Interleukin 36 expression in psoriasis variants and other dermatologic diseases with psoriasis-like histopathologic features
Terese Monette Aquino
University of California San Francisco, San Francisco, California, USA
Search for more papers by this authorMary Grace Calvarido
University of California San Francisco, San Francisco, California, USA
Search for more papers by this authorCorresponding Author
Jeffrey P. North
Correspondence
Jeffrey P. North, MD, University of California San Francisco, 1701 Divisadero Street #280, San Francisco, CA 94115.
Email: [email protected]
Search for more papers by this authorTerese Monette Aquino
University of California San Francisco, San Francisco, California, USA
Search for more papers by this authorMary Grace Calvarido
University of California San Francisco, San Francisco, California, USA
Search for more papers by this authorCorresponding Author
Jeffrey P. North
Correspondence
Jeffrey P. North, MD, University of California San Francisco, 1701 Divisadero Street #280, San Francisco, CA 94115.
Email: [email protected]
Search for more papers by this authorTerese Monette Aquino and Mary Grace Calvarido contributed equally to this study.
Abstract
Background
Elevated epidermal interleukin (IL)-36 expression distinguishes psoriasis from eczematous dermatitis, but other psoriasiform dermatitides (PDs) have not been thoroughly investigated for IL-36 expression. In this study, we assess the IL-36 staining pattern (IL36-SP) in psoriasis variants and other PDs including lichen simplex chronicus (LSC), prurigo nodularis (PN), lichen planus (LP), tinea, pityriasis rubra pilaris (PRP), mycosis fungoides (MF), pemphigus foliaceus (PF), acute generalized exanthematous pustulosis (AGEP), impetigo (IMP), and syphilis (SY).
Methods
IL-36 immunostaining was performed on 307 cases of psoriasis and various PDs. IL36-SP in the upper epidermis was graded on a scale of 0-4.
Results
High IL36-SP occurred in all variants of psoriasis, as well as in AGEP, PRP, PN, tinea, IMP, and LP (P > 0.05). SY, PF, LSC, and MF showed a lower IL36-SP (P ≤ 0.05) compared with psoriasis.
Conclusion
All variants of psoriasis exhibit high IL36-SP. IL-36 staining can assist in differentiating MF, PF, SY, and LSC from psoriasis, particularly MF and LSC, which have consistent low IL-36 expression. AGEP, PRP, tinea, IMP, PN, and LP exhibit high IL-36 expression similar to psoriasis, indicating Th17 activation in these diseases.
CONFLICT OF INTEREST
The authors declared no potential conflicts of interest.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES
- 1Parisi R, Symmons DPM, Griffiths CEM, Ashcroft DM. Global epidemiology of psoriasis: a systematic review of incidence and prevalence. J Invest Dermatol. 2013; 133(2): 377-385. https://doi.org/10.1038/jid.2012.339
- 2Capon F, Burden AD, Trembath RC, Barker JN. Psoriasis and other complex trait dermatoses: from loci to functional pathways. J Invest Dermatol. 2012; 132(3): 915-922. https://doi.org/10.1038/jid.2011.395
- 3Capon F. The genetic basis of psoriasis. Int J Mol Sci. 2017; 18(12):2526. https://doi.org/10.3390/ijms18122526
- 4Blauvelt A. T-helper 17 cells in psoriatic plaques and additional genetic links between IL-23 and psoriasis. J Invest Dermatol. 2008; 128(5): 1064-1067. https://doi.org/10.1038/jid.2008.85
- 5Yan K, Han L, Deng H, et al. The distinct role and regulatory mechanism of IL-17 and IFN-γ in the initiation and development of plaque vs guttate psoriasis. J Dermatol Sci. 2018; 92(1): 106-113. https://doi.org/10.1016/j.jdermsci.2018.07.001
