The hematologic consequences of obesity
Corresponding Author
Johanna C. Purdy MD
Division of General Internal Medicine and Geriatrics, Oregon Health & Science University, Portland, OR, USA
Correspondence
Joseph Shatzel, MD, Division of Hematology and Oncology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, USA.
Email: [email protected]
Search for more papers by this authorJoseph J. Shatzel MD
Division of Hematology and Oncology, Oregon Health & Science University, Portland, OR, USA
Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
Search for more papers by this authorCorresponding Author
Johanna C. Purdy MD
Division of General Internal Medicine and Geriatrics, Oregon Health & Science University, Portland, OR, USA
Correspondence
Joseph Shatzel, MD, Division of Hematology and Oncology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, USA.
Email: [email protected]
Search for more papers by this authorJoseph J. Shatzel MD
Division of Hematology and Oncology, Oregon Health & Science University, Portland, OR, USA
Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
Search for more papers by this authorAbstract
The prevalence of obesity is increasing and progressively influencing physician-patient interactions. While there is a sizable amount of data demonstrating that obesity is a state of low-grade inflammation, to our knowledge, there is no single review summarizing its effects on hematologic parameters and thrombotic risk. We performed a literature search which largely surfaced observational studies, with a few systematic reviews and meta-analyses of these studies. We took care to review the mechanisms driving an inflammatory state and obesity's effect on white blood cells, red blood cells, platelets, and thrombotic risk. There is an observed relative, and sometimes absolute leukocytosis driven by this inflammatory state. Obesity is also associated with increased platelet counts and an increased risk for venous thromboembolism (VTE). Lastly, the association between obesity, iron deficiency (ID), and red blood cell counts may be present but remains uncertain. Recognizing the above associations may provide clinicians with reassurance regarding otherwise unexplained hematologic abnormalities in obese individuals. We hope this review will prompt future studies to further understand the underlying mechanisms driving these abnormalities and identify modifiable risk factors and potential therapeutic targets to prevent the development of probable obesity-associated conditions with significant morbidity and mortality, such as ID and VTE.
Open Research
DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
REFERENCES
- 1 Centers for Disease Control and Prevention. Adult obesity facts. 2020, February 27; https://www.cdc.gov/obesity/data/adult.html
- 2Ward ZJ, Bleich SN, Cradock AL, et al. Projected U.S. state-level prevalence of adult obesity and severe obesity. N Engl J Med. 2019; 381(25): 2440-2450.
- 3Fantuzzi G. Adipose tissue, adipokines, and inflammation. J Allergy Clin Immunol. 2005; 115: 911-919.
- 4Gregor MF, Hotamisligil GS. Inflammatory mechanisms in obesity. Annu Rev Immunol. 2011; 29: 415-445.
- 5Curat CA, Miranville A, Sengenes C, et al. From blood monocytes to adipose tissue-resident macrophages: induction of diapedesis by human mature adipocytes. Diabetes. 2004; 53(5): 1285-1292.
- 6Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003; 112(12): 1796-1808.
- 7Harman-Boehm I, Bluher M, Redel H, et al. Macrophage infiltration into omental versus subcutaneous fat across different populations: effect of regional adiposity and the comorbidities of obesity. J Clin Endocrinol Metab. 2007; 92(6): 2240-2247.
- 8Cousin B, Munoz O, Andre M, et al. A role for preadipocytes as macrophage-like cells. FASEB J. 1999; 13(2): 305-312.
- 9Osborn O, Olefsky JM. The cellular and signaling networks linking the immune system and metabolism in disease. Nat Med. 2012; 18(3): 363-374.
- 10Boutens L, Stienstra R. Adipose tissue macrophages: going off track during obesity. Diabetologia. 2016; 59(5): 879-894.
- 11Banks RE, Forbes MA, Storr M, et al. The acute phase protein response in patients receiving subcutaneous IL-6. Clin Exp Immunol. 1995; 102(1): 217-223.
- 12Herishanu Y, Rogowski O, Polliack A, Marilus R. Leukocytosis in obese individuals: possible link in patients with unexplained persistent neutrophilia. Eur J Haematol. 2006; 76(6): 516-520.
- 13Cottam DR, Mattar SG, Barinas-Mitchell E, et al. The chronic inflammatory hypothesis for the morbidity associated with morbid obesity: implications and effects of weight loss. Obes Surg. 2004; 14(5): 589-600.
- 14Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993; 259(5091): 87-91.
- 15Yudkin JS, Stehouwer CD, Emeis JJ, Coppack SW. C-reactive protein in healthy subjects: associations with obesity, insulin resistance, and endothelial dysfunction: a potential role for cytokines originating from adipose tissue? Arterioscler Thromb Vasc Biol. 1999; 19(4): 972-978.
- 16Yudkin JS, Kumari M, Humphries SE, Mohamed-Ali V. Inflammation, obesity, stress and coronary heart disease: is interleukin-6 the link? Atherosclerosis. 2000; 148(2): 209-214.
