GH. Crack behavior of the aluminum alloy 2024 under fretting conditions. Int J Eng. 2002; 15: 287-292.
- 5Hurricks PL. Mechanism of fretting. Wear. 1970; 15: 389-409.
- 6Berthier Y, Vincent L, Godet M. Fretting fatigue and fretting wear. Tribol Int. 1989; 22: 235-242.
- 7Endo K, Goto H. Initiation and propagation of fretting fatigue cracks. Wear. 1976; 38: 311-324.
- 8Hills DA, Nowell D, O'Connor JJ. On the mechanics of fretting fatigue. Wear. 1988; 125: 129-146.
- 9Nishioka K, Hirakawa K. Fundamental investigations of fretting fatigue, part 3. Bull Jpn Soc Mech Eng. 1969; 12: 397-407.
10.1299/jsme1958.12.397 Google Scholar
- 10Chen JJ, Liu L, Li SX, Yu SR, He YN. Experimental and numerical investigation on crack initiation of fretting fatigue of dovetail. Fatigue Fract Eng Mater Struct. 2018; 41: 1426-1436.
- 11Minaii K, Farrahi GH, Karimpour M, Bahai H, Majzoobi GH. Investigation of microstructure effect on fretting fatigue crack initiation using crystal plasticity. Fatigue Fract Eng Mater Struct. 2019; 42: 640-650.
- 12Nesládek M, Španiel M, Kuželka J, Jurenka J, Doubrava K. A fretting damage correction factor applicable to the McDiarmid criterion of plain high-cycle fatigue. Fatigue Fract Eng Mater Struct. 2017; 40: 27-44.
- 13Yang Q, Zhou W, Gai P, et al. Investigation on the fretting fatigue behaviors of Ti-6Al-4V dovetail joint specimens treated with shot-peening. Wear. 2017; 372–373: 81-90.
- 14Chung CS, Kim HK. Fatigue strength of self-piercing riveted joints in lap-shear specimens of aluminium and steel sheets. Fatigue Fract Eng Mater Struct. 2016; 39: 1105-1114.
- 15Juoksukangas J, Lehtovaara A, Mäntylä A. Experimental and numerical investigation of fretting fatigue behavior in bolted joints. Tribol Int. 2016; 103: 440-448.
- 16Moraes JFC, Rao1 HM, Jordon JB, Barkey ME. High cycle fatigue mechanisms of aluminum self-piercing riveted joints. Fatigue Fract Eng Mater Struct. 2018; 41: 57-70.
- 17Hoeppner DW. Fretting fatigue case studies of engineering components. Tribol Int. 2006; 39: 1271-1276.
- 18Araújo JA, Castro FC, Pommier S, Bellecave J, Meriaux J. On the design and test of equivalent configurations for notch and fretting fatigue. Fatigue Fract Eng Mater Struct. 2016; 39: 1241-1250.
- 19Fadel AA, Rosa D, Murça LB, Fereira JLA, Araújo JA. Effect of high mean tensile stress on the fretting fatigue life of an Ibis steel reinforced aluminium conductor. Int J Fatigue. 2012; 42: 24-34.
- 20Sunde SL, Berto F, Haugen B. Predicting fretting fatigue in engineering design. Int J Fatigue. 2018; 117: 314-326.
- 21Anjum Z, Qayyum F, Khushnood S, Ahmed S, Shah M. Prediction of non-propagating fretting fatigue cracks in Ti6Al4V sheet tested under pin-in-dovetail configuration: experimentation and numerical simulation. Mater Des. 2015; 87: 750-758.
- 22Erena D, Vázquez J, Navarro C, Domínguez J. Voids as stress relievers and a palliative in fretting. Fatigue Fract Eng Mater Struct. 2018; 41: 2475-2484.
- 23Li X, Yang JW, Li MH, Zuo Z. An investigation on fretting fatigue mechanism under complex cyclic loading conditions. Int J Fatigue. 2016; 88: 227-235.
- 24Navarro C, Vázquez J, Domínguez J. A general model to estimate life in notches and fretting fatigue. Eng Fract Mech. 2011; 78(8): 1590-1601.
- 25Proudhon H, Fouvry S, Yantio GR. Determination and prediction of the fretting crack initiation: introduction of the (P, Q, N) representation and definition of a variable process volume. Int J Fatigue. 2008; 28: 707-713.
- 26Vázquez J, Navarro C, Domínguez J. Analysis of fretting fatigue initial crack path in Al7075-T651 using cylindrical contact. Tribol Int. 2017; 108: 87-94.
- 27Walvekar AA, Leonard BD, Sadeghi F, Jalalahmadi B, Bolander N. An experimental study and fatigue damage model for fretting fatigue. Tribol Int. 2014; 79: 183-196.
- 28Bhatti NA, Wahab MA. Fretting fatigue crack nucleation: A review. Tribol Int. 2018; 121: 121-138.
- 29Findley WN. A theory for the effect of mean stress on fatigue of metals under combined torsion and axial load or bending. J Eng Ind Nov. 1959; 301-306.
10.1115/1.4008327 Google Scholar
- 30McDiarmid DL. A general criterion for high cycle multiaxial fatigue failure. Fatigue Fract Eng Mater Struct. 1991; 14: 429-453.
- 31Brown MW, Miller KJ. A theory for fatigue under multiaxial stress-strain conditions. In: A Theory for Fatigue Under Multiaxial Stress-Strain Conditions. Proc Inst Mech Eng. 1973; 187: 745-756.
10.1243/PIME_PROC_1973_187_161_02 Google Scholar
- 32Fatemi A, Socie DF. A critical plane approach to multiaxial fatigue damage including out-of-phase loading. Fatigue Fract Eng Mater Struct. 1988; 11: 149-165.
