Review on COVID-19 diagnosis models based on machine learning and deep learning approaches
Corresponding Author
Zaid Abdi Alkareem Alyasseri
Center for Artificial Intelligence Technology, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
ECE Department-Faculty of Engineering, University of Kufa, Najaf, Iraq
Correspondence
Zaid Abdi Alkareem Alyasseri, Center for Artificial Intelligence Technology, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
Email: [email protected]
Search for more papers by this authorMohammed Azmi Al-Betar
Artificial Intelligence Research Center (AIRC), Ajman University, Ajman, United Arab Emirates
Department of Information Technology, Al-Huson University College, Al-Balqa Applied University, Irbid, Jordan
Search for more papers by this authorIyad Abu Doush
Computing Department, College of Engineering and Applied Sciences, American University of Kuwait, Salmiya, Kuwait
Computer Science Department, Yarmouk University, Irbid, Jordan
Search for more papers by this authorMohammed A. Awadallah
Artificial Intelligence Research Center (AIRC), Ajman University, Ajman, United Arab Emirates
Department of Computer Science, Al-Aqsa University, Gaza, Palestine
Search for more papers by this authorAmmar Kamal Abasi
Artificial Intelligence Research Center (AIRC), Ajman University, Ajman, United Arab Emirates
School of Computer Sciences, Universiti Sains Malaysia, Penang, Malaysia
Search for more papers by this authorSharif Naser Makhadmeh
Faculty of Information Technology, Middle East University, Amman, Jordan
Artificial Intelligence Research Center (AIRC), Ajman University, Ajman, United Arab Emirates
Search for more papers by this authorOsama Ahmad Alomari
MLALP Research Group, University of Sharjah, Sharjah, United Arab Emirates
Search for more papers by this authorKarrar Hameed Abdulkareem
College of Agriculture, Al-Muthanna University, Samawah, Iraq
Search for more papers by this authorAfzan Adam
Center for Artificial Intelligence Technology, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
Search for more papers by this authorRobertas Damasevicius
Faculty of Applied Mathematics, Silesian University of Technology, Gliwice, Poland
Search for more papers by this authorMazin Abed Mohammed
College of Computer Science and Information Technology, University of Anbar, Anbar, Iraq
Search for more papers by this authorRaed Abu Zitar
Sorbonne Center of Artificial Intelligence, Sorbonne University-Abu Dhabi, Abu Dhabi, United Arab Emirates
Search for more papers by this authorCorresponding Author
Zaid Abdi Alkareem Alyasseri
Center for Artificial Intelligence Technology, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
ECE Department-Faculty of Engineering, University of Kufa, Najaf, Iraq
Correspondence
Zaid Abdi Alkareem Alyasseri, Center for Artificial Intelligence Technology, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
Email: [email protected]
Search for more papers by this authorMohammed Azmi Al-Betar
Artificial Intelligence Research Center (AIRC), Ajman University, Ajman, United Arab Emirates
Department of Information Technology, Al-Huson University College, Al-Balqa Applied University, Irbid, Jordan
Search for more papers by this authorIyad Abu Doush
Computing Department, College of Engineering and Applied Sciences, American University of Kuwait, Salmiya, Kuwait
Computer Science Department, Yarmouk University, Irbid, Jordan
Search for more papers by this authorMohammed A. Awadallah
Artificial Intelligence Research Center (AIRC), Ajman University, Ajman, United Arab Emirates
Department of Computer Science, Al-Aqsa University, Gaza, Palestine
Search for more papers by this authorAmmar Kamal Abasi
Artificial Intelligence Research Center (AIRC), Ajman University, Ajman, United Arab Emirates
School of Computer Sciences, Universiti Sains Malaysia, Penang, Malaysia
Search for more papers by this authorSharif Naser Makhadmeh
Faculty of Information Technology, Middle East University, Amman, Jordan
Artificial Intelligence Research Center (AIRC), Ajman University, Ajman, United Arab Emirates
Search for more papers by this authorOsama Ahmad Alomari
MLALP Research Group, University of Sharjah, Sharjah, United Arab Emirates
Search for more papers by this authorKarrar Hameed Abdulkareem
College of Agriculture, Al-Muthanna University, Samawah, Iraq
Search for more papers by this authorAfzan Adam
Center for Artificial Intelligence Technology, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
Search for more papers by this authorRobertas Damasevicius
Faculty of Applied Mathematics, Silesian University of Technology, Gliwice, Poland
Search for more papers by this authorMazin Abed Mohammed
College of Computer Science and Information Technology, University of Anbar, Anbar, Iraq
Search for more papers by this authorRaed Abu Zitar
Sorbonne Center of Artificial Intelligence, Sorbonne University-Abu Dhabi, Abu Dhabi, United Arab Emirates
Search for more papers by this authorAbstract
COVID-19 is the disease evoked by a new breed of coronavirus called the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Recently, COVID-19 has become a pandemic by infecting more than 152 million people in over 216 countries and territories. The exponential increase in the number of infections has rendered traditional diagnosis techniques inefficient. Therefore, many researchers have developed several intelligent techniques, such as deep learning (DL) and machine learning (ML), which can assist the healthcare sector in providing quick and precise COVID-19 diagnosis. Therefore, this paper provides a comprehensive review of the most recent DL and ML techniques for COVID-19 diagnosis. The studies are published from December 2019 until April 2021. In general, this paper includes more than 200 studies that have been carefully selected from several publishers, such as IEEE, Springer and Elsevier. We classify the research tracks into two categories: DL and ML and present COVID-19 public datasets established and extracted from different countries. The measures used to evaluate diagnosis methods are comparatively analysed and proper discussion is provided. In conclusion, for COVID-19 diagnosing and outbreak prediction, SVM is the most widely used machine learning mechanism, and CNN is the most widely used deep learning mechanism. Accuracy, sensitivity, and specificity are the most widely used measurements in previous studies. Finally, this review paper will guide the research community on the upcoming development of machine learning for COVID-19 and inspire their works for future development. This review paper will guide the research community on the upcoming development of ML and DL for COVID-19 and inspire their works for future development.
Open Research
DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
REFERENCES
- Abasi, A. K., Khader, A. T., Al-Betar, M. A., Naim, S., Alyasseri, Z. A. A., & Makhadmeh, S. N. (2020). A novel hybrid multi-verse optimizer with K-means for text documents clustering. Neural Computing & Applications, 32, 17703–17729.
- Abasi, A. K., Khader, A. T., Al-Betar, M. A., Naim, S., Makhadmeh, S. N., & Alyasseri, Z. A. A. (2021). An improved text feature selection for clustering using binary grey wolf optimizer. In Proceedings of the 11th National Technical Seminar on Unmanned System Technology 2019 (pp. 503–516). Singapore: Springer.
10.1007/978-981-15-5281-6_34 Google Scholar
- Abasi, A. K., Khader, A. T., Al-Betar, M. A., Naim, S., Makhadmeh, S. N., & Alyasseri, Z. A. A. (2019b). A text feature selection technique based on binary multi-verse optimizer for text clustering. In 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT) (pp. 1–6). IEEE.
10.1109/JEEIT.2019.8717491 Google Scholar
- Abasi, A. K., Khader, A. T., Al-Betar, M. A., Naim, S., Makhadmeh, S. N., & Alyasseri, Z. A. A. (2020a). Link-based multi-verse optimizer for text documents clustering. Applied Soft Computing, 87, 106002. https://doi.org/10.1016/j.asoc.2019.106002
- Abasi, A. K., Khader, A. T., Al-Betar, M. A., Naim, S., Makhadmeh, S. N., & Alyasseri, Z. A. A. (2020b). A novel ensemble statistical topic extraction method for scientific publications based on optimization clustering. Multimedia Tools and Applications, 80(1), 1–46.
- Abdulkareem, A. B., Sani, N. S., Shahnorbanun, S., Alyasseri, Z. A. A., Afzan, A., Abdul Hadi, A. R., & Abdulkarem, B. A. (2021). Predicting COVID-19 based on environmental factors with machine learning. Intelligent Automation & Soft Computing, 28(2), 305–320. https://doi.org/10.32604/iasc.2021.015413
- Abdulkareem, K. H., Mohammed, M. A., Salim, A., Arif, M., Geman, O., Gupta, D., & Khanna, A. (2021). Realizing an effective COVID-19 diagnosis system based on machine learning and IOT in smart hospital environment. IEEE Internet of Things Journal, 1, 1–1. https://doi.org/10.1109/JIOT.2021.3050775
- Afshar, P., Heidarian, S., Enshaei, N., Naderkhani, F., Rafiee, M. J., Oikonomou, A., Fard, F. B., Samimi, K., Plataniotis, K. N., & Mohammadi, A. (2020). COVID-CT-MD: COVID-19 computed tomography (CT) scan dataset applicable in machine learning and deep learning. arXiv preprint arXiv:2009.14623.
