Relationship between pancreatic iron overload, glucose metabolism and cardiac complications in sickle cell disease: An Italian multicentre study
Laura Pistoia
Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
Search for more papers by this authorAntonella Meloni
Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
U.O.C. Bioingegneria, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
Search for more papers by this authorMassimo Allò
Ematologia Microcitemia, Ospedale San Giovanni di Dio – ASP Crotone, Crotone, Italy
Search for more papers by this authorAnna Spasiano
U.O.S.D. Malattie Rare del Globulo Rosso, Azienda Ospedaliera di Rilievo Nazionale “A. Cardarelli”, Naples, Italy
Search for more papers by this authorGiuseppe Messina
Centro Microcitemie, Grande Ospedale Metropolitano "Bianchi-Melacrino-Morelli", Reggio Calabria, Italy
Search for more papers by this authorFrancesco Sorrentino
U.O.S. Day Hospital Talassemici, Ospedale "Sant'Eugenio"- ASL Roma2, Rome, Italy
Search for more papers by this authorMaria Rita Gamberini
U. O. di Day Hospital della Talassemia e delle Emoglobinopatie. Dipartimento della Riproduzione e dell'Accrescimento, Azienda Ospedaliero-Universitaria “S. Anna”, Ferrara, Italy
Search for more papers by this authorAngela Ermini
S.O.S. Immunoematologia e Medicina Trasfusionale Ospedale S. Maria Annunziata, Florence, Italy
Search for more papers by this authorStefania Renne
Struttura Complessa di Cardioradiologia-UTIC, Presidio Ospedaliero “Giovanni Paolo II”, Lamezia Terme, Italy
Search for more papers by this authorPriscilla Fina
Unità Operativa Complessa Diagnostica per Immagini, Ospedale "Sandro Pertini", Rome, Italy
Search for more papers by this authorGiuseppe Peritore
Unità Operativa Complessa di Radiologia, "ARNAS" Civico, Di Cristina Benfratelli, Palermo, Italy
Search for more papers by this authorVincenzo Positano
Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
U.O.C. Bioingegneria, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
Search for more papers by this authorAlessia Pepe
Department of Medicine, Institute of Radiology, University of Padua, Padua, Italy
Search for more papers by this authorCorresponding Author
Filippo Cademartiri
Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
Correspondence
Filippo Cademartiri, Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, Via Moruzzi, 1 - 56124 Pisa, Italy.
Email: [email protected]
Search for more papers by this authorLaura Pistoia
Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
Search for more papers by this authorAntonella Meloni
Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
U.O.C. Bioingegneria, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
Search for more papers by this authorMassimo Allò
Ematologia Microcitemia, Ospedale San Giovanni di Dio – ASP Crotone, Crotone, Italy
Search for more papers by this authorAnna Spasiano
U.O.S.D. Malattie Rare del Globulo Rosso, Azienda Ospedaliera di Rilievo Nazionale “A. Cardarelli”, Naples, Italy
Search for more papers by this authorGiuseppe Messina
Centro Microcitemie, Grande Ospedale Metropolitano "Bianchi-Melacrino-Morelli", Reggio Calabria, Italy
Search for more papers by this authorFrancesco Sorrentino
U.O.S. Day Hospital Talassemici, Ospedale "Sant'Eugenio"- ASL Roma2, Rome, Italy
Search for more papers by this authorMaria Rita Gamberini
U. O. di Day Hospital della Talassemia e delle Emoglobinopatie. Dipartimento della Riproduzione e dell'Accrescimento, Azienda Ospedaliero-Universitaria “S. Anna”, Ferrara, Italy
Search for more papers by this authorAngela Ermini
S.O.S. Immunoematologia e Medicina Trasfusionale Ospedale S. Maria Annunziata, Florence, Italy
Search for more papers by this authorStefania Renne
Struttura Complessa di Cardioradiologia-UTIC, Presidio Ospedaliero “Giovanni Paolo II”, Lamezia Terme, Italy
Search for more papers by this authorPriscilla Fina
Unità Operativa Complessa Diagnostica per Immagini, Ospedale "Sandro Pertini", Rome, Italy
Search for more papers by this authorGiuseppe Peritore
Unità Operativa Complessa di Radiologia, "ARNAS" Civico, Di Cristina Benfratelli, Palermo, Italy
Search for more papers by this authorVincenzo Positano
Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
U.O.C. Bioingegneria, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
Search for more papers by this authorAlessia Pepe
Department of Medicine, Institute of Radiology, University of Padua, Padua, Italy
Search for more papers by this authorCorresponding Author
Filippo Cademartiri
Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
Correspondence
Filippo Cademartiri, Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, Via Moruzzi, 1 - 56124 Pisa, Italy.
