EIF2α phosphorylation is regulated in intracellular amastigotes for the generation of infective Trypanosoma cruzi trypomastigote forms
Fabricio Castro Machado
Departmento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
Search for more papers by this authorPaula Bittencourt-Cunha
Departmento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
Search for more papers by this authorAmaranta Muniz Malvezzi
Departmento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
Search for more papers by this authorMirella Arico
Departmento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
Search for more papers by this authorSantiago Radio
Department of Genomics, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay
Laboratory of Molecular Interactions, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
Search for more papers by this authorPablo Smircich
Department of Genomics, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay
Laboratory of Molecular Interactions, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
Search for more papers by this authorMartin Zoltner
Drug Discovery and Evaluation, Centre for Research of Pathogenicity and Virulence of Parasites, Charles University, Prague, Czech Republic
Search for more papers by this authorMark C. Field
Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, UK
Institute of Parasitology, Czech Academy of Sciences, Prague, Czech Republic
Search for more papers by this authorCorresponding Author
Sergio Schenkman
Departmento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
Correspondence
Sergio Schenkman, Departmento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, R. Pedro de Toledo 669 L6A, São Paulo SP, 04039-032, Brazil.
Email: [email protected]
Search for more papers by this authorFabricio Castro Machado
Departmento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
Search for more papers by this authorPaula Bittencourt-Cunha
Departmento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
Search for more papers by this authorAmaranta Muniz Malvezzi
Departmento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
Search for more papers by this authorMirella Arico
Departmento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
Search for more papers by this authorSantiago Radio
Department of Genomics, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay
Laboratory of Molecular Interactions, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
Search for more papers by this authorPablo Smircich
Department of Genomics, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay
Laboratory of Molecular Interactions, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
Search for more papers by this authorMartin Zoltner
Drug Discovery and Evaluation, Centre for Research of Pathogenicity and Virulence of Parasites, Charles University, Prague, Czech Republic
Search for more papers by this authorMark C. Field
Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, UK
Institute of Parasitology, Czech Academy of Sciences, Prague, Czech Republic
Search for more papers by this authorCorresponding Author
Sergio Schenkman
Departmento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
Correspondence
Sergio Schenkman, Departmento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, R. Pedro de Toledo 669 L6A, São Paulo SP, 04039-032, Brazil.
Email: [email protected]
Search for more papers by this authorFabricio Castro Machado, Paula Bittencourt-Cunha, and Amaranta Muniz Malvezzi contributed equally to this study.
Funding information: Conselho Nacional de Desenvolvimento Científico e Tecnológico, Grant/Award Numbers: 445655/2014-3, INCT-Vaccine; Fundação de Amparo à Pesquisa do Estado de São Paulo, Grant/Award Numbers: 2014/01577-2, 2015/20031-0, 2017/02496-4
Abstract
Trypanosomatids regulate gene expression mainly at the post-transcriptional level through processing, exporting and stabilising mRNA and control of translation. In most eukaryotes, protein synthesis is regulated by phosphorylation of eukaryotic initiation factor 2 (eIF2) at serine 51. Phosphorylation halts overall translation by decreasing availability of initiator tRNAmet to form translating ribosomes. In trypanosomatids, the N-terminus of eIF2α is extended with threonine 169 the homologous phosphorylated residue. Here, we evaluated whether eIF2α phosphorylation varies during the Trypanosoma cruzi life cycle, the etiological agent of Chagas' disease. Total levels of eIF2α are diminished in infective and non-replicative trypomastigotes compared with proliferative forms from the intestine of the insect vector or amastigotes from mammalian cells, consistent with decreased protein synthesis reported in infective forms. eIF2α phosphorylation increases in proliferative intracellular forms prior to differentiation into trypomastigotes. Parasites overexpressing eIF2αT169A or with an endogenous CRISPR/Cas9-generated eIF2αT169A mutation were created and analysis revealed alterations to the proteome, largely unrelated to the presence of μORF in epimastigotes. eIF2αT169A mutant parasites produced fewer trypomastigotes with lower infectivity than wild type, with increased levels of sialylated mucins and oligomannose glycoproteins, and decreased galactofuranose epitopes and the surface protease GP63 on the cell surface. We conclude that eIF2α expression and phosphorylation levels affect proteins relevant for intracellular progression of T. cruzi.
CONFLICT OF INTEREST
The authors declare no conflicts of interest.
Supporting Information
Filename | Description |
---|---|
CMI_13243_Figure S1.tiffTIFF image, 9.6 MB | FIGURE S1. Characterisation of parasites overexpressing control and mutated eIF2α. (a) Western blotting of total extracts of non-transfected (NT) or epimastigotes overexpressing the indicated forms of eIF2α was probed for eIF2α and Hsp70 just after selection or after 21 days maintained without Geneticin G418. (b) The graph indicates the mean levels of eIF2α ± standard deviations in relation to Hsp70 from three independent experiments comparing the values of NT. (c) Differential interference contrast (DIC) images of the indicated lines. Bars = 5 μm. (d) Quantification of the projected surface area of the indicated epimastigotes lines was made using Cell ̂ M software. The graph shows mean (white lines), 25 and 75% percentiles (boxes) and the standard deviation as max and min values (n = 100). (e) Western blotting of metacyclic-trypomastigote extract (Meta) or from tissue culture-derived trypomastigotes of non-transfected parasites (NT), trypomastigotes transfected with GFP, or overexpressing a wild-type version of T. cruzi eIF2α (WT) or eIF2α mutations. The blots were probed for eIF2α, Hsp70 and aldolase. (f) Band intensity (n = 3) of eIF2α relative to Hsp70 normalised to NT parasites. The values are means ± standard deviations. The asterisk indicates p .05 and ** indicates p < .01 when comparing the results with NT epimastigotes or with WT overexpressors using one-way ANOVA and Tukey's multiple comparisons. |
CMI_13243_Figure S2.tiffTIFF image, 1.7 MB | FIGURE S2. T. cruzi epimastigotes with eIF2α mutated at T169 do not fully arrest translation. Polysome profile at 254 nm of epimastigotes from eIF2α overexpressor lines (a) or Cas9 lines (b) harvested at exponential phase and then maintained in LIT (black trace), or after TAU medium for 2 hr (red trace). The graphs indicate