- Ahammed, K., Satu, M. S., Abedin, M. Z., Rahaman, M. A., & Islam, S. M. S. (2020). Early detection of coronavirus cases using chest X-ray images employing machine learning and deep learning approaches. medRxiv.
- Ahmad, A., Garhwal, S., Ray, S. K., Kumar, G., Malebary, S. J., & Barukab, O. M. (2020). The number of confirmed cases of covid-19 by using machine learning: Methods and challenges. Archives of Computational Methods in Engineering, 28(4), 1–9.
- Ahmad, F. S., Ali, L., Raza-Ul-Mustafa, Khattak, H. A., Hameed, T., Wajahat, I., Kadry, S., & Bukhari, S. A. C. (2020). A hybrid machine learning framework to predict mortality in paralytic ileus patients using electronic health records (EHRs). Journal of Ambient Intelligence and Humanized Computing, 1(1), 1–11.
- Ahmed, N., Shahbaz, T., Shamim, A., Khan, K. S., Hussain, S., & Usman, A. (2020). The COVID-19 infodemic: A quantitative analysis through Facebook. Cureus, 12(11), 1–8.
- Ahmed, S., Hossain, M. F., & Noor, M. B. T. (2021). Convid-Net: An enhanced convolutional neural network framework for COVID-19 detection from X-ray images. In Proceedings of International Conference on Trends in Computational and Cognitive Engineering (pp. 671–681). Springer.
10.1007/978-981-33-4673-4_55 Google Scholar
- Akram, T., Attique, M., Gul, S., Shahzad, A., Altaf, M., Naqvi, S. S. R., Damaševičius, R., & Maskeliūnas, R. (2021). A novel framework for rapid diagnosis of COVID-19 on computed tomography scans. Pattern Analysis and Applications, 1, 1–14.
- Alakus, T. B., & Turkoglu, I. (2020). Comparison of deep learning approaches to predict COVID-19 infection. Chaos, Solitons & Fractals, 140, 110120. https://doi.org/10.1016/j.chaos.2020.110120
- Alazab, M., Awajan, A., Mesleh, A., Abraham, A., Jatana, V., & Alhyari, S. (2020). COVID-19 prediction and detection using deep learning. International Journal of Computer Information Systems and Industrial Management Applications, 12, 168–181.
- Albahri, A., Hamid, R. A., Alwan, J. K., Al-qays, Z. T., Zaidan, A. A., Zaidan, B. B., Albahri, A. O. S., AlAmoodi, A. H., Khlaf, J. M., Almahdi, E. M., Thabet, E., Hadi, S. M., Mohammed, K. I., Alsalem, M. A., Al-Obaidi, J. R., & Madhloom, H. T. (2020). Role of biological data mining and machine learning techniques in detecting and diagnosing the novel coronavirus (COVID-19): A systematic review. Journal of Medical Systems, 44(7), 122. https://doi.org/10.1007/s10916-020-01582-x
- Albawi, S., Mohammed, T. A., & Al-Zawi, S. (2017). Understanding of a convolutional neural network. In 2017 International Conference on Engineering and Technology (ICET) (pp. 1–6). IEEE.
10.1109/ICEngTechnol.2017.8308186 Google Scholar
- Al-Betar, M. A., Alyasseri, Z. A. A., Awadallah, M. A., & Doush, I. A. (2021). Coronavirus herd immunity optimizer (CHIO). Neural Computing and Applications, 33(10), 5011–5042. https://doi.org/10.1007/s00521-020-05296-6
- Alimadadi, A., Aryal, S., Manandhar, I., Munroe, P. B., Joe, B., & Cheng, X. (2020). Artificial intelligence and machine learning to fight COVID-19. Physiological Genomics, 52(4), 200–202.
- Al-Karawi, D., Al-Zaidi, S., Polus, N., & Jassim, S. (2020). Machine learning analysis of chest CT scan images as a complementary digital test of coronavirus (COVID-19) patients. medRxiv.
- Altan, A., & Karasu, S. (2020). Recognition of COVID-19 disease from X-ray images by hybrid model consisting of 2D curvelet transform, chaotic salp swarm algorithm and deep learning technique. Chaos, Solitons & Fractals, 140, 110071. https://doi.org/10.1016/j.chaos.2020.110071
- Al-Waisy, A., Mohammed, M. A., Al-Fahdawi, S., Maashi, M., Garcia-Zapirain, B., Abdulkareem, K. H., Mostafa, S., Kumar, N. M., & Le, D. N. (2021). COVID-DEEPNet: Hybrid multimodal deep learning system for improving COVID-19 pneumonia detection in chest X-ray images. Computers, Materials and Continua, 67(2). 1–10. https://doi.org/10.32604/cmc.2021.012955
- Al-Waisy, A. S., Al-Fahdawi, S., Mohammed, M. A., Abdulkareem, K. H., Mostafa, S. A., Maashi, M. S., Arif, M., & Garcia-Zapirain, B. (2020). COVID-CheXNet: Hybrid deep learning framework for identifying COVID-19 virus in chest X-rays images. Soft Computing, 21(28), 1–16.
- Alzubaidi, M. A., Otoom, M., Otoum, N., Etoom, Y., & Banihani, R. (2021). A novel computational method for assigning weights of importance to symptoms of COVID-19 patients. Artificial Intelligence in Medicine, 112, 102018. https://doi.org/10.1016/j.artmed.2021.102018
- Amyar, A., Modzelewski, R., Li, H., & Ruan, S. (2020). Multi-task deep learning based CT imaging analysis for COVID-19 pneumonia: Classification and segmentation. Computers in Biology and Medicine, 126, 104037. https://doi.org/10.1016/j.compbiomed.2020.104037
- Antin, B., Kravitz, J., & Martayan, E. (2017). Detecting pneumonia in chest X-rays with supervised learning. Semantic scholar.org.
- Apostolopoulos, I. D., Aznaouridis, S. I., & Tzani, M. A. (2020). Extracting possibly representative COVID-19 biomarkers from X-ray images with Deep Learning approach and image data related to pulmonary diseases. Journal of Medical and Biological Engineering, 40, 462–469.
- Apostolopoulos, I. D., & Mpesiana, T. A. (2020). Covid-19: Automatic detection from X-ray images utilizing transfer learning with convolutional neural networks. Physical and Engineering Sciences in Medicine, 43(2), 635–640. https://doi.org/10.1007/s13246-020-00865-4
- Ardakani, A. A., Kanafi, A. R., Acharya, U. R., Khadem, N., & Mohammadi, A. (2020). Application of deep learning technique to manage COVID-19 in routine clinical practice using CT images: Results of 10 convolutional neural networks. Computers in Biology and Medicine, 121, 103795.
- Arora, P., Kumar, H., & Panigrahi, B. K. (2020). Prediction and analysis of COVID-19 positive cases using deep learning models: A descriptive case study of India. Chaos, Solitons & Fractals, 139, 110017. https://doi.org/10.1016/j.chaos.2020.110017
- Asnaoui, K. E., & Chawki, Y., & Idri, A. (2020). Automated methods for detection and classification pneumonia based on x-ray images using deep learning, arXiv preprint arXiv:2003.14363.
- Azizan, M., Ismail, H. H., & Qaiwer, S. N. (2020). Power and solidarity in positive facebook postings amidst COVID-19 in Malaysia. Journal of Nusantara Studies (JONUS), 5(2), 329–364. https://doi.org/10.24200/jonus.vol5iss2pp329-364
10.24200/jonus.vol5iss2pp329-364 Google Scholar
- Bairoch, A., Apweiler, R., Wu, C. H., Barker, W. C., Boeckmann, B., Ferro, S., Gasteiger, E., Huang, H., Lopez, R., Magrane, M., Martin, M. J., Natale, D. A., O'Donovan, C., Redaschi, N., & Yeh, L.-S. L. (2005). The universal protein resource (UniProt). Nucleic Acids Research, 33(suppl_1), D154–D159.
- Bandyopadhyay, S. K., & Dutta, S. (2020). Machine learning approach for confirmation of covid-19 cases: Positive, negative, death and release. medRxiv.
- Barstugan, M., Ozkaya, U., & Ozturk, S. (2020). Coronavirus (COVID-19) classification using CT images by machine learning methods. arXiv preprint arXiv:2003.09424.
- Basu, S., Mitra, S., & Saha, N. (2020). Deep learning for screening COVID-19 using chest X-ray images. In 2020 IEEE Symposium Series on Computational Intelligence (SSCI) (pp. 2521–2527). IEEE.