- 17Park HS, Park JY, Yu R. Relationship of obesity and visceral adiposity with serum concentrations of CRP, TNF-alpha and IL-6. Diabetes Res Clin Pract. 2005; 69(1): 29-35.
- 18Roytblat L, Rachinsky M, Fisher A, et al. Raised interleukin-6 levels in obese patients. Obes Res. 2000; 8(9): 673-675.
- 19Pou KM, Massaro JM, Hoffmann U, et al. Visceral and subcutaneous adipose tissue volumes are cross-sectionally related to markers of inflammation and oxidative stress: the Framingham Heart Study. Circulation. 2007; 116(11): 1234-1241.
- 20Katsuki A, Sumida Y, Murashima S, et al. Serum levels of tumor necrosis factor-alpha are increased in obese patients with noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab. 1998; 83(3): 859-862.
- 21Farhangi MA, Keshavarz SA, Eshraghian M, Ostadrahimi A, Saboor-Yaraghi AA. White blood cell count in women: relation to inflammatory biomarkers, haematological profiles, visceral adiposity, and other cardiovascular risk factors. J Health Popul Nutr. 2013; 31(1): 58-64.
- 22Mohamed-Ali V, Goodrick S, Rawesh A, et al. Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo. J Clin Endocrinol Metab. 1997; 82(12): 4196-4200.
- 23Bastard JP, Jardel C, Bruckert E, et al. Elevated levels of interleukin 6 are reduced in serum and subcutaneous adipose tissue of obese women after weight loss. J Clin Endocrinol Metab. 2000; 85(9): 3338-3342.
- 24Ziccardi P, Nappo F, Giugliano G, et al. Reduction of inflammatory cytokine concentrations and improvement of endothelial functions in obese women after weight loss over one year. Circulation. 2002; 105(7): 804-809.
- 25Nicklas BJ, Ambrosius W, Messier SP, et al. Diet-induced weight loss, exercise, and chronic inflammation in older, obese adults: a randomized controlled clinical trial. Am J Clin Nutr. 2004; 79(4): 544-551.
- 26Esposito K, Pontillo A, Di Palo C, et al. Effect of weight loss and lifestyle changes on vascular inflammatory markers in obese women: a randomized trial. JAMA. 2003; 289(14): 1799-1804.
- 27Dandona P, Weinstock R, Thusu K, Abdel-Rahman E, Aljada A, Wadden T. Tumor necrosis factor-alpha in sera of obese patients: fall with weight loss. J Clin Endocrinol Metab. 1998; 83(8): 2907-2910.
- 28Kern PA, Saghizadeh M, Ong JM, Bosch RJ, Deem R, Simsolo RB. The expression of tumor necrosis factor in human adipose tissue. regulation by obesity, weight loss, and relationship to lipoprotein lipase. J Clin Invest. 1995; 95(5): 2111-2119.
- 29Swarbrick MM, Stanhope KL, Austrheim-Smith IT, et al. Longitudinal changes in pancreatic and adipocyte hormones following Roux-en-Y gastric bypass surgery. Diabetologia. 2008; 51(10): 1901-1911.
- 30Lin E, Phillips LS, Ziegler TR, et al. Increases in adiponectin predict improved liver, but not peripheral, insulin sensitivity in severely obese women during weight loss. Diabetes. 2007; 56(3): 735-742.
- 31Kopp CW, Kopp HP, Steiner S, et al. Weight loss reduces tissue factor in morbidly obese patients. Obes Res. 2003; 11(8): 950-956.
- 32Fried SK, Bunkin DA, Greenberg AS. Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid. J Clin Endocrinol Metab. 1998; 83(3): 847-850.
- 33Fain JN, Madan AK, Hiler ML, Cheema P, Bahouth SW. Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans. Endocrinology. 2004; 145(5): 2273-2282.
- 34Visser M, Bouter LM, McQuillan GM, Wener MH, Harris TB. Elevated C-Reactive Protein Levels in Overweight and Obese Adults. JAMA. 1999; 282(22): 2131-2135.
- 35Festa A, D'Agostino R Jr, Williams K, et al. The relation of body fat mass and distribution to markers of chronic inflammation. Int J Obes Relat Metab Disord. 2001; 25(10): 1407-1415.
- 36Ford ES. Body mass index, diabetes, and C-reactive protein among U.S. adults. Diabetes Care. 1999; 22(12): 1971-1977.
- 37Tchernof A, Nolan A, Sites CK, Ades PA, Poehlman ET. Weight loss reduces C-reactive protein levels in obese postmenopausal women. Circulation. 2002; 105(5): 564-569.
- 38Vazquez LA, Pazos F, Berrazueta JR, et al. Effects of changes in body weight and insulin resistance on inflammation and endothelial function in morbid obesity after bariatric surgery. J Clin Endocrinol Metab. 2005; 90(1): 316-322.