- 6Mahil SK, Catapano M, Di Meglio P, et al. An analysis of IL-36 signature genes and individuals with IL1RL2 knockout mutations validates IL-36 as a psoriasis therapeutic target. Sci Transl Med. 2017; 9(411):eaan2514. https://doi.org/10.1126/scitranslmed.aan2514
- 7Cohen JN, Bowman S, Laszik ZG, North JP. Clinicopathologic overlap of psoriasis, eczema, and psoriasiform dermatoses: a retrospective study of T helper type 2 and 17 subsets, interleukin 36, and β-defensin 2 in spongiotic psoriasiform dermatitis, sebopsoriasis, and tumor necrosis factor α inhibitor-associated dermatitis. J Am Acad Dermatol. 2020; 82(2): 430-439. https://doi.org/10.1016/j.jaad.2019.08.023
- 8D'Erme AM, Wilsmann-Theis D, Wagenpfeil J, et al. IL-36γ (IL-1F9) is a biomarker for psoriasis skin lesions. J Invest Dermatol. 2015; 135(4): 1025-1032. https://doi.org/10.1038/jid.2014.532
- 9Song HS, Kim SJ, Park T-I, Jang YH, Lee E-S. Immunohistochemical comparison of IL-36 and the IL-23/Th17 axis of generalized pustular psoriasis and acute generalized exanthematous pustulosis. Ann Dermatol. 2016; 28(4): 451-456. https://doi.org/10.5021/ad.2016.28.4.451
- 10Blauvelt A. T-helper 17 cells in psoriatic plaques and additional genetic links between IL-23 and psoriasis. J Invest Dermatol. 2008; 128(5): 1064-1067. https://doi.org/10.1038/jid.2008.85
- 11Yuan Z-C, Xu W-D, Liu X-Y, Liu X-Y, Huang A-F, Su L-C. Biology of IL-36 signaling and its role in systemic inflammatory diseases. Front Immunol. 2019; 10:2532. https://doi.org/10.3389/fimmu.2019.02532
- 12Sugiura K, Takemoto A, Yamaguchi M, et al. The majority of generalized pustular psoriasis without psoriasis vulgaris is caused by deficiency of Interleukin-36 receptor antagonist. J Invest Dermatol. 2013; 133(11): 2514-2521. https://doi.org/10.1038/jid.2013.230
- 13Towne J, Sims J. IL-36 in psoriasis. Curr Opin Pharmacol. 2012; 12(4): 486-490. https://doi.org/10.1016/j.coph.2012.02.009
- 14Navarini AA, Valeyrie-Allanore L, Setta-Kaffetzi N, et al. Rare variations in IL36RN in severe adverse drug reactions manifesting as acute generalized exanthematous pustulosis. J Invest Dermatol. 2013; 133(7): 1904-1907. https://doi.org/10.1038/jid.2013.44
- 15Weston G, Payette M. Update on lichen planus and its clinical variants. Int J Womens Dermatol. 2015; 1(3): 140-149. https://doi.org/10.1016/j.ijwd.2015.04.001
- 16Lu R, Zeng X, Han Q, et al. Overexpression and selectively regulatory roles of IL-23/IL-17 axis in the lesions of oral lichen planus. Mediators Inflamm. 2014; 2014: 1-12. https://doi.org/10.1155/2014/701094
- 17Solimani F, Pollmann R, Schmidt T, et al. Therapeutic targeting of Th17/Tc17 cells leads to clinical improvement of lichen planus. Front Immunol. 2019; 10:1808. https://doi.org/10.3389/fimmu.2019.01808
- 18Liang Y, Marcusson JA, Johansson O. Light and electron microscopic immunohistochemical observations of p75 nerve growth factor receptor-immunoreactive dermal nerves in prurigo nodularis. Arch Dermatol Res. 1999; 291(1): 14-21. https://doi.org/10.1007/s004030050378
- 19Fukushi S, Yamasaki K, Aiba S. Nuclear localization of activated STAT6 and STAT3 in epidermis of prurigo nodularis. Br J Dermatol. 2011; 165(5): 990-996. https://doi.org/10.1111/j.1365-2133.2011.10498.x
- 20Calugareanu A, Jachiet M, Tauber M, et al. Effectiveness and safety of dupilumab for the treatment of prurigo nodularis in a French multicenter adult cohort of 16 patients. J Eur Acad Dermatol Venereol JEADV. 2020; 34(2): e74-e76. https://doi.org/10.1111/jdv.15957