10.1109/SSCI47803.2020.9308571 Google Scholar
- Bernheim, A., Mei, X., Huang, M., Yang, Y., Fayad, Z. A., Zhang, N., Diao, K., Lin, B., Zhu, X., Li, K., Li, S., Shan, H., Jacobi, A., & Chung, M. (2020). Chest CT findings in coronavirus disease-19 (COVID-19): Relationship to duration of infection. Radiology, 200463. 1,
- Bharati, S., Podder, P., & Mondal, M. R. H. (2020). Hybrid deep learning for detecting lung diseases from X-ray images. Informatics in Medicine Unlocked, 20, 100391. https://doi.org/10.1016/j.imu.2020.100391
- Brunese, L., Mercaldo, F., Reginelli, A., & Santone, A. (2020). Explainable deep learning for pulmonary disease and coronavirus COVID-19 detection from X-rays. Computer Methods and Programs in Biomedicine, 196, 105608. https://doi.org/10.1016/j.cmpb.2020.105608
- Burdick, H., Lam, C., Mataraso, S., Siefkas, A., Braden, G., Dellinger, R. P., McCoy, A., Vincent, J.-L., Green-Saxena, A., Barnes, G., Hoffman, J., Calvert, J., Pellegrini, E., & Das, R. (2020). Prediction of respiratory decompensation in Covid-19 patients using machine learning: The READY trial. Computers in Biology and Medicine, 124, 103949. https://doi.org/10.1016/j.compbiomed.2020.103949
- Cannata, A., Cannavò, F., Di Grazia, G., Aliotta, M., Cassisi, C., De Plaen, R. S., Gresta, S., Lecocq, T., Montalto, P., & Sciotto, M. (2021). Seismic evidence of the COVID-19 lockdown measures: A case study from eastern Sicily (Italy). Solid Earth, 12(2), 299–317. https://doi.org/10.5194/se-12-299-2021
- Carrer, L., Donini, E., Marinelli, D., Zanetti, M., Mento, F., Torri, E., Smargiassi, A., Inchingolo, R., Soldati, G., Demi, L., Bovolo, F., & Bruzzone, L. (2020). Automatic pleural line extraction and COVID-19 scoring from lung ultrasound data. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 67(11), 2207–2217. https://doi.org/10.1109/TUFFC.2020.3005512
- Carrillo-Larco, R. M., & Castillo-Cara, M. (2020). Using country-level variables to classify countries according to the number of confirmed COVID-19 cases: An unsupervised machine learning approach. Wellcome Open Research, 5, 56.
- Chakraborty, T., & Ghosh, I. (2020). Real-time forecasts and risk assessment of novel coronavirus (COVID-19) cases: A data-driven analysis. Chaos, Solitons & Fractals, 135, 109850. https://doi.org/10.1016/j.chaos.2020.109850
- Chandra, R., Jain, A., & Chauhan, D. S. (2021). Deep learning via LSTM models for COVID-19 infection forecasting in India. arXiv preprint arXiv:2101.11881.
- Chaudhary, L., & Singh, B. (2021). Community detection using unsupervised machine learning techniques on COVID-19 dataset. Social Network Analysis and Mining, 11(1), 1–9.
- Che, H., Radbel, J., Sunderram, J., Nosher, J. L., Patel, V. M., & Hacihaliloglu, I. (2021). Multi-feature multi-scale CNN-derived COVID-19 classification from lung ultrasound data. arXiv preprint arXiv:2102.11942.
- Cheng, F.-Y., Joshi, H., Tandon, P., Freeman, R., Reich, D. L., Mazumdar, M., Kohli-Seth, R., Levin, M., Timsina, P., & Kia, A. (2020). Using machine learning to predict ICU transfer in hospitalized COVID-19 patients. Journal of Clinical Medicine, 9(6), 1668. https://doi.org/10.3390/jcm9061668
- Choi, Y. S., Ahn, S. S., Chang, J. H., Kang, S.-G., Kim, E. H., Kim, S. H., Jain, R., & Lee, S.-K. (2020). Machine learning and radiomic phenotyping of lower grade gliomas: Improving survival prediction. European Radiology, 1, 1–9.
- Chowdhury, M. E., Rahman, T., Khandakar, A., Al-Madeed, S., Zughaier, S. M., Doi, S. A., Hassen, H., & Islam, M. T. (2021). An early warning tool for predicting mortality risk of COVID-19 patients using machine learning. Cognitive Computation, 1, 1–16.
- Chowdhury, M. E., Rahman, T., Khandakar, A., Mazhar, R., Kadir, M. A., Mahbub, Z. B., Islam, K. R., Khan, M. S., Iqbal, A., Al-Emadi, N., Reaz, M. B. I., & Islam, M. T. (2020). Can AI help in screening viral and covid-19 pneumonia? arXiv preprint arXiv:2003.13145.
- Chowdhury, N. K., Kabir, M. A., Rahman, M., & Rezoana, N. (2020). ECOVNet: An ensemble of deep convolutional neural networks based on efficientnet to detect COVID-19 from chest X-rays. arXiv preprint arXiv:2009.11850.
- Chung, M., Bernheim, A., Mei, X., Zhang, N., Huang, M., Zeng, X., Cui, J., Xu, W., Yang, Y., Fayad, Z. A., Jacobi, A., Li, K., Li, S., & Shan, H. (2020). CT imaging features of 2019 novel coronavirus (2019-nCoV). Radiology, 295(1), 202–207. https://doi.org/10.1148/radiol.2020200230
- Civit-Masot, J., Luna-Perejón, F., Domínguez Morales, M., & Civit, A. (2020). Deep learning system for COVID-19 diagnosis aid using X-ray pulmonary images. Applied Sciences, 10(13), 4640. https://doi.org/10.3390/app10134640
- Cobb, J., & Seale, M. (2020). Examining the effect of social distancing on the compound growth rate of COVID-19 at the county level (United States) using statistical analyses and a random forest machine learning model. Public Health, 185, 27–29.
- Cohen, J. P., & Morrison, P., & Dao, L. (2020). COVID-19 image data collection. arXiv preprint arXiv:2003.11597.
- Cole, M. A., Elliott, R. J., & Liu, B. (2020). The impact of the Wuhan Covid-19 lockdown on air pollution and health: A machine learning and augmented synthetic control approach. Environmental and Resource Economics, 76(4), 553–580. https://doi.org/10.1007/s10640-020-00483-4
- Corman, V. M., Landt, O., Kaiser, M., Molenkamp, R., Meijer, A., Chu, D. K., Bleicker, T., Brünink, S., Schneider, J., Schmidt, M. L., Mulders, D. G. J. C., Haagmans, B. L., van der Veer, B., van den Brink, S., Wijsman, L., Goderski, G., Romette, J.-L., Ellis, J., Zambon, M., … Drosten, C. (2020). Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance, 25(3), 2000045.
- Crosby, J., Chen, S., Li, F., MacMahon, H., & Giger, M. (2020). Network output visualization to uncover limitations of deep learning detection of pneumothorax. In Medical Imaging 2020: Image Perception, Observer Performance, and Technology Assessment (Vol. 11316, 113160O). International Society for Optics and Photonics.
10.1117/12.2550066 Google Scholar
- Cucinotta, D., & Vanelli, M. (2020). Who declares COVID-19 a pandemic. Acta Biomedica: Atenei Parmensis, 91(1), 157–160.
- Cui, W., Robins, D., & Finkelstein, J. (2020). Unsupervised machine learning for the discovery of latent clusters in covid-19 patients using electronic health records. Studies in Health Technology and Informatics, 272, 1–4.
- Dai, C., Wang, S., Mo, Y., Zhou, K., Angelini, E., Guo, Y., & Bai, W. (2020). Suggestive annotation of brain tumour images with gradient-guided sampling. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 156–165). Springer.
10.1007/978-3-030-59719-1_16 Google Scholar
- Dansana, D., Kumar, R., Bhattacharjee, A., Hemanth, D. J., Gupta, D., Khanna, A., & Castillo, O. (2020). Early diagnosis of COVID-19-affected patients based on X-ray and computed tomography images using deep learning algorithm. Soft Computing, 1, 1–9.
- Das, N. N., Kumar, N., Kaur, M., Kumar, V., & Singh, D. (2020). Automated deep transfer learning-based approach for detection of COVID-19 infection in chest X-rays. IRBM, 1, 1–6.
- Dastider, A. G., Sadik, F., & Fattah, S. A. (2021). An integrated autoencoder-based hybrid CNN-LSTM model for COVID-19 severity prediction from lung ultrasound. Computers in Biology and Medicine, 132, 104296. https://doi.org/10.1016/j.compbiomed.2021.104296
- De Felice, F., & Polimeni, A. (2020). Coronavirus disease (COVID-19): A machine learning bibliometric analysis. In Vivo, 34(3 suppl), 1613–1617. https://doi.org/10.21873/invivo.11951
- Derecichei, I., & Atikukke, G. (2020). Machine learning model to track SARS-CoV-2 viral mutation evolution and speciation using next-generation sequencing data. In Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics (pp. 1–1). ACM.