- 39Calabro P, Chang DW, Willerson JT, Yeh ET. Release of C-reactive protein in response to inflammatory cytokines by human adipocytes: linking obesity to vascular inflammation. J Am Coll Cardiol. 2005; 46(6): 1112-1113.
- 40Raghavan V, Gunasekar D, Rao KR. Relevance of haematologic parameters in obese women with or without metabolic syndrome. J Clin Diagn Res. 2016; 10(5): 11-16.
- 41Soehnlein O, Steffens S, Hidalgo A, Weber C. Neutrophils as protagonists and targets in chronic inflammation. Nat Rev Immunol. 2017; 17(4): 248-261.
- 42do Carmo LS, Rogero MM, Paredes-Gamero EJ,, et al. A high-fat diet increases interleukin-3 and granulocyte colony-stimulating factor production by bone marrow cells and triggers bone marrow hyperplasia and neutrophilia in Wistar rats. Exp Biol Med (Maywood). 2013; 238(4): 375-384.
- 43Julius S, Egan BM, Kaciroti NA, Nesbitt SD, Chen AK, TROPHY investigators. In prehypertension leukocytosis is associated with body mass index but not with blood pressure or incident hypertension. J Hypertens. 2014; 32(2): 251-259.
- 44Pratley RE, Wilson C, Bogardus C. Relation of the white blood cell count to obesity and insulin resistance: effect of race and gender. Obes Res. 1995; 3(6): 563-571.
- 45Nanji AA, Freeman JB. Relationship between body weight and total leukocyte count in morbid obesity. Am J Clin Pathol. 1985; 84(3): 346-347.
- 46Ulich TR, del Castillo J, Guo KZ. In vivo hematologic effects of recombinant interleukin-6 on hematopoiesis and circulating numbers of RBCs and WBCs. Blood. 1989; 73(1): 108-110.
- 47Suwa T, Hogg JC, English D, Van Eeden SF. Interleukin-6 induces demargination of intravascular neutrophils and shortens their transit in marrow. Am J Physiol Heart Circ Physiol. 2000; 279(6): H2954-2960.
- 48Witko-Sarsat V, Rieu P, Descamps-Latscha B, Lesavre P, Halbwachs-Mecarelli L. Neutrophils: molecules, functions and pathophysiological aspects. Lab Invest. 2000; 80(5): 617-653.
- 49van Eeden SF, Terashima T. Interleukin 8 (IL-8) and the release of leukocytes from the bone marrow. Leuk Lymphoma. 2000; 37(3–4): 259-271.
- 50Pini M, Rhodes DH, Fantuzzi G. Hematological and acute-phase responses to diet-induced obesity in IL-6 KO mice. Cytokine. 2011; 56(3): 708-716.
- 51Wilson CA, Bekele G, Nicolson M, Ravussin E, Pratley RE. Relationship of the white blood cell count to body fat: role of leptin. Br J Haematol. 1997; 99(2): 447-451.
- 52Laharrague P, Oppert JM, Brousset P, et al. High concentration of leptin stimulates myeloid differentiation from human bone marrow CD34+ progenitors: potential involvement in leukocytosis of obese subjects. Int J Obes Relat Metab Disord. 2000; 24(9): 1212-1216.
- 53Severe N, Karabacak NM, Gustafsson K, et al. Stress-induced changes in bone marrow stromal cell populations revealed through single-cell protein expression mapping. Cell Stem Cell. 2019; 25(4): 570-583 e577.
- 54Dias CC, Nogueira-Pedro A, Barbosa CM, et al. Hematopoietic stem cell expansion caused by a synthetic fragment of leptin. Peptides. 2013; 50: 24-27.
- 55Zhou BO, Yue R, Murphy MM, Peyer JG, Morrison SJ. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell. 2014; 15(2): 154-168.
- 56Sugiyama T, Omatsu Y, Nagasawa T. Niches for hematopoietic stem cells and immune cell progenitors. Int Immunol. 2019; 31(1): 5-11.
- 57Tarkun I, Cetinarslan B, Turemen E, Canturk Z, Biyikli M. Association between circulating tumor necrosis factor-alpha, interleukin-6, and insulin resistance in normal-weight women with polycystic ovary syndrome. Metab Syndr Relat Disord. 2006; 4(2): 122-128.
- 58Phelan N, O'Connor A, Kyaw Tun T, et al. Leucocytosis in women with polycystic ovary syndrome (PCOS) is incompletely explained by obesity and insulin resistance. Clin Endocrinol (Oxf). 2013; 78(1): 107-113.
- 59Herlihy AC, Kelly RE, Hogan JL, O'Connor N, Farah N, Turner MJ. Polycystic ovary syndrome and the peripheral blood white cell count. J Obstet Gynaecol. 2011; 31(3): 242-244.
- 60Kahal H, Kyrou I, Tahrani AA, Randeva HS. Obstructive sleep apnoea and polycystic ovary syndrome: a comprehensive review of clinical interactions and underlying pathophysiology. Clin Endocrinol (Oxf). 2017; 87(4): 313-319.