- 21Ständer S, Yosipovitch G, Legat FJ, et al. Trial of nemolizumab in moderate-to-severe prurigo nodularis. N Engl J Med. 2020; 382(8): 706-716. https://doi.org/10.1056/NEJMoa1908316
- 22Wong L-S, Yen Y-T, Lin S-H, Lee C-H. IL-17A induces endothelin-1 expression through p38 pathway in prurigo nodularis. J Invest Dermatol. 2020; 140(3): 702-706.e2. https://doi.org/10.1016/j.jid.2019.08.438
- 23Zhang Y-H, Zhou Y, Ball N, Su M-W, Xu J-H, Zheng Z-Z. Type I pityriasis rubra pilaris: upregulation of tumor necrosis factor alpha and response to adalimumab therapy. J Cutan Med Surg. 2010; 14(4): 185-188. https://doi.org/10.2310/7750.2010.09023
- 24Feldmeyer L, Mylonas A, Demaria O, et al. Interleukin 23-helper T-cell 17 axis as a treatment target for pityriasis rubra pilaris. JAMA Dermatol. 2017; 153(4): 304-308. https://doi.org/10.1001/jamadermatol.2016.5384
- 25Van Nuffel E, Afonina IS, Beyaert R. Psoriasis plays a wild CARD. J Invest Dermatol. 2018; 138(9): 1903-1905. https://doi.org/10.1016/j.jid.2018.05.001
- 26Mellett M, Meier B, Mohanan D, et al. CARD14 gain-of-function mutation alone is sufficient to drive IL-23/IL-17-mediated psoriasiform skin inflammation in vivo. J Invest Dermatol. 2018; 138(9): 2010-2023. https://doi.org/10.1016/j.jid.2018.03.1525
- 27Buhl A-L, Wenzel J. Interleukin-36 in infectious and inflammatory skin diseases. Front Immunol. 2019; 10:1162. https://doi.org/10.3389/fimmu.2019.01162
- 28Liu H, Archer NK, Dillen CA, et al. Staphylococcus aureus epicutaneous exposure drives skin inflammation via IL-36-mediated T-cell responses. Cell Host Microbe. 2017; 22(5): 653-666.e5. https://doi.org/10.1016/j.chom.2017.10.006
- 29Jensen LE. Interleukin-36 cytokines may overcome microbial immune evasion strategies that inhibit interleukin-1 family signaling. Sci Signal. 2017; 10(492):eaan3589. https://doi.org/10.1126/scisignal.aan3589
- 30Heinen M-P, Cambier L, Antoine N, et al. Th1 and Th17 immune responses act complementarily to optimally control superficial dermatophytosis. J Invest Dermatol. 2019; 139(3): 626-637. https://doi.org/10.1016/j.jid.2018.07.040
- 31Nielsen J, Kofod-Olsen E, Spaun E, Larsen CS, Christiansen M, Mogensen TH. A STAT1-gain-of-function mutation causing Th17 deficiency with chronic mucocutaneous candidiasis, psoriasiform hyperkeratosis and dermatophytosis. BMJ Case Rep. 2015; 2015(2015):bcr2015211372. https://doi.org/10.1136/bcr-2015-211372
- 32Braegelmann J, Braegelmann C, Bieber T, Wenzel J. Candida induces the expression of IL-36γ in human keratinocytes: implications for a pathogen-driven exacerbation of psoriasis? J Eur Acad Dermatol Venereol. 2018; 32(11): e403-e406. https://doi.org/10.1111/jdv.14994
- 33Satyam A, Khandpur S, Sharma VK, Sharma A. Involvement of TH1/TH2 cytokines in the pathogenesis of autoimmune skin disease—pemphigus vulgaris. Immunol Invest. 2009; 38(6): 498-509. https://doi.org/10.1080/08820130902943097
- 34Lee SH, Hong WJ, Kim S-C. Analysis of serum cytokine profile in pemphigus. Ann Dermatol. 2017; 29(4): 438-445. https://doi.org/10.5021/ad.2017.29.4.438
- 35Żebrowska A, Woźniacka A, Juczyńska K, et al. Correlation between IL-36α and IL-17 and activity of the disease in selected autoimmune blistering diseases. Mediators Inflamm. 2017; 2017: 1-10. https://doi.org/10.1155/2017/8980534
- 36Zhu A, Han H, Zhao H, et al. Increased frequencies of Th17 and Th22 cells in the peripheral blood of patients with secondary syphilis. FEMS Immunol Med Microbiol. 2012; 66(3): 299-306. https://doi.org/10.1111/j.1574-695X.2012.01007.x
- 37Kojima N, Siebert JC, Maecker H, et al. Cytokine expression in Treponema pallidum infection. J Transl Med. 2019; 17(1): 196. https://doi.org/10.1186/s12967-019-1947-7