10.1145/3388440.3415991 Google Scholar
- Elaziz, M. A., Hosny, K. M., Salah, A., Darwish, M. M., Lu, S., & Sahlol, A. T. (2020). New machine learning method for image-based diagnosis of COVID-19. PLoS One, 15(6), e0235187. https://doi.org/10.1371/journal.pone.0235187
- Elfiky, A. A., Pany, M. J., Parikh, R. B., & Obermeyer, Z. (2018). Development and application of a machine learning approach to assess short-term mortality risk among patients with cancer starting chemotherapy. JAMA Network Open, 1(3), e180926. https://doi.org/10.1001/jamanetworkopen.2018.0926
- El-Kenawy, E.-S. M., Ibrahim, A., Mirjalili, S., Eid, M. M., & Hussein, S. E. (2020). Novel feature selection and voting classifier algorithms for COVID-19 classification in CT images. IEEE Access, 8, 179317. https://doi.org/10.1109/ACCESS.2020.3028012
- Esbin, M. N., Whitney, O. N., Chong, S., Maurer, A., Darzacq, X., & Tjian, R. (2020). Overcoming the bottleneck to widespread testing: A rapid review of nucleic acid testing approaches for COVID-19 detection. RNA, 26(7), 771–783. https://doi.org/10.1261/rna.076232.120
- Farhat, H., Sakr, G. E., & Kilany, R. (2020). Deep learning applications in pulmonary medical imaging: Recent updates and insights on COVID-19. Machine Vision and Applications, 31(6), 1–42.
- Farooq, J., & Bazaz, M. A. (2020). A novel adaptive deep learning model of Covid-19 with focus on mortality reduction strategies. Chaos, Solitons & Fractals, 138, 110148. https://doi.org/10.1016/j.chaos.2020.110148
- Fayyoumi, E., Idwan, S., & AboShindi, H. (2020). Machine learning and statistical modelling for prediction of novel COVID-19 patients case study: Jordan. International Journal of Advanced Computer Science and Applications, 11(5), 1–6.
- Filice, R. W., Stein, A., Wu, C. C., Arteaga, V. A., Borstelmann, S., Gaddikeri, R., Galperin-Aizenberg, M., Gill, R. R., Godoy, M. C., Hobbs, S. B., Jeudy, J., Lakhani, P. C., Laroia, A., Nayak, S. M., Parekh, M. R., Prasanna, P., Shah, P., Vummidi, D., Yaddanapudi, K., & Shih, G. (2020). Crowdsourcing pneumothorax annotations using machine learning annotations on the NIH chest X-ray dataset. Journal of Digital Imaging, 33(2), 490–496. https://doi.org/10.1007/s10278-019-00299-9
- Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning (Vol. 1). MIT Press.
- Gralinski, L. E., & Menachery, V. D. (2020). Return of the coronavirus: 2019-nCoV. Viruses, 12(2), 135. https://doi.org/10.3390/v12020135
- Guasti, P. (2020). The impact of the COVID-19 pandemic in Central and Eastern Europe: The rise of autocracy and democratic resilience. Democratic Theory, 7(2), 47–60. https://doi.org/10.3167/dt.2020.070207
10.3167/dt.2020.070207 Google Scholar
- Haghanifar, A., Majdabadi, M. M., Choi, Y., Deivalakshmi, S., & Ko, S. (2020). COVID-CXNET: Detecting COVID-19 in frontal chest x-ray images using deep learning, arXiv preprint arXiv:2006.13807.
- Hall, L. O., Paul, R., Goldgof, D. B., & Goldgof, G. M. (2020) Finding covid-19 from chest X-rays using deep learning on a small dataset, arXiv preprint arXiv:2004.02060.
- Harmon, S. A., Sanford, T. H., Xu, S., Turkbey, E. B., Roth, H., Xu, Z., Yang, D., Myronenko, A., Anderson, V., Amalou, A., Blain, M., Kassin, M., Long, D., Varble, N., Walker, S. M., Bagci, U., Ierardi, A. M., Stellato, E., Plensich, G. G., … Turkbey, B. (2020). Artificial intelligence for the detection of COVID-19 pneumonia on chest ct using multinational datasets. Nature Communications, 11(1), 1–7.
- Harris, S. R., Cartwright, E. J., Török, M. E., Holden, M. T., Brown, N. M., Ogilvy-Stuart, A. L., Ellington, M. J., Quail, M. A., Bentley, S. D., Parkhill, J., & Peacock, S. J. (2013). Whole-genome sequencing for analysis of an outbreak of meticillin-resistant Staphylococcus aureus: A descriptive study. The Lancet Infectious Diseases, 13(2), 130–136. https://doi.org/10.1016/S1473-3099(12)70268-2
- Hasan, A. M., AL-Jawad, M. M., Jalab, H. A., Shaiba, H., Ibrahim, R. W., & AL-Shamasneh, A. R. (2020). Classification of Covid-19 coronavirus, pneumonia and healthy lungs in CT scans using Q-deformed entropy and deep learning features. Entropy, 22(5), 517. https://doi.org/10.3390/e22050517
- He, X., Yang, X., Zhang, S., Zhao, J., Zhang, Y., Xing, E., & Xie, P. (2020). Sample-efficient deep learning for COVID-19 diagnosis based on CT scans. MedRxiv.
- He, Y., Xiang, Z., & Mobley, H. L. (2010). Vaxign: The first web-based vaccine design program for reverse vaccinology and applications for vaccine development. Journal of Biomedicine and Biotechnology, 2010, 1–16. https://doi.org/10.1155/2010/297505
10.1155/2010/297505 Google Scholar
- Heni, B. (2020). COVID-19, Bacille Calmette-Guérin (bcg) and tuberculosis: Cases and recovery previsions with deep learning sequence prediction, 25(2), 165–172.
- Hu, S., Gao, Y., Niu, Z., Jiang, Y., Li, L., Xiao, X., Wang, M., Fang, E. F., Menpes-Smith, W., Xia, J., Ye, H., & Yang, G. (2020). Weakly supervised deep learning for COVID-19 infection detection and classification from CT images. IEEE Access, 8, 118869. https://doi.org/10.1109/ACCESS.2020.3005510
- Hurt, B., Kligerman, S., & Hsiao, A. (2020). Deep learning localization of pneumonia: 2019 Coronavirus (COVID-19) outbreak. Journal of Thoracic Imaging, 35(3), W87–W89. https://doi.org/10.1097/RTI.0000000000000512
- Imad, M., Khan, N., Ullah, F., Hassan, M. A., Hussain, A., & Faiza, Faiza. (2020). COVID-19 classification based on chest X-ray images using machine learning techniques. Journal of Computer Science and Technology Studies, 1, 1–11.
- Islam, M. Z., Islam, M. M., & Asraf, A. (2020). A combined deep CNN-LSTM network for the detection of novel coronavirus (COVID-19) using X-ray images. Informatics in Medicine Unlocked, 20, 1–11.
10.1016/j.imu.2020.100412 Google Scholar
- Ismael, A. M., & Şengür, A. (2021). Deep learning approaches for COVID-19 detection based on chest X-ray images. Expert Systems with Applications, 164, 114054. https://doi.org/10.1016/j.eswa.2020.114054
- Jaiswal, A., Gianchandani, N., Singh, D., Kumar, V., & Kaur, M. (2020). Classification of the COVID-19 infected patients using DenseNet201 based deep transfer learning. Journal of Biomolecular Structure and Dynamics, 1, 1–8. https://doi.org/10.1080/07391102.2020.1788642
- Jamshidi, M., Lalbakhsh, A., Talla, J., Peroutka, Z., Hadjilooei, F., Lalbakhsh, P., Jamshidi, M., La Spada, L., Mirmozafari, M., Dehghani, M., Sabet, A., Sa, R., So, R., Bayat-Makou, N., Mohamadzade, B., Malek, Z., Jamshidi, A., Kiani, S., Hashemi-Dezaki, H., & Mohyuddin, W. (2020). Artificial intelligence and COVID-19: Deep learning approaches for diagnosis and treatment. IEEE Access, 8, 109581. https://doi.org/10.1109/ACCESS.2020.3001973
- Kannan, S., Subbaram, K., Ali, S., & Kannan, H. (2020). The role of artificial intelligence and machine learning techniques: Race for COVID-19 vaccine. Archives of Clinical Infectious Diseases, 15(2), 1–8. https://doi.org/10.5812/archcid.103232
- Karlinsky, A., & Kobak, D. (2021). The world mortality dataset: Tracking excess mortality across countries during the COVID-19 pandemic, medRxiv.
- Kassani, S. H., Kassasni, P. H., Wesolowski, M. J., Schneider, K. A., & Deters, R. (2020) Automatic detection of coronavirus disease (COVID-19) in X-ray and CT images: A machine learning-based approach. arXiv preprint arXiv:2004.10641.