- 61Kahal H, Kyrou I, Uthman OA, et al. The prevalence of obstructive sleep apnoea in women with polycystic ovary syndrome: a systematic review and meta-analysis. Sleep Breath. 2019; 24(1): 339-350.
- 62Bozkus F, Dikmen N, Samur A, Bilal N, Atilla N, Arpag H. Does the neutrophil-to-lymphocyte ratio have any importance between subjects with obstructive sleep apnea syndrome with obesity and without obesity? Tuberk Toraks. 2018; 66(1): 8-15.
- 63Sunbul M, Sunbul EA, Kanar B, et al. The association of neutrophil to lymphocyte ratio with presence and severity of obstructive sleep apnea. Bratisl Lek Listy. 2015; 116(11): 654-658.
- 64Altintas N, Cetinoglu E, Yuceege M, et al. Neutrophil-to-lymphocyte ratio in obstructive sleep apnea; a multi center, retrospective study. Eur Rev Med Pharmacol Sci. 2015; 19(17): 3234-3240.
- 65Oyama J, Nagatomo D, Yoshioka G, et al. The relationship between neutrophil to lymphocyte ratio, endothelial function, and severity in patients with obstructive sleep apnea. J Cardiol. 2016; 67(3): 295-302.
- 66Geovanini GR, Wang R, Weng J, et al. Elevations in neutrophils with obstructive sleep apnea: the multi-ethnic study of atherosclerosis (MESA). Int J Cardiol. 2018; 257: 318-323.
- 67Nadeem R, Molnar J, Madbouly EM, et al. Serum inflammatory markers in obstructive sleep apnea: a meta-analysis. J Clin Sleep Med. 2013; 9(10): 1003-1012.
- 68Mansukhani MP, Kara T, Caples SM, Somers VK. Chemoreflexes, sleep apnea, and sympathetic dysregulation. Curr Hypertens Rep. 2014; 16(9): 476.
- 69Wenzel BJ, Stults HB, Mayer J. Hypoferraemia in obese adolescents. Lancet. 1962; 2(7251): 327-328.
- 70Zhao L, Zhang X, Shen Y, Fang X, Wang Y, Wang F. Obesity and iron deficiency: a quantitative meta-analysis. Obes Rev. 2015; 16(12): 1081-1093.
- 71Khan A, Khan WM, Ayub M, Humayun M, Haroon M. Ferritin is a marker of inflammation rather than iron deficiency in overweight and obese people. J Obes. 2016; 2016: 1937320.
- 72Aigner E, Feldman A, Datz C. Obesity as an emerging risk factor for iron deficiency. Nutrients. 2014; 6(9): 3587-3600.
- 73Cheng HL, Bryant C, Cook R, O'Connor H, Rooney K, Steinbeck K. The relationship between obesity and hypoferraemia in adults: a systematic review. Obes Rev. 2012; 13(2): 150-161.
- 74Monteiro AM, Fernandes V, Matta-Coelho C, et al. Iron deficiency and obesity - Are we diagnosing with appropriate Indicators? Acta Med Port. 2018; 31(9): 478-482.
- 75Shekarriz R, Vaziri MM. Iron profile and inflammatory status of overweight and obese women in sari, North of Iran. Int J Hematol Oncol Stem Cell Res. 2017; 11(2): 108-113.
- 76Herter-Aeberli I, Thankachan P, Bose B, Kurpad AV. Increased risk of iron deficiency and reduced iron absorption but no difference in zinc, vitamin A or B-vitamin status in obese women in India. Eur J Nutr. 2016; 55(8): 2411-2421.
- 77Asghari G, Khalaj A, Ghadimi M, et al. Prevalence of micronutrient deficiencies prior to bariatric surgery: tehran obesity treatment study (TOTS). Obes Surg. 2018; 28(8): 2465-2472.
- 78Neymotin F, Sen U. Iron and obesity in females in the United States. Obesity (Silver Spring). 2011; 19(1): 191-199.
- 79Adib Rad H, Sefidgar SAA, Tamadoni A, et al. Obesity and iron-deficiency anemia in women of reproductive age in northern Iran. J Educ Health Promot. 2019; 8: 115.
- 80Arshad M, Jaberian S, Pazouki A, Riazi S, Rangraz MA, Mokhber S. Iron deficiency anemia and megaloblastic anemia in obese patients. Rom J Intern Med. 2017; 55(1): 3-7.
- 81Wang C, Guan B, Yang W, Yang J, Cao G, Lee S. Prevalence of electrolyte and nutritional deficiencies in Chinese bariatric surgery candidates. Surg Obes Relat Dis. 2016; 12(3): 629-634.
- 82Lefebvre P, Letois F, Sultan A, Nocca D, Mura T, Galtier F. Nutrient deficiencies in patients with obesity considering bariatric surgery: a cross-sectional study. Surg Obes Relat Dis. 2014; 10(3): 540-546.