- 33Smith K, Topper T, Watson P. A stress-strain function for the fatigue of metals. J Mater. 1970; 5: 767-778.
- 34Liu KC. A method based on virtual strain-energy parameters for multiaxial fatigue life prediction. In: DL McDowell, R Ellis, eds. Advances in Multiaxial Fatigue. Philadelphia: American Society for Testing and Materials; 1993: 67-84.
10.1520/STP24796S Google Scholar
- 35Crossland B. Effect of large hydrostatic pressures on the torsional fatigue strength of an alloy steel. In: Proceedings of International Conference on Fatigue of Metals; 1956: 138-149.
- 36Ruiz C, Boddington PHB, Chen KC. An investigation of fatigue and fretting in a dovetail joint. Exp Mech. 1984; 24: 208-217.
- 37Ding J, Houghton D, Williams E, Leen S. Simple parameters to predict effect of surface damage on fretting fatigue. Int J Fatigue. 2011; 33: 332-342.
- 38Lemaitre J, Desmorat R. Engineering damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures. Springer Science & Business Media; 2005.
- 39Bhattacharya B, Ellingwood B. Continuum damage mechanics analysis of fatigue crack initiation. Int J Fatigue. 1998; 20: 631-639.
- 40Chaboche JL, Lesne PM. A non-linear continuous fatigue damage model. Fatigue Fract Eng Mater Struct. 1988; 11: 1-17.
- 41Lemaitre J. A continuous damage mechanics model for ductile fracture. Transac ASME J Eng Mater Technol. 1985; 107: 83-89.
- 42Vázquez J, Navarro C, Domínguez J. Two dimensional versus three dimensional modelling in fretting fatigue life prediction. J Strain Anal. 2016; 51: 109-117.
- 43Carpinteri A, Spagnoli A, Vantadori S. Multiaxial fatigue assessment using a simplified critical plane-based criterion. Int J Fatigue. 2011; 33: 969-976.
- 44Carpinteri A, Ronchei C, Scorza D, Vantadori S. Critical plane orientation influence on multiaxial high-cycle fatigue assessment. Phys Mesomech. 2015; 18: 348-354.
- 45Ronchei C, Carpinteri A, Fortese G, Scorza D, Vantadori S. Fretting high-cycle fatigue assessment through a multiaxial critical plane-based criterion in conjunction with the Taylor's point method. Solid State Phenomena. 2016; 258: 217-220.
10.4028/www.scientific.net/SSP.258.217 Google Scholar
- 46Araújo JA, Almeida GMJ, Ferreira JLA, da Silva CRM, Castro FC. Early cracking orientation under high stress gradient: the fretting case. Int J Fatigue. 2017; 100: 302-311.
- 47Taylor D. The Theory of Critical Distances: A New Perspective in Fracture Mechanics. UK: Elsevier; 2007.
- 48Boller C, Seeger T. Materials Data for Cyclic Loading. Elsevier Publishing Company; 1998.
- 49Navarro C, Vázquez J, Domínguez J. Nucleation and early crack path in fretting fatigue. Int J Fatigue. 2017; 100: 602-610.
- 50Johnson KL. Contact Mechanics. UK: Cambridge University Press; 1985.
10.1017/CBO9781139171731 Google Scholar
- 51Hertz H. Miscellaneous Paper by Heinrich Hertz. New York: Macmillan & Co; 1896.
- 52Cattaneo C. Sul contatto di due corpi elastici: distribuzione locale degli sforzi. Rendiconti dell'Accademia nazionale dei Lincei. 1938; 27: 342-348.
- 53Mindlin RD. Compliance of elastic bodies in contact. J Appl Mech. 1949; 16: 259-268.
- 54McEwen E. Stress in elastic cylinders in contact along a generatrix. Phil Mag. 1949; 40: 454.
10.1080/14786444908521733 Google Scholar
- 55Nowell D, Hills DA. Mechanics of fretting fatigue tests. Int J Mech Sci. 1987; 29: 355-365.
- 56Vantadori S, Fortese G, Ronchei C, Scorza D. A stress gradient approach for fretting fatigue assessment of metallic structural components. Int J Fatigue. 2017; 101: 1-8.
- 57Araújo JA, Carpinteri A, Ronchei C, Spagnoli A, Vantadori S. An alternative definition of the shear stress amplitude based on the maximum rectangular hull method and application to the C-S (Carpinteri-Spagnoli) criterion. Fatigue Fract Eng Mater Struct. 2014; 37: 764-771.
- 58Goodman J. Mechanics Applied to Engineering. UK: Longman, Green & Company; 1899.
- 59Araújo JA, Nowell D. The effect of rapidly varying contact stress fields on fretting fatigue. Int J Fatigue. 2002; 24: 763-775.
- 60Martín V, Navarro C, Vázquez J, Domínguez J. Mejora de la resistencia a fatiga por fretting con el tratamiento de shot peening. Anales de Mecánica de la Fractura. 2017; 34: 82-88.
- 61Navarro C, Muñoz S, Domínguez J. Fracture mechanics approach to fretting fatigue behaviour of coated aluminium alloy components. J Strain Anal Eng. 2014; 49: 66-75.
- 62Navarro C, Vázquez J, Domínguez J. 3D vs. 2D fatigue crack initiation and propagation in notched plates. Int J Fatigue. 2014; 58: 40-46.
- 63Łagoda T, Walat K. Lifetime of semi-ductile materials through the critical plane approach. Int J Fatigue. 2014; 67: 73-77.