- Kavadi, D. P., Patan, R., Ramachandran, M., & Gandomi, A. H. (2020). Partial derivative Nonlinear Global Pandemic Machine Learning Prediction of COVID 19. Chaos, Solitons & Fractals, 139, 110056. https://doi.org/10.1016/j.chaos.2020.110056
- Kermany, D. S., Goldbaum, M., Cai, W., Valentim, C. C., Liang, H., Baxter, S. L., McKeown, A., Yang, G., Wu, X., Yan, F., Dong, J., Prasadha, M. K., Pei, J., Ting, M. Y. L., Zhu, J., Li, C., Hewett, S., Dong, J., & Zhang, K. (2018). Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell, 172(5), 1122–1131. https://doi.org/10.1016/j.cell.2018.02.010
- Khairkhah, N., Aghasadeghi, M. R., Namvar, A., & Bolhassani, A. (2020). Design of novel multiepitope constructs-based peptide vaccine against the structural S, N and M proteins of human COVID-19 using immunoinformatics analysis. PLoS ONE, 15(10), e0240577. https://doi.org/10.1371/journal.pone.0240577
- Khan, A. I., Shah, J. L., & Bhat, M. M. (2020). CoroNet: A deep neural network for detection and diagnosis of COVID-19 from chest x-ray images. Computer Methods and Programs in Biomedicine, 196, 105581. https://doi.org/10.1016/j.cmpb.2020.105581
- Khan, S. H., Sohail, A., & Khan, A. (2020). COVID-19 detection in chest X-ray images using a new channel boosted CNN. arXiv preprint arXiv:2012.05073.
- Khattar, A., Jain, P. R., & Quadri, S. (2020). Effects of the disastrous pandemic COVID 19 on learning styles, activities and mental health of young Indian students - A machine learning approach. In 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS) (pp. 1190–1195). IEEE.
10.1109/ICICCS48265.2020.9120955 Google Scholar
- Kumar, R., Arora, R., Bansal, V., Sahayasheela, V. J., Buckchash, H., Imran, J., Narayanan, N., Pandian, G. N., & Raman, B. (2020). Accurate prediction of COVID-19 using chest X-ray images through deep feature learning model with smote and machine learning classifiers. MedRxiv.
- Kumar, R., Nagpal, S., Kaushik, S., & Mendiratta, S. (2020). COVID-19 diagnostic approaches: Different roads to the same destination. VirusDisease, 31(2), 1–9.
- Kumari, P., Singh, A., Ngasainao, M. R., Shakeel, I., Kumar, S., Lal, S., Singhal, A., Sohal, S. S., Singh, I. K., & Hassan, M. I. (2020). Potential diagnostics and therapeutic approaches in COVID-19. Clinica Chimica Acta, 510, 488–497.
- Lalmuanawma, S., Hussain, J., & Chhakchhuak, L. (2020). Applications of machine learning and artificial intelligence for covid-19 (SARS-CoV-2) pandemic: A review. Chaos, Solitons & Fractals, 139, 1–6.
- Le, N. Q. K., Hung, T. N. K., Do, D. T., Lam, L. H. T., Dang, L. H., & Huynh, T.-T. (2021). Radiomics-based machine learning model for efficiently classifying transcriptome subtypes in glioblastoma patients from MRI. Computers in Biology and Medicine, 132, 104320. https://doi.org/10.1016/j.compbiomed.2021.104320
- LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.
- G. Li, E. De Clercq, Therapeutic options for the 2019 novel coronavirus (2019-nCoV) (2020).
- Li, Z., Zhong, Z., Li, Y., Zhang, T., Gao, L., Jin, D., Sun, Y, Ye, X., Yu, L., Hu, Z., Xiao, J., Huang, L., & Tang, Y. (2020). From community acquired pneumonia to COVID-19: A deep learning based method for quantitative analysis of COVID-19 on thick-section CT scans. medRxiv.
- Liang, W., Yao, J., Chen, A., Lv, Q., Zanin, M., Liu, J., Wong, S., Li, Y., Lu, J., Liang, H., Chen, G., Guo, H., Guo, J., Zhou, R., Ou, L., Zhou, N., Chen, H., Yang, F., Han, X., … He, J. (2020). Early triage of critically ill COVID-19 patients using deep learning. Nature Communications, 11, 3543.
- Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., & Alsaadi, F. E. (2017). A survey of deep neural network architectures and their applications. Neurocomputing, 234, 11–26. https://doi.org/10.1016/j.neucom.2016.12.038
- Loey, M., Manogaran, G., Taha, M. H. N., & Khalifa, N. E. M. (2020). A hybrid deep transfer learning model with machine learning methods for face mask detection in the era of the COVID-19 pandemic. Measurement, 167, 108288.
- Loey, M., Smarandache, F., & Khalifa, N. E. M. (2020). Within the lack of chest COVID-19 X-ray dataset: A novel detection model based on gan and deep transfer learning. Symmetry, 12(4), 651. https://doi.org/10.3390/sym12040651
- Longjiang, E., Zhao, B., Guo, Y., Zheng, C., Zhang, M., Lin, J., Luo, Y., Cai, Y., Song, X., & Liang, H. (2019). Using deep-learning techniques for pulmonary-thoracic segmentations and improvement of pneumonia diagnosis in pediatric chest radiographs. Pediatric Pulmonology, 54(10), 1617–1626.
- Luján-García, J. E., Moreno-Ibarra, M. A., Villuendas-Rey, Y., & Yáñez-Márquez, C. (2020). Fast COVID-19 and pneumonia classification using chest X-ray images. Mathematics, 8(9), 1423. https://doi.org/10.3390/math8091423
- Luján-García, J. E., Yáñez-Márquez, C., Villuendas-Rey, Y., & Camacho-Nieto, O. (2020). A transfer learning method for pneumonia classification and visualization. Applied Sciences, 10(8), 2908. https://doi.org/10.3390/app10082908
- Maghdid, H. S., Asaad, A. T., Ghafoor, K. Z., Sadiq, A. S., Mirjalili, S., & Khan, M. K. (2021). Diagnosing COVID-19 pneumonia from X-ray and CT images using deep learning and transfer learning algorithms. In Multimodal Image Exploitation and Learning 2021 (Vol. 11734, 117340E). International Society for Optics and Photonics.
10.1117/12.2588672 Google Scholar
- Malki, Z., Atlam, E.-S., Hassanien, A. E., Dagnew, G., Elhosseini, M. A., & Gad, I. (2020). Association between weather data and COVID-19 pandemic predicting mortality rate: Machine learning approaches. Chaos, Solitons & Fractals, 138, 110137. https://doi.org/10.1016/j.chaos.2020.110137
- Mangal, A., Kalia, S., Rajgopal, H., Rangarajan, K., Namboodiri, V., Banerjee, S., & Arora, C. (2020). CovidAID: Covid-19 detection using chest X-ray, arXiv preprint arXiv:2004.09803.
- Mao, K., Zhang, H., & Yang, Z. (2020). Can a paper-based device trace COVID-19 sources with wastewater-based epidemiology?.
- Mao, Y.-F., Yuan, X.-G., & Cun, Y.-P. (2021). A novel machine learning approach (svmSomatic) to distinguish somatic and germline mutations using next-generation sequencing data. Zoological research, 42(2), 246. https://doi.org/10.24272/j.issn.2095-8137.2021.014
- Massie, A. B., Boyarsky, B. J., Werbel, W. A., Bae, S., Chow, E. K., Avery, R. K., Durand, C. M., Desai, N., Brennan, D., Garonzik-Wang, J. M., & Segev, D. L. (2020). Identifying scenarios of benefit or harm from kidney transplantation during the COVID-19 pandemic: A stochastic simulation and machine learning study. American Journal of Transplantation, 20(11), 2997–3007.
- Melin, P., Monica, J. C., Sanchez, D., & Castillo, O. (2020a). A new prediction approach of the COVID-19 virus pandemic behavior with a hybrid ensemble modular nonlinear autoregressive neural network. Soft Computing, 19, 1–10.
- Melin, P., Monica, J. C., Sanchez, D., & Castillo, O. (2020b). Analysis of spatial spread relationships of coronavirus (COVID-19) pandemic in the world using self organizing maps. Chaos, Solitons and Fractals, 138, 109917.
- Michie, D., Spiegelhalter, D. J., Taylor, C., & Campbell, J. (1994). Machine learning, neural and statistical classification (Vol. 13, pp. 1–298).Citeseer.
- Minaee, S., Kafieh, R., Sonka, M., Yazdani, S., & Jamalipour Soufi, G. (2020). Deep-COVID: Predicting COVID-19 from chest X-ray images using deep transfer learning. Medical Image Analysis, 65, 101794. https://doi.org/10.1016/j.media.2020.101794
- Mohamadou, Y., Halidou, A., & Kapen, P. T. (2020). A review of mathematical modeling, artificial intelligence and datasets used in the study, prediction and management of COVID-19. Applied Intelligence, 50(11), 3913–3925. https://doi.org/10.1007/s10489-020-01770-9
- Mohammed, M. A., Abdulkareem, K. H., Al-Waisy, A. S., Mostafa, S. A., Al-Fahdawi, S., Dinar, A. M., Alhakami, W., Baz, A., Al-Mhiqani, M. N., Alhakami, H., Arbaiy, N., Maashi, M. S., Mutlag, A. A., & Díez, B. G.-Z. I. D. L. T. D. L. T. (2020). Benchmarking methodology for selection of optimal covid-19 diagnostic model based on entropy and topsis methods. IEEE Access, 8, 99115–99131.