- 83Ghose B, Yaya S, Tang S. Anemia status in relation to body mass index among women of childbearing age in Bangladesh. Asia Pac J Public Health. 2016; 28(7): 611-619.
- 84Qin Y, Melse-Boonstra A, Pan X, et al. Anemia in relation to body mass index and waist circumference among Chinese women. Nutr J. 2013; 12: 10.
- 85Dallman PR, Siimes MA, Stekel A. Iron deficiency in infancy and childhood. Am J Clin Nutr. 1980; 33(1): 86-118.
- 86Farhat G, Lees E, Macdonald-Clarke C, Amirabdollahian F. Inadequacies of micronutrient intake in normal weight and overweight young adults aged 18–25 years: a cross-sectional study. Public Health. 2019; 167: 70-77.
- 87Sanchez A, Rojas P, Basfi-Fer K, et al. Micronutrient deficiencies in morbidly obese women prior to bariatric surgery. Obes Surg. 2016; 26(2): 361-368.
- 88Tussing-Humphreys LM, Liang H, Nemeth E, Freels S, Braunschweig CA. Excess adiposity, inflammation, and iron-deficiency in female adolescents. J Am Diet Assoc. 2009; 109(2): 297-302.
- 89Aeberli I, Hurrell RF, Zimmermann MB. Overweight children have higher circulating hepcidin concentrations and lower iron status but have dietary iron intakes and bioavailability comparable with normal weight children. Int J Obes (Lond). 2009; 33(10): 1111-1117.
- 90Menzie CM, Yanoff LB, Denkinger BI, et al. Obesity-related hypoferremia is not explained by differences in reported intake of heme and nonheme iron or intake of dietary factors that can affect iron absorption. J Am Diet Assoc. 2008; 108(1): 145-148.
- 91Cepeda-Lopez AC, Osendarp SJ, Melse-Boonstra A, et al. Sharply higher rates of iron deficiency in obese Mexican women and children are predicted by obesity-related inflammation rather than by differences in dietary iron intake. Am J Clin Nutr. 2011; 93(5): 975-983.
- 92Failla ML, Kennedy ML, Chen ML. Iron metabolism in genetically obese (ob/ob) mice. J Nutr. 1988; 118(1): 46-51.
- 93Cepeda-Lopez AC, Zimmermann MB, Wussler S, et al. Greater blood volume and Hb mass in obese women quantified by the carbon monoxide-rebreathing method affects interpretation of iron biomarkers and iron requirements. Int J Obes (Lond). 2019; 43(5): 999-1008.
- 94Nemeth E, Ganz T. The role of hepcidin in iron metabolism. Acta Haematol. 2009; 122(2–3): 78-86.
- 95Chung B, Chaston T, Marks J, Srai SK, Sharp PA. Hepcidin decreases iron transporter expression in vivo in mouse duodenum and spleen and in vitro in THP-1 macrophages and intestinal Caco-2 cells. J Nutr. 2009; 139(8): 1457-1462.
- 96Mujica-Coopman MF, Brito A, Lopez de Romana D, Pizarro F, Olivares M. Body mass index, iron absorption and iron status in childbearing age women. J Trace Elem Med Biol. 2015; 30: 215-219.
- 97Zimmermann MB, Zeder C, Muthayya S, et al. Adiposity in women and children from transition countries predicts decreased iron absorption, iron deficiency and a reduced response to iron fortification. Int J Obes (Lond). 2008; 32(7): 1098-1104.
- 98Cepeda-Lopez AC, Melse-Boonstra A, Zimmermann MB, Herter-Aeberli I. In overweight and obese women, dietary iron absorption is reduced and the enhancement of iron absorption by ascorbic acid is one-half that in normal-weight women. Am J Clin Nutr. 2015; 102(6): 1389-1397.
- 99Nemeth E, Valore EV, Territo M, Schiller G, Lichtenstein A, Ganz T. Hepcidin, a putative mediator of anemia of inflammation, is a type II acute-phase protein. Blood. 2003; 101(7): 2461-2463.
- 100del Giudice EM, Santoro N, Amato A, et al. Hepcidin in obese children as a potential mediator of the association between obesity and iron deficiency. J Clin Endocrinol Metab. 2009; 94(12): 5102-5107.
- 101Nemeth E, Rivera S, Gabayan V, et al. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest. 2004; 113(9): 1271-1276.
- 102Bekri S, Gual P, Anty R, et al. Increased adipose tissue expression of hepcidin in severe obesity is independent from diabetes and NASH. Gastroenterol. 2006; 131(3): 788-796.
- 103Wrighting DM, Andrews NC. Interleukin-6 induces hepcidin expression through STAT3. Blood. 2006; 108(9): 3204-3209.
- 104Chung B, Matak P, McKie AT, Sharp P. Leptin increases the expression of the iron regulatory hormone hepcidin in HuH7 human hepatoma cells. J Nutr. 2007; 137(11): 2366-2370.
- 105Tussing-Humphreys L, Frayn KN, Smith SR, et al. Subcutaneous adipose tissue from obese and lean adults does not release hepcidin in vivo. ScientificWorldJournal. 2011; 11: 2197-2206.