Email: [email protected]
Search for more papers by this authorFunding information: E-MIOT project receives ‘no-profit financial support’ from industrial sponsorships (Chiesi Farmaceutici S.p.A., Bayer S.p.A.). The funders had no role in study design, data collection and analysis, or the decision to publish or in preparation of the manuscript.
Abstract
Objectives
Evidence about the cross-talk between iron, glucose metabolism, and cardiac disease is increasing. We aimed to explore the link of pancreatic iron by Magnetic Resonance Imaging (MRI) with glucose metabolism and cardiac complications (CC) in sickle cell disease (SCD) patients.
Methods
We considered 70 SCD patients consecutively enrolled in the Extension-Myocardial Iron Overload in Thalassemia Network. Iron overload was quantified by R2* technique and biventricular function by cine images. Macroscopic myocardial fibrosis was evaluated by late gadolinium enhancement technique. Glucose metabolism was assessed by the oral glucose tolerance test.
Results
Patients with an altered glucose metabolism showed a significantly higher pancreas R2* than patients with normal glucose metabolism. Pancreatic siderosis emerged as a risk factor for the development of metabolic alterations (OddsRatio 8.25, 95%confidence intervals 1.51–45.1; p = .015). Global pancreas R2* values were directly correlated with mean serum ferritin levels and liver iron concentration. Global pancreas R2* was not significantly associated with global heart R2* and macroscopic myocardial fibrosis. Patients with history of CC showed a significantly higher global pancreas R2* than patients with no CC.
Conclusions
Our findings support the evaluation of pancreatic R2* by MRI in SCD patients to prevent the development of metabolic and cardiac disorders.
CONFLICT OF INTEREST
No potential conflicts of interest relevant to this article were reported.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from https://emiot.ftgm.it/, but restrictions apply to the availability of these data, which were used under license for the current study and therefore are not publicly available. Data are, however, available from the authors upon reasonable request and with permission of F.C.
REFERENCES
- 1Meier ER, Miller JL. Sickle cell disease in children. Drugs. 2012; 72(7): 895-906.
- 2Rees DC, Williams TN, Gladwin MT. Sickle-cell disease. Lancet. 2010; 376(9757): 2018-2031.
- 3Platt OS, Brambilla DJ, Rosse WF, et al. Mortality in sickle cell disease. Life expectancy and risk factors for early death. N Engl J Med. 1994; 330(23): 1639-1644.
- 4Mandese V, Bigi E, Bruzzi P, et al. Endocrine and metabolic complications in children and adolescents with sickle cell disease: an Italian cohort study. BMC Pediatr. 2019; 19(1): 56.
- 5Wood JC, Cohen AR, Pressel SL, et al. Organ iron accumulation in chronically transfused children with sickle cell anaemia: baseline results from the TWiTCH trial. Br J Haematol. 2016; 172(1): 122-130.
- 6Fung EB, Harmatz PR, Lee PD, et al. Increased prevalence of iron-overload associated endocrinopathy in thalassaemia versus sickle-cell disease. Br J Haematol. 2006; 135(4): 574-582.
- 7Zhou J, Han J, Nutescu EA, et al. Similar burden of type 2 diabetes among adult patients with sickle cell disease relative to African Americans in the U.S. population: a six-year population-based cohort analysis. Br J Haematol. 2019; 185(1): 116-127.
- 8Smiley D, Dagogo-Jack S, Umpierrez G. Therapy insight: metabolic and endocrine disorders in sickle cell disease. Nat Clin Pract Endocrinol Metab. 2008; 4(2): 102-109.
- 9Chatterjee R, Bajoria R. New concept in natural history and management of diabetes mellitus in thalassemia major. Hemoglobin. 2009; 33(suppl 1): S127-S130.
- 10Wolff SP. Diabetes mellitus and free radicals. Free radicals, transition metals and oxidative stress in the aetiology of diabetes mellitus and complications. Br Med Bull. 1993; 49(3): 642-652.
- 11Cario H, Holl RW, Debatin KM, Kohne E. Insulin sensitivity and beta-cell secretion in thalassaemia major with secondary haemochromatosis: assessment by oral glucose tolerance test. Eur J Pediatr. 2003; 162(3): 139-146.