- Mohammed, M. A., Abdulkareem, K. H., Garcia-Zapirain, B., Mostafa, S. A., Maashi, M. S., Al-Waisy, A. S., Subhi, M. A., Mutlag, A. A., & Le, D.-N. (2021). A comprehensive investigation of machine learning feature extraction and classification methods for automated diagnosis of COVID-19 based on X-ray images. Computers, Materials and Continua, 66, 3289–3310. https://doi.org/10.32604/cmc.2021.012874
- Moitra, D., & Mandal, R. K. (2019). Automated AJCC (7th edition) staging of non-small cell lung cancer (NSCLC) using deep convolutional neural network (CNN) and recurrent neural network (RNN). Health Information Science and Systems, 7, 1, 14.
- Monshi, M. M. A., Poon, J., Chung, V., & Monshi, F. M. (2021). CovidXrayNet: Optimizing data augmentation and CNN hyperparameters for improved COVID-19 detection from CXR. Computers in Biology and Medicine, 133, 104375. https://doi.org/10.1016/j.compbiomed.2021.104375
- Muhammad, L., Algehyne, E. A., Usman, S. S., Ahmad, A., Chakraborty, C., & Mohammed, I. (2021). Supervised machine learning models for prediction of COVID-19 infection using epidemiology dataset. SN computer science, 2(1), 1–13.
10.1007/s42979-020-00394-7 Google Scholar
- Muhammad, L., Islam, M. M., Usman, S. S., & Ayon, S. I. (2020). Predictive data mining models for novel coronavirus (COVID-19) infected patients' recovery. SN Computer Science, 1(4), 1–7.
10.1007/s42979-020-00216-w Google Scholar
- Mukherjee, H., Ghosh, S., Dhar, A., Obaidullah, S. M., Santosh, K., & Roy, K. (2021). Shallow convolutional neural network for COVID-19 outbreak screening using chest X-rays. Cognitive Computation, 1, 1–14.
- Ni, Q., Sun, Z. Y., Qi, L., Chen, W., Yang, Y., Wang, L., Zhang, X., Yang, L., Fang, Y., Xing, Z., Zhou, Z., Yu, Y., Lu, G. M., & Zhang, L. J. (2020). A deep learning approach to characterize 2019 coronavirus disease (COVID-19) pneumonia in chest CT images. European Radiology, 30(12), 6517–6527.
- Nugroho, C. A. (2021). Klasifikasi k-nearest neighbor chest X-ray pasien Covid-19 dengan haralick features dan histogram of oriented gradient
- Oh, Y., Park, S., & Ye, J. C. (2020). Deep learning COVID-19 features on CXR using limited training data sets. IEEE Transactions on Medical Imaging, 39(8), 2688–2700.
- Ong, E., Wang, H., Wong, M. U., Seetharaman, M., Valdez, N., & He, Y. (2020). Vaxign-ml: Supervised machine learning reverse vaccinology model for improved prediction of bacterial protective antigens. Bioinformatics, 36(10), 3185–3191. https://doi.org/10.1093/bioinformatics/btaa119
- Ong, E., Wong, M. U., Huffman, A., & He, Y. (2020). Covid-19 coronavirus vaccine design using reverse vaccinology and machine learning. BioRxiv.
- Ozturk, T., Talo, M., Yildirim, E. A., Baloglu, U. B., Yildirim, O., & Acharya, U. R. (2020). Automated detection of COVID-19 cases using deep neural networks with X-ray images. Computers in Biology and Medicine, 121, 103792.
- Paluru, N., Dayal, A., Jenssen, H. B., Sakinis, T., Cenkeramaddi, L. R., Prakash, J., & Yalavarthy, P. K. (2021). Anam-net: Anamorphic depth embedding-based lightweight CNN for segmentation of anomalies in COVID-19 chest CT images. IEEE Transactions on Neural Networks and Learning Systems, 32(3), 932–946. https://doi.org/10.1109/TNNLS.2021.3054746
- Pan, F., Ye, T., Sun, P., Gui, S., Liang, B., Li, L., Zheng, D., Wang, J., Hesketh, R. L., Yang, L., & Zheng, C. (2020). Time course of lung changes on chest CT during recovery from 2019 novel coronavirus (COVID-19) pneumonia. Radiology, 295, 715–721.
- Pan, Y., Guan, H., Zhou, S., Wang, Y., Li, Q., Zhu, T., Hu, Q., & Xia, L. (2020). Initial CT findings and temporal changes in patients with the novel coronavirus pneumonia (2019-nCoV): A study of 63 patients in Wuhan, China. European Radiology, 30(6), 3306–3309.
- Panwar, H., Gupta, P., Siddiqui, M. K., Morales-Menendez, R., & Singh, V. (2020). Application of deep learning for fast detection of COVID-19 in X-Rays using nCOVnet. Chaos, Solitons & Fractals, 138, 109944.
- Pathak, Y., Shukla, P. K., Tiwari, A., Stalin, S., Singh, S., & Shukla, P. K. (2020). Deep transfer learning based classification model for COVID-19 disease. IRBM, 1, 1–6.
- Paul, H. Y., Kim, T. K., & Lin, C. T. (2020). Generalizability of deep learning tuberculosis classifier to COVID-19 chest radiographs: New tricks for an old algorithm? Journal of Thoracic Imaging, 35(4), W102–W104.
- Peng, Y., & Nagata, M. H. (2020). An empirical overview of nonlinearity and overfitting in machine learning using COVID-19 data. Chaos, Solitons & Fractals, 139, 110055. https://doi.org/10.1016/j.chaos.2020.110055
- Pham, T. D. (2021). Classification of COVID-19 chest X-rays with deep learning: New models or fine tuning? Health Information Science and Systems, 9(1), 1–11.
- Pinter, G., Felde, I., Mosavi, A., Ghamisi, P., & Gloaguen, R. (2020). COVID-19 pandemic prediction for hungary; a hybrid machine learning approach. Mathematics, 8(6), 890. https://doi.org/10.3390/math8060890
- Prakash, K. B., Imambi, S. S., Ismail, M., Kumar, T. P., & Pawan, Y. N. (2020). Analysis, prediction and evaluation of COVID-19 datasets using machine learning algorithms. International Journal of Emerging Trends in Engineering Research, 8(5), 2199–2204.
10.30534/ijeter/2020/117852020 Google Scholar
- Punn, N. S., Sonbhadra, S. K., & Agarwal, S. (2020). COVID-19 epidemic analysis using machine learning and deep learning algorithms. MedRxiv.
- Qi, X., Jiang, Z., Yu, Q., Shao, C., Zhang, H., Yue, H., Ma, B., Wang, Y., Liu, C., Meng, X., Huang, S., Wang, J., Xu, D., Lei, J., Xie, G., Huang, H., Yang, J., Ji, J., Pan, H., … & Ju, S. (2020). Machine learning-based CT radiomics model for predicting hospital stay in patients with pneumonia associated with SARS-CoV-2 infection: A multicenter study. Medrxiv.
- Qian, Z., Alaa, A. M., & van der Schaar, M. (2021). CPAS: The UK's national machine learning-based hospital capacity planning system for COVID-19. Machine Learning, 110(1), 15–35. https://doi.org/10.1007/s10994-020-05921-4
- Raamkumar, A. S., Tan, S. G., & Wee, H. L. (2020). Use of health belief model-based deep learning classifiers for classifying COVID-19 social media content to examine public behaviors towards physical distancing. JMIR Public Health and Surveillance, 6(3), e20493. https://doi.org/10.2196/20493
- Rahimzadeh, M., & Attar, A. (2020). A modified deep convolutional neural network for detecting COVID-19 and pneumonia from chest X-ray images based on the concatenation of Xception and ResNet50V2. Informatics in Medicine Unlocked, 19, 100360. https://doi.org/10.1016/j.imu.2020.100360
- Rahman, A., Hossain, M. S., Alrajeh, N. A., & Alsolami, F. (2021). Adversarial examples–security threats to COVID-19 deep learning systems in medical IoT devices. IEEE Internet of Things Journal, 8(12), 9603–9610.