- 106sal E, Yenicesu I, Celik N, et al. Relationship between obesity and iron deficiency anemia: is there a role of hepcidin? Hematol. 2018; 23(8): 542-548.
- 107Hernandez Vera R, Vilahur G, Badimon L. Obesity with insulin resistance increase thrombosis in wild-type and bone marrow-transplanted Zucker Fatty rats. Thromb Haemost. 2013; 109(2): 319-327.
- 108Samocha-Bonet D, Justo D, Rogowski O, et al. Platelet counts and platelet activation markers in obese subjects. Mediators Inflamm. 2008; 2008: 834153.
- 109Raoux L, Moszkowicz D, Vychnevskaia K, et al. Effect of bariatric surgery-induced weight loss on platelet count and mean platelet volume: a 12-month follow-up study. Obes Surg. 2017; 27(2): 387-393.
- 110Williams JL, Pipia GG, Datta NS, Long MW. Thrombopoietin requires additional megakaryocyte-active cytokines for optimal ex vivo expansion of megakaryocyte precursor cells. Blood. 1998; 91(11): 4118-4126.
- 111Lazzari L, Henschler R, Lecchi L, Rebulla P, Mertelsmann R, Sirchia G. Interleukin-6 and interleukin-11 act synergistically with thrombopoietin and stem cell factor to modulate ex vivo expansion of human CD41+ and CD61+ megakaryocytic cells. Haematologica. 2000; 85(1): 25-30.
- 112Kaser A, Brandacher G, Steurer W, et al. Interleukin-6 stimulates thrombopoiesis through thrombopoietin: role in inflammatory thrombocytosis. Blood. 2001; 98(9): 2720-2725.
- 113Baatout S. Interleukin-6 and megakaryocytopoiesis: an update. Ann Hematol. 1996; 73(4): 157-162.
- 114Sui X, Tsuji K, Ebihara Y, et al. Soluble interleukin-6 (IL-6) receptor with IL-6 stimulates megakaryopoiesis from human CD34(+) cells through glycoprotein (gp)130 signaling. Blood. 1999; 93(8): 2525-2532.
- 115Burmester H, Wolber EM, Freitag P, Fandrey J, Jelkmann W. Thrombopoietin production in wild-type and interleukin-6 knockout mice with acute inflammation. J Interferon Cytokine Res. 2005; 25(7): 407-413.
- 116Maury E, Ehala-Aleksejev K, Guiot Y, Detry R, Vandenhooft A, Brichard SM. Adipokines oversecreted by omental adipose tissue in human obesity. Am J Physiol Endocrinol Metab. 2007; 293(3): E656-665.
- 117Ageno W, Becattini C, Brighton T, Selby R, Kamphuisen PW. Cardiovascular risk factors and venous thromboembolism: a meta-analysis. Circulation. 2008; 117(1): 93-102.
- 118Tsai AW, Cushman M, Rosamond WD, Heckbert SR, Polak JF, Folsom AR. Cardiovascular risk factors and venous thromboembolism incidence: the longitudinal investigation of thromboembolism etiology. Arch Intern Med. 2002; 162(10): 1182-1189.
- 119Di Minno G, Mannucci PM, Tufano A, et al. The first ambulatory screening on thromboembolism: a multicentre, cross-sectional, observational study on risk factors for venous thromboembolism. J Thromb Haemost. 2005; 3(7): 1459-1466.
- 120Abdollahi M, Cushman M, Rosendaal FR. Obesity: risk of venous thrombosis and the interaction with coagulation factor levels and oral contraceptive use. Thromb Haemost. 2003; 89(3): 493-498.
- 121Holst AG, Jensen G, Prescott E. Risk factors for venous thromboembolism: results from the Copenhagen City Heart Study. Circulation. 2010; 121(17): 1896-1903.
- 122Samama MM. An epidemiologic study of risk factors for deep vein thrombosis in medical outpatients: the Sirius study. Arch Intern Med. 2000; 160(22): 3415-3420.
- 123Stein PD, Beemath A, Olson RE. Obesity as a risk factor in venous thromboembolism. Am J Med. 2005; 118(9): 978-980.
- 124Borch KH, Braekkan SK, Mathiesen EB, et al. Anthropometric measures of obesity and risk of venous thromboembolism: the Tromso study. Arterioscler Thromb Vasc Biol. 2010; 30(1): 121-127.
- 125Hansson PO, Eriksson H, Welin L, Svardsudd K, Wilhelmsen L. Smoking and abdominal obesity: risk factors for venous thromboembolism among middle-aged men: "the study of men born in 1913". Arch Intern Med. 1999; 159(16): 1886-1890.
- 126Eichinger S, Hron G, Bialonczyk C, et al. Overweight, obesity, and the risk of recurrent venous thromboembolism. Arch Intern Med. 2008; 168(15): 1678-1683.