- 38Bernardeschi C, Grange PA, Janier M, et al. Treponema pallidum induces systemic TH17 and TH1 cytokine responses. Eur J Dermatol. 2012; 22(6): 797-798. https://doi.org/10.1684/ejd.2012.1841
- 39Lotti T, Buggiani G, Prignano F. Prurigo nodularis and lichen simplex chronicus. Dermatol Ther. 2008; 21(1): 42-46. https://doi.org/10.1111/j.1529-8019.2008.00168.x
- 40Feng X, Yang M, Yang Z, Qian Q, Burns EM, Min W. Abnormal expression of the co-stimulatory molecule B7-H3 in lichen simplex chronicus is associated with expansion of langerhans cells. Clin Exp Dermatol. 2020; 45(1): 30-35. https://doi.org/10.1111/ced.14001
- 41Willemze R, Cerroni L, Kempf W, et al. The 2018 update of the WHO-EORTC classification for primary cutaneous lymphomas. Blood. 2019; 133(16): 1703-1714. https://doi.org/10.1182/blood-2018-11-881 268
- 42Murugaiyan G, Saha B. Protumor vs antitumor functions of IL-17. J Immunol. 2009; 183(7): 4169-4175. https://doi.org/10.4049/jimmunol.0901017
- 43Cirée A, Michel L, Camilleri-Bröet S, et al. Expression and activity of IL-17 in cutaneous T-cell lymphomas(mycosis fungoides and Sezary syndrome). Int J Cancer. 2004; 112(1): 113-120. https://doi.org/10.1002/ijc.20373
- 44Krejsgaard T, Litvinov IV, Wang Y, et al. Elucidating the role of interleukin-17F in cutaneous T-cell lymphoma. Blood. 2013; 122(6): 943-950. https://doi.org/10.1182/blood-2013-01-480889
- 45Willerslev-Olsen A, Litvinov IV, Fredholm SM, et al. IL-15 and IL-17F are differentially regulated and expressed in mycosis fungoides (MF). Cell Cycle. 2014; 13(8): 1306-1312. https://doi.org/10.4161/cc.28256
- 46Miyagaki T, Sugaya M, Suga H, et al. IL-22, but not IL-17, dominant environment in cutaneous T-cell lymphoma. Clin Cancer Res. 2011; 17(24): 7529-7538. https://doi.org/10.1158/1078-0432.CCR-11-1192
- 47Otobe S, Sugaya M, Nakajima R, et al. Increased interleukin-36γ expression in skin and sera of patients with atopic dermatitis and mycosis fungoides/Sézary syndrome. J Dermatol. 2018; 45(4): 468-471. https://doi.org/10.1111/1346-8138.14198
- 48Martinez-Escala ME, Posligua AL, Wickless H, et al. Progression of undiagnosed cutaneous lymphoma after anti-tumor necrosis factor-alpha therapy. J Am Acad Dermatol. 2018; 78(6): 1068-1076. https://doi.org/10.1016/j.jaad.2017.12.068
- 49Yoo J, Shah F, Velangi S, Stewart G, Scarisbrick JS. Secukinumab for treatment of psoriasis: does secukinumab precipitate or promote the presentation of cutaneous T-cell lymphoma? Clin Exp Dermatol. 2019; 44(4): 414-417. https://doi.org/10.1111/ced.13777
- 50Nikolaou V, Papadavid E, Economidi A, et al. Mycosis fungoides in the era of antitumour necrosis factor-α treatments. Br J Dermatol. 2015; 173(2): 590-593. https://doi.org/10.1111/bjd.13705
- 51Partarrieu-Mejías F, Díaz-Corpas T, Pérez-Ferriols A, Alegre-de Miquel V. Mycosis fungoides after treatment with tumor necrosis factor-alpha inhibitors for psoriasis: progression or onset? Int J Dermatol. 2019; 58(5): e103-e105. https://doi.org/10.1111/ijd.14367
- 52Yan K, Han L, Deng H, et al. The distinct role and regulatory mechanism of IL-17 and IFN-γ in the initiation and development of plaque vs guttate psoriasis. J Dermatol Sci. 2018; 92(1): 106-113. https://doi.org/10.1016/j.jdermsci.2018.07.001
- 53Kabashima R, Sugita K, Sawada Y, Hino R, Nakamura M, Tokura Y. Increased circulating Th17 frequencies and serum IL-22 levels in patients with acute generalized exanthematous pustulosis. J Eur Acad Dermatol Venereol JEADV. 2011; 25(4): 485-488. https://doi.org/10.1111/j.1468-3083.2010.03771.x