- 12Mavrogeni S, Pepe A, Lombardi M. Evaluation of myocardial iron overload using cardiovascular magnetic resonance imaging. Hellenic J Cardiol. 2011; 52(5): 385-390.
- 13Maggio A, Capra M, Pepe A, et al. A critical review of non invasive procedures for the evaluation of body iron burden in thalassemia major patients. Pediatr Endocrinol Rev. 2008; 6(Suppl 1): 193-203.
- 14Pepe A, Pistoia L, Gamberini MR, et al. The close link of pancreatic iron with glucose metabolism and with cardiac complications in thalassemia major: a large, multicenter observational study. Diabetes Care. 2020; 43(11): 2830-2839.
- 15Pepe A, Meloni A, Rossi G, et al. Cardiac complications and diabetes in thalassaemia major: a large historical multicentre study. Br J Haematol. 2013; 163(4): 520-527.
- 16Noetzli LJ, Coates TD, Wood JC. Pancreatic iron loading in chronically transfused sickle cell disease is lower than in thalassaemia major. Br J Haematol. 2011; 152(2): 229-233.
- 17Pepe A, Positano V, Santarelli MF, et al. Multislice multiecho R2* cardiovascular magnetic resonance for detection of the heterogeneous distribution of myocardial iron overload. J Magn Reson Imaging. 2006; 23(5): 662-668.
- 18Ramazzotti A, Pepe A, Positano V, et al. Multicenter validation of the magnetic resonance R2* technique for segmental and global quantification of myocardial iron. J Magn Reson Imaging. 2009; 30(1): 62-68.
- 19Meloni A, De Marchi D, Pistoia L, et al. Multicenter validation of the magnetic resonance R2* technique for quantification of pancreatic iron. Eur Radiol. 2019; 29(5): 2246-2252.
- 20Restaino G, Meloni A, Positano V, et al. Regional and global pancreatic T*2 MRI for iron overload assessment in a large cohort of healthy subjects: normal values and correlation with age and gender. Magn Reson Med. 2011; 65(3): 764-769.
- 21Positano V, Salani B, Pepe A, et al. Improved R2* assessment in liver iron overload by magnetic resonance imaging. Magn Reson Imaging. 2009; 27(2): 188-197.
- 22Meloni A, Positano V, Pepe A, et al. Preferential patterns of myocardial iron overload by multislice multiecho T*2 CMR in thalassemia major patients. Magn Reson Med. 2010; 64(1): 211-219.
- 23Positano V, Pepe A, Santarelli MF, et al. Standardized R2* map of normal human heart in vivo to correct R2* segmental artefacts. NMR Biomed. 2007; 20(6): 578-590.
- 24Meloni A, De Marchi D, Positano V, et al. Accurate estimate of pancreatic R2* values: how to deal with fat infiltration. Abdom Imaging. 2015; 40(8): 3129-3136.
- 25Meloni A, Luciani A, Positano V, et al. Single region of interest versus multislice R2* MRI approach for the quantification of hepatic iron overload. J Magn Reson Imaging. 2011; 33(2): 348-355.
- 26Wood JC, Enriquez C, Ghugre N, et al. MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion-dependent thalassemia and sickle cell disease patients. Blood. 2005; 106(4): 1460-1465.
- 27Meloni A, Rienhoff HY Jr, Jones A, Pepe A, Lombardi M, Wood JC. The use of appropriate calibration curves corrects for systematic differences in liver R2* values measured using different software packages. Br J Haematol. 2013; 161(6): 888-891.
- 28Cerqueira MD, Weissman NJ, Dilsizian V, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the cardiac imaging Committee of the Council on clinical cardiology of the American Heart Association. Circulation. 2002; 105(4): 539-542.
- 29Meloni A, Righi R, Missere M, et al. Biventricular reference values by body surface area, age, and gender in a large cohort of well-treated thalassemia major patients without heart damage using a multiparametric CMR approach. J Magn Reson Imaging. 2020; 53: 61-70.
- 30Marsella M, Borgna-Pignatti C, Meloni A, et al. Cardiac iron and cardiac disease in males and females with transfusion-dependent thalassemia major: a R2* magnetic resonance imaging study. Haematologica. 2011; 96(4): 515-520.
- 31Pepe A, Meloni A, Borsellino Z, et al. Myocardial fibrosis by late gadolinium enhancement cardiac magnetic resonance and hepatitis C virus infection in thalassemia major patients. J Cardiovasc Med (Hagerstown). 2015; 16(10): 689-695.