- Rahman, M. A., Hossain, M. S., Alrajeh, N. A., & Guizani, N. (2020). B5G and explainable deep learning assisted healthcare vertical at the edge: COVID-I9 perspective. IEEE Network, 34(4), 98–105. https://doi.org/10.1109/MNET.011.2000353
- Rahman, T., Khandakar, A., Qiblawey, Y., Tahir, A., Kiranyaz, S., Kashem, S. B. A., Islam, M. T., Al Maadeed, S., Zughaier, S. M., Khan, M. S., & Chowdhury, M. E. H. (2021). Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images. Computers in Biology and Medicine, 132, 104319. https://doi.org/10.1016/j.compbiomed.2021.104319
- Rajaraman, S., & Antani, S. (2020). Weakly labeled data augmentation for deep learning: A study on COVID-19 detection in chest X-rays. Diagnostics, 10(6), 358. https://doi.org/10.3390/diagnostics10060358
- Rajaraman, S., Siegelman, J., Alderson, P. O., Folio, L. S., Folio, L. R., & Antani, S. K. (2020). Iteratively pruned deep learning ensembles for COVID-19 detection in chest X-rays. IEEE Access, 8, 115041. https://doi.org/10.1109/ACCESS.2020.3003810
- Rajaraman, S., Sornapudi, S., Alderson, P. O., Folio, L. R., & Antani, S. K. (2020). Analyzing inter-reader variability affecting deep ensemble learning for COVID-19 detection in chest radiographs. PLoS One, 15(11), e0242301. https://doi.org/10.1371/journal.pone.0242301
- Randhawa, G. S., Soltysiak, M. P., El Roz, H., de Souza, C. P., Hill, K. A., & Kari, L. (2020). Machine learning using intrinsic genomic signatures for rapid classification of novel pathogens: COVID-19 case study. PLoS One, 15(4), e0232391. https://doi.org/10.1371/journal.pone.0232391
- Rasheed, J., Hameed, A. A., Djeddi, C., Jamil, A., & Al-Turjman, F. (2021). A machine learning-based framework for diagnosis of COVID-19 from chest X-ray images. Interdisciplinary Sciences: Computational Life Sciences, 13(1), 103–117.
- Rezaee, K., Badiei, A., & Meshgini, S. (2020). A hybrid deep transfer learning based approach for COVID-19 classification in chest X-ray images. In 2020 27th National and 5th International Iranian Conference on Biomedical Engineering (ICBME) (pp. 234–241). IEEE.
10.1109/ICBME51989.2020.9319426 Google Scholar
- Roberts, M., Driggs, D., Thorpe, M., Gilbey, J., Yeung, M., Ursprung, S., Aviles-Rivero, A. I., Etmann, C., McCague, C., Beer, L., Weir-McCall, J., Teng, Z., Rudd, J. H., Sala, E., & Schönlieb, C.-B. (2020). Machine learning for COVID-19 detection and prognostication using chest radiographs and CT scans: A systematic methodological review, arXiv preprint arXiv:2008.06388.
- Rothe, C., Schunk, M., Sothmann, P., Bretzel, G., Froeschl, G., Wallrauch, C., Zimmer, T., Thiel, V., Janke, C., Guggemos, W., Seilmaier, M., Drosten, C., Vollmar, P., Zwirglmaier, K., Zange, S., Wölfel, R., & Hoelscher, M. (2020). Transmission of 2019-nCoV infection from an asymptomatic contact in Germany. New England Journal of Medicine, 382(10), 970–971. https://doi.org/10.1056/NEJMc2001468
- Roy, S., Menapace, W., Oei, S., Luijten, B., Fini, E., Saltori, C., Huijben, I., Chennakeshava, N., Mento, F., Sentelli, A., Peschiera, E., Trevisan, R., Maschietto, G., Torri, E., Inchingolo, R., Smargiassi, A., Soldati, G., Rota, P., Passerini, A., … Demi, L. (2020). Deep learning for classification and localization of COVID-19 markers in point-of-care lung ultrasound. IEEE Transactions on Medical Imaging, 39(8), 2676–2687.
- Rustam, F., Reshi, A. A., Mehmood, A., Ullah, S., On, B., Aslam, W., & Choi, G. S. (2020). COVID-19 future forecasting using supervised machine learning models. IEEE Access, 8, 101489–101499.
- Sáez, C., Romero, N., Conejero, J. A., & García-Gómez, J. M. (2021). Potential limitations in COVID-19 machine learning due to data source variability: A case study in the nCov2019 dataset. Journal of the American Medical Informatics Association, 28(2), 360–364. https://doi.org/10.1093/jamia/ocaa258
- Sahlol, A. T., Yousri, D., Ewees, A. A., Al-qaness, M. A. A., Damasevicius, R., & Elaziz, M. A. (2020). COVID-19 image classification using deep features and fractional-order marine predators algorithm. Scientific Reports, 10(1), 15364. https://doi.org/10.1038/s41598-020-71294-2
- Sakagianni, A., Feretzakis, G., Kalles, D., Koufopoulou, C., & Kaldis, V. (2020). Setting up an easy-to-use machine learning pipeline for medical decision support: A case study for COVID-19 diagnosis based on deep learning with CT scans. Studies in Health Technology and Informatics, 272, 13–16.
- Samuel, J., Ali, G., Rahman, M., Esawi, E., & Samuel, Y. (2020). COVID-19 public sentiment insights and machine learning for tweets classification. Information, 11(6), 314. https://doi.org/10.3390/info11060314
- Sathitratanacheewin, S., Sunanta, P., & Pongpirul, K. (2020). Deep learning for automated classification of tuberculosis-related chest X-ray: Dataset distribution shift limits diagnostic performance generalizability. Heliyon, 6(8), e04614. https://doi.org/10.1016/j.heliyon.2020.e04614
- Satu, M. S., Ahammed, K., Abedin, M. Z., Rahman, M. A., Islam, S. M. S., Azad, A., Alyami, S. A., & Moni, M. A. (2021). Convolutional neural network model to detect COVID-19 patients utilizing chest X-ray images. medRxiv.
- Sear, R. F., Velasquez, N., Leahy, R., Restrepo, N. J., El Oud, S., Gabriel, N., Lupu, Y., & Johnson, N. F. (2020). Quantifying COVID-19 content in the online health opinion war using machine learning. IEEE Access, 8, 91886–91893.
- Sedik, A., Iliyasu, A. M., El-Rahiem, A., Abdel Samea, M. E., Abdel-Raheem, A., Hammad, M., Peng, J., El-Samie, E. F. A., & El-Latif, A. A. A. (2020). Deploying machine and deep learning models for efficient data-augmented detection of COVID-19 infections. Viruses, 12(7), 769. https://doi.org/10.3390/v12070769
- Sharma, S. (2020). Drawing insights from COVID-19-infected patients using CT scan images and machine learning techniques: A study on 200 patients. Environmental Science and Pollution Research, 27(29), 37155–37163. https://doi.org/10.1007/s11356-020-10133-3
- Shastri, S., Singh, K., Kumar, S., Kour, P., & Mansotra, V. (2020). Time series forecasting of Covid-19 using deep learning models: India-USA comparative case study. Chaos, Solitons & Fractals, 140, 110227. https://doi.org/10.1016/j.chaos.2020.110227
- Shi, H., Han, X., & Zheng, C. (2020). Evolution of CT manifestations in a patient recovered from 2019 novel coronavirus (2019-nCoV) pneumonia in Wuhan, China. Radiology, 295(1), 20–20. https://doi.org/10.1148/radiol.2020200269
- Shih, G., Wu, C. C., Halabi, S. S., Kohli, M. D., Prevedello, L. M., Cook, T. S., Sharma, A., Amorosa, J. K., Arteaga, V., Galperin-Aizenberg, M., Gill, R. R., Godoy, M. C. B., Hobbs, S., Jeudy, J., Laroia, A., Shah, P. N., Vummidi, D., Yaddanapudi, K., & Stein, A. (2019). Augmenting the National Institutes of Health Chest Radiograph Dataset with expert annotations of possible pneumonia. Radiology: Artificial Intelligence, 1(1), e180041.
- Siddiqi, R. (2020). Efficient pediatric pneumonia diagnosis using depthwise separable convolutions. SN Computer Science, 1(6), 1–15.
10.1007/s42979-020-00361-2 Google Scholar
- Siddiqui, M. K., Morales-Menendez, R., Gupta, P. K., Iqbal, H., Hussain, F., Khatoon, K., & Ahmad, S. (2020). Correlation between temperature and COVID-19 (suspected, confirmed and death) cases based on machine learning analysis. Journal of Pure and Applied Microbiology, 14, 1017–1024.
- Silva, J., Zilberman, J., Patiño, Y. P., Varela, N., & Lezama, O. B. P. (2020). Classification of chest diseases using deep learning. In International Symposium on Distributed Computing and Artificial Intelligence (pp. 152–158). Springer.
- Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
- Sohan, M. F. (2020). So you need datasets for your COVID-19 detection research using machine learning? arXiv preprint arXiv:2008.05906.