- 127Rodger MA, Kahn SR, Wells PS, et al. Identifying unprovoked thromboembolism patients at low risk for recurrence who can discontinue anticoagulant therapy. CMAJ. 2008; 179(5): 417-426.
- 128 Writing Group Members, Mozaffarian D, Benjamin EJ, et al. Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation. 2016; 133(4): e38-e360.
- 129Regitz-Zagrosek V, Kararigas G. Mechanistic Pathways of Sex Differences in Cardiovascular Disease. Physiol Rev. 2017; 97(1): 1-37.
- 130Vilahur G, Ben-Aicha S, Badimon L. New insights into the role of adipose tissue in thrombosis. Cardiovasc Res. 2017; 113(9): 1046-1054.
- 131Schafer K, Konstantinides S. Adipokines and thrombosis. Clin Exp Pharmacol Physiol. 2011; 38(12): 864-871.
- 132Wilkerson WR, Sane DC. Aging and thrombosis. Semin Thromb Hemost. 2002; 28(6): 555-568.
- 133Allman-Farinelli MA. Obesity and venous thrombosis: a review. Semin Thromb Hemost. 2011; 37(8): 903-907.
- 134Dellas C, Schafer K, Rohm I, et al. Absence of leptin resistance in platelets from morbidly obese individuals may contribute to the increased thrombosis risk in obesity. Thromb Haemost. 2008; 100(6): 1123-1129.
- 135Nakata M, Yada T, Soejima N, Maruyama I. Leptin promotes aggregation of human platelets via the long form of its receptor. Diabetes. 1999; 48(2): 426-429.
- 136Konstantinides S, Schafer K, Koschnick S, Loskutoff DJ. Leptin-dependent platelet aggregation and arterial thrombosis suggests a mechanism for atherothrombotic disease in obesity. J Clin Invest. 2001; 108(10): 1533-1540.
- 137Corsonello A, Malara A, Ientile R, Corica F. Leptin enhances adenosine diphosphate-induced platelet aggregation in healthy subjects. Obes Res. 2002; 10(4): 306.
- 138Konstantinides S, Schafer K, Neels JG, Dellas C, Loskutoff DJ. Inhibition of endogenous leptin protects mice from arterial and venous thrombosis. Arterioscler Thromb Vasc Biol. 2004; 24(11): 2196-2201.
- 139Ozata M, Avcu F, Durmus O, Yilmaz I, Ozdemir IC, Yalcin A. Leptin does not play a major role in platelet aggregation in obesity and leptin deficiency. Obes Res. 2001; 9(10): 627-630.
- 140Corsonello A, Perticone F, Malara A, et al. Leptin-dependent platelet aggregation in healthy, overweight and obese subjects. Int J Obes Relat Metab Disord. 2003; 27(5): 566-573.
- 141Corica F, Corsonello A, Perticone F. Effects of leptin on platelet function in obese patients. JAMA. 2002; 288(3): 313-314.
- 142Wallaschofski H, Kobsar A, Sokolova O, et al. Differences in platelet activation by prolactin and leptin. Horm Metab Res. 2004; 36(7): 453-457.
- 143Chu NF, Spiegelman D, Hotamisligil GS, Rifai N, Stampfer M, Rimm EB. Plasma insulin, leptin, and soluble TNF receptors levels in relation to obesity-related atherogenic and thrombogenic cardiovascular disease risk factors among men. Atherosclerosis. 2001; 157(2): 495-503.
- 144Singh P, Peterson TE, Barber KR, et al. Leptin upregulates the expression of plasminogen activator inhibitor-1 in human vascular endothelial cells. Biochem Biophys Res Commun. 2010; 392(1): 47-52.
- 145Cushman M, Yanez D, Psaty BM, et al. Association of fibrinogen and coagulation factors VII and VIII with cardiovascular risk factors in the elderly: the cardiovascular health study. Cardiovascular health study investigators. Am J Epidemiol. 1996; 143(7): 665-676.
- 146Rosito GA, D'Agostino RB, Massaro J, et al. Association between obesity and a prothrombotic state: the Framingham Offspring Study. Thromb Haemost. 2004; 91(4): 683-689.
- 147Ay L, Kopp HP, Brix JM, et al. Thrombin generation in morbid obesity: significant reduction after weight loss. J Thromb Haemost. 2010; 8(4): 759-765.
- 148Samad F, Pandey M, Loskutoff DJ. Regulation of tissue factor gene expression in obesity. Blood. 2001; 98(12): 3353-3358.
- 149Napoleone E, Di santo A, Amore C, et al. Leptin induces tissue factor expression in human peripheral blood mononuclear cells: a possible link between obesity and cardiovascular risk? J Thromb Haemost. 2007; 5(7): 1462-1468.
- 150Rafail S, Ritis K, Schaefer K, et al. Leptin induces the expression of functional tissue factor in human neutrophils and peripheral blood mononuclear cells through JAK2-dependent mechanisms and TNFalpha involvement. Thromb Res. 2008; 122(3): 366-375.