- 32Pepe A, Meloni A, Rossi G, et al. Prediction of cardiac complications for thalassemia major in the widespread cardiac magnetic resonance era: a prospective multicentre study by a multi-parametric approach. Eur Heart J Cardiovasc Imaging. 2018; 19(3): 299-309.
- 33Pennell DJ, Udelson JE, Arai AE, et al. Cardiovascular function and treatment in beta-thalassemia major: a consensus statement from the American Heart Association. Circulation. 2013; 128(3): 281-308.
- 34Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985; 28(7): 412-419.
- 35Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling. Diabetes Care. 2004; 27(6): 1487-1495.
- 36De Sanctis V, Soliman AT, Elsedfy H, et al. The ICET-A recommendations for the diagnosis and Management of Disturbances of glucose homeostasis in thalassemia major patients. Mediterr J Hematol Infect Dis. 2016; 8(1):e2016058.
- 37Angelucci E, Brittenham GM, McLaren CE, et al. Hepatic iron concentration and total body iron stores in thalassemia major. N Engl J Med. 2000; 343(5): 327-331.
- 38McDonagh TA, Metra M, Adamo M, et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021; 42(36): 3599-3726.
- 39Cogliandro T, Derchi G, Mancuso L, et al. Guideline recommendations for heart complications in thalassemia major. J Cardiovasc Med (Hagerstown). 2008; 9(5): 515-525.
- 40Buxton AE, Calkins H, Callans DJ, et al. ACC/AHA/HRS 2006 key data elements and definitions for electrophysiological studies and procedures: a report of the American College of Cardiology/American Heart Association task force on clinical data standards (ACC/AHA/HRS writing committee to develop data standards on electrophysiology). J Am Coll Cardiol. 2006; 48(11): 2360-2396.
- 41Mazumdar M, Heeney MM, Sox CM, Lieu TA. Preventing stroke among children with sickle cell anemia: an analysis of strategies that involve transcranial Doppler testing and chronic transfusion. Pediatrics. 2007; 120(4): e1107-e1116.
- 42Matter RM, Allam KE, Sadony AM. Gradient-echo magnetic resonance imaging study of pancreatic iron overload in young Egyptian beta-thalassemia major patients and effect of splenectomy. Diabetol Metab Syndr. 2010; 2: 23.
- 43Brewer CJ, Coates TD, Wood JC. Spleen R2 and R2* in iron-overloaded patients with sickle cell disease and thalassemia major. J Magn Reson Imaging. 2009; 29(2): 357-364.
- 44Noetzli LJ, Mittelman SD, Watanabe RM, Coates TD, Wood JC. Pancreatic iron and glucose dysregulation in thalassemia major. Am J Hematol. 2012; 87(2): 155-160.
- 45Porter J, Garbowski M. Consequences and management of iron overload in sickle cell disease. Hematology Am Soc Hematol Educ Program. 2013; 2013: 447-456.
- 46Alsultan AI, Seif MA, Amin TT, Naboli M, Alsuliman AM. Relationship between oxidative stress, ferritin and insulin resistance in sickle cell disease. Eur Rev Med Pharmacol Sci. 2010; 14(6): 527-538.
- 47Shah BN, Hassan TO, Zhang X, McClain DA, Gordeuk VR. Increased iron stores influence glucose metabolism in sickle cell anaemia. Br J Haematol. 2020; 189(4): e184-e187.
- 48Salama K, Abdelsalam A, Eldin HS, et al. The relationships between pancreatic R2* values and pancreatic iron loading with cardiac dysfunctions, hepatic and cardiac iron siderosis among Egyptian children and young adults with beta-thalassaemia major and sickle cell disease: a cross-sectional study. F1000Research. 2020; 9: 1108.
- 49Meloni A, Pistoia L, Gamberini MR, et al. The link of pancreatic iron with glucose metabolism and cardiac iron in thalassemia intermedia: a large, multicenter observational study. J Clin Med. 2021; 10(23):5561.
- 50Meloni A, Puliyel M, Pepe A, Berdoukas V, Coates TD, Wood JC. Cardiac iron overload in sickle-cell disease. Am J Hematol. 2014; 89(7): 678-683.
- 51Aono D, Oka R, Kometani M, et al. Insulin secretion and risk for future diabetes in subjects with a nonpositive insulinogenic index. J Diabetes Res. 2018; 2018: 5107589.