- Sohrabi, C., Alsafi, Z., O'Neill, N., Khan, M., Kerwan, A., Al-Jabir, A., Iosifidis, C., & Agha, R. (2020). World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). International Journal of Surgery, 76, 71–76.
- Sufian, A., Ghosh, A., Sadiq, A. S., & Smarandache, F. (2020). A survey on deep transfer learning to edge computing for mitigating the COVID-19 pandemic. Journal of Systems Architecture, 108, 101830. https://doi.org/10.1016/j.sysarc.2020.101830
- Sujath, R., Chatterjee, J. M., & Hassanien, A. E. (2020). A machine learning forecasting model for COVID-19 pandemic in India. Stochastic Environmental Research and Risk Assessment, 34, 959–972.
- Sujatha, R., Chatterjee, J., & Hassanien, A. E. (2020). A machine learning methodology for forecasting of the COVID-19 cases in India.
- Suter, Y., Knecht, U., Alão, M., Valenzuela, W., Hewer, E., Schucht, P., Wiest, R., & Reyes, M. (2020). Radiomics for glioblastoma survival analysis in pre-operative MRI: Exploring feature robustness, class boundaries, and machine learning techniques. Cancer Imaging, 20(1), 1–13.
- Tang, S., Ghorbani, A., Yamashita, R., Rehman, S., Dunnmon, J. A., Zou, J., & Rubin, D. L. (2021). Data valuation for medical imaging using Shapley value and application to a large-scale chest X-ray dataset. Scientific Reports, 11(1), 1–9.
- Tartaglione, E., Barbano, C. A., Berzovini, C., Calandri, M., & Grangetto, M. (2020). Unveiling COVID-19 from CHEST X-ray with deep learning: A hurdles race with small data. International Journal of Environmental Research and Public Health, 17(18), 6933. https://doi.org/10.3390/ijerph17186933
- Tizhoosh, H. R., & Fratesi, J. (2021). COVID-19, AI enthusiasts, and toy datasets: Radiology without radiologists. European radiology, 31(5), 3553–3554. https://doi.org/10.1007/s00330-020-07453-w
- Toğaçar, M., Ergen, B., & Cömert, Z. (2020). COVID-19 detection using deep learning models to exploit Social Mimic Optimization and structured chest X-ray images using fuzzy color and stacking approaches. Computers in Biology and Medicine, 121, 103805.
- Toğaçar, M., Ergen, B., Cömert, Z., & Özyurt, F. (2020). A deep feature learning model for pneumonia detection applying a combination of mRMR feature selection and machine learning models. IRBM, 41(4), 212–222. https://doi.org/10.1016/j.irbm.2019.10.006
- Touati, R., Messaoudi, I., Oueslati, A., Lachiri, Z., & Kharrat, M. (2021). New intraclass helitrons classification using DNA-image sequences and machine learning approaches. IRBM, 42(3), 154–164.
- Tsatsakis, A., Calina, D., Falzone, L., Petrakis, D., Mitrut, R., Siokas, V., Pennisi, M., Lanza, G., Libra, M., Doukas, S. G., Doukas, P. G., Kavali, L., Bukhari, A., Gadiparthi, C., Vageli, D. P., Kofteridis, D. P., Spandidos, D. A., Paoliello, M. M. B., Aschner, M., & Docea, A. O. (2020). SARS-CoV-2 pathophysiology and its clinical implications: An integrative overview of the pharmacotherapeutic management of COVID-19. Food and Chemical Toxicology, 146, 111769. https://doi.org/10.1016/j.fct.2020.111769
- Tuli, S., Tuli, S., Tuli, R., & Gill, S. S. (2020). Predicting the growth and trend of COVID-19 pandemic using machine learning and cloud computing. Internet of Things, 11, 100222. https://doi.org/10.1016/j.iot.2020.100222
10.1016/j.iot.2020.100222 Google Scholar
- Vaid, S., Cakan, C., & Bhandari, M. (2020). Using machine learning to estimate unobserved COVID-19 infections in North America. The Journal of Bone and Joint Surgery, 8, 1–12.
- Vaid, S., Kalantar, R., & Bhandari, M. (2020). Deep learning COVID-19 detection bias: Accuracy through artificial intelligence. International Orthopaedics, 44, 1539–1542.
- Verma, Y., & Tayeb, S. (2021). Evaluation of machine learning architectures in healthcare. In 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC) (pp. 1377–1382). IEEE.
10.1109/CCWC51732.2021.9375834 Google Scholar
- Waheed, A., Goyal, M., Gupta, D., Khanna, A., Al-Turjman, F., & Pinheiro, P. R. (2020). CovidGAN: Data augmentation using auxiliary classifier GAN for improved Covid-19 detection. IEEE Access, 8, 91916–91923. https://doi.org/10.1109/ACCESS.2020.2994762
- Wang, L., & Wong, A. (2020). COVID-net: A tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images. arXiv preprint arXiv:2003.09871.
- Wang, N., Liu, H., & Xu, C. (2020). Deep learning for the detection of COVID-19 using transfer learning and model integration. In 2020 IEEE 10th International Conference on Electronics Information and Emergency Communication (ICEIEC) (pp. 281–284). IEEE.
10.1109/ICEIEC49280.2020.9152329 Google Scholar
- Wang, P., Zheng, X., Li, J., & Zhu, B. (2020). Prediction of epidemic trends in COVID-19 with logistic model and machine learning technics. Chaos, Solitons & Fractals, 139, 110058. https://doi.org/10.1016/j.chaos.2020.110058
- Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., & Summers, R. M. (2017a). Chestx-ray8: Hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2097–2106). IEEE.
10.1109/CVPR.2017.369 Google Scholar
- Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., & Summers, R. M. (2017b). Chestx-ray8: Hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. CoRR, 1, 2097–2106.
- Wieczorek, M., Siłka, J., Połap, D., Woźniak, M., & Damaševičius, R. (2020). Real-time neural network based predictor for cov19 virus spread. PLoS ONE, 15(12), e0243189. https://doi.org/10.1371/journal.pone.0243189
- Yadav, M., Perumal, M., & Srinivas, M. (2020). Analysis on novel coronavirus (COVID-19) using machine learning methods. Chaos, Solitons & Fractals, 139, 110050. https://doi.org/10.1016/j.chaos.2020.110050
- Yadav, R. S. (2020). Data analysis of COVID-2019 epidemic using machine learning methods: A case study of India. International Journal of Information Technology, 12, 1321–1330. https://doi.org/10.1007/s41870-020-00484-y
10.1007/s41870-020-00484-y Google Scholar
- Yang, X., He, X., Zhao, J., Zhang, Y., Zhang, S., & Xie, P. (2020). COVID-CT-dataset: A CT image dataset about COVID-19. arXiv preprint arXiv:2003.13865.
- Yoo, S. H., Geng, H., Chiu, T. L., Yu, S. K., Cho, D. C., Heo, J., Choi, M. S., Choi, I. H., Cung, C., Nhung, N. V., Min, B. J., & Lee, H. (2020). Deep learning-based decision-tree classifier for COVID-19 diagnosis from chest X-ray imaging. Frontiers in Medicine, 7, 427.
- Zamzmi, G., Rajaraman, S., & Antani, S. (2020). Accelerating super-resolution and visual task analysis in medical images. Applied Sciences, 10(12), 4282. https://doi.org/10.3390/app10124282
- Zarocostas, J. (2009). World Health Organization declares A (H1N1) influenza pandemic. BMJ: British Medical Journal (Online), 338, 1–10.
- Zeroual, A., Harrou, F., Dairi, A., & Sun, Y. (2020). Deep learning methods for forecasting COVID-19 time-series data: A comparative study. Chaos, Solitons & Fractals, 140, 110121. https://doi.org/10.1016/j.chaos.2020.110121
- Zhang, H.-t., Zhang, J.-s., Zhang, H.-h., Nan, Y.-d., Zhao, Y., Fu, E.-q., Xie, Y.-h., Liu, W., Li, W.-p., Zhang, H.-j., Jiang, H., Li, C.-m., Li, Y.-y., Ma, R.-n., Dang, S.-k., Gao, B.-b., Zhang, X.-j., & Zhang, T. (2020). Automated detection and quantification of COVID-19 pneumonia: CT imaging analysis by a deep learning-based software. European Journal of Nuclear Medicine and Molecular Imaging, 47(11), 2525–2532. https://doi.org/10.1007/s00259-020-04953-1
- Zhao, J., Zhang, Y., He, X., & Xie, P. (2020). COVID-CT-dataset: A CT scan dataset about COVID-19. arXiv preprint arXiv:2003.13865.
- Zhu, J., Shen, B., Abbasi, A., Hoshmand-Kochi, M., Li, H., & Duong, T. Q. (2020). Deep transfer learning artificial intelligence accurately stages COVID-19 lung disease severity on portable chest radiographs. PLoS ONE, 15(7), e0236621. https://doi.org/10.1371/journal.pone.0236621