- 151Mertens I, Van Gaal LF. Obesity, haemostasis and the fibrinolytic system. Obes Rev. 2002; 3(2): 85-101.
- 152Pandolfi A, Iacoviello L, Capani F, Vitacolonna E, Donati MB, Consoli A. Glucose and insulin independently reduce the fibrinolytic potential of human vascular smooth muscle cells in culture. Diabetologia. 1996; 39(12): 1425-1431.
- 153Murakami T, Horigome H, Tanaka K, et al. Impact of weight reduction on production of platelet-derived microparticles and fibrinolytic parameters in obesity. Thromb Res. 2007; 119(1): 45-53.
- 154Shimomura I, Funahashi T, Takahashi M, et al. Enhanced expression of PAI-1 in visceral fat: possible contributor to vascular disease in obesity. Nat Med. 1996; 2(7): 800-803.
- 155Samad F, Loskutoff DJ. Tissue distribution and regulation of plasminogen activator inhibitor-1 in obese mice. Mol Med. 1996; 2(5): 568-582.
- 156Folsom AR, Qamhieh HT, Wing RR, et al. Impact of weight loss on plasminogen activator inhibitor (PAI-1), factor VII, and other hemostatic factors in moderately overweight adults. Arterioscler Thromb. 1993; 13(2): 162-169.
- 157Marckmann P, Toubro S, Astrup A. Sustained improvement in blood lipids, coagulation, and fibrinolysis after major weight loss in obese subjects. Eur J Clin Nutr. 1998; 52(5): 329-333.
- 158Molins B, Pena E, Vilahur G, Mendieta C, Slevin M, Badimon L. C-reactive protein isoforms differ in their effects on thrombus growth. Arterioscler Thromb Vasc Biol. 2008; 28(12): 2239-2246.
- 159Danenberg HD, Szalai AJ, Swaminathan RV, et al. Increased thrombosis after arterial injury in human C-reactive protein-transgenic mice. Circulation. 2003; 108(5): 512-515.
- 160Grad E, Danenberg HD. C-reactive protein and atherothrombosis: cause or effect? Blood Rev. 2013; 27(1): 23-29.
- 161Hankey CR, Rumley A, Lowe GD, Woodward M, Lean ME. Moderate weight reduction improves red cell aggregation and factor VII activity in overweight subjects. Int J Obes Relat Metab Disord. 1997; 21(8): 644-650.
- 162Davi G, Guagnano MT, Ciabattoni G, et al. Platelet activation in obese women: role of inflammation and oxidant stress. JAMA. 2002; 288(16): 2008-2014.
- 163De Pergola G, Pannacciulli N, Coviello M, et al. sP-selectin plasma levels in obesity: association with insulin resistance and related metabolic and prothrombotic factors. Nutr Metab Cardiovasc Dis. 2008; 18(3): 227-232.
- 164Nishimura S, Manabe I, Nagasaki M, et al. In vivo imaging in mice reveals local cell dynamics and inflammation in obese adipose tissue. J Clin Invest. 2008; 118(2): 710-721.
- 165Yaron G, Brill A, Dashevsky O, et al. C-reactive protein promotes platelet adhesion to endothelial cells: a potential pathway in atherothrombosis. Br J Haematol. 2006; 134(4): 426-431.
- 166Gulcan M, Varol E, Etli M, Aksoy F, Kayan M. Mean platelet volume is increased in patients with deep vein thrombosis. Clin Appl Thromb Hemost. 2012; 18(4): 427-430.
- 167Cil H, Yavuz C, Islamoglu Y, et al. Platelet count and mean platelet volume in patients with in-hospital deep venous thrombosis. Clin Appl Thromb Hemost. 2012; 18(6): 650-653.
- 168Coban E, Ozdogan M, Yazicioglu G, Akcit F. The mean platelet volume in patients with obesity. Int J Clin Pract. 2005; 59(8): 981-982.
- 169Bordeaux BC, Qayyum R, Yanek LR, et al. Effect of obesity on platelet reactivity and response to low-dose aspirin. Prev Cardiol. 2010; 13(2): 56-62.
- 170Tamminen M, Lassila R, Westerbacka J, Vehkavaara S, Yki-Jarvinen H. Obesity is associated with impaired platelet-inhibitory effect of acetylsalicylic acid in nondiabetic subjects. Int J Obes Relat Metab Disord. 2003; 27(8): 907-911.
- 171Hanzu FA, Palomo M, Kalko SG, et al. Translational evidence of endothelial damage in obese individuals: inflammatory and prothrombotic responses. J Thromb Haemost. 2011; 9(6): 1236-1245.
- 172Marseglia L, Manti S, D'Angelo G, et al. Oxidative stress in obesity: a critical component in human diseases. Int J Mol Sci. 2014; 16(1): 378-400.
- 173Lentz SR. Thrombosis in the setting of obesity or inflammatory bowel disease. Blood. 2016; 128(20): 2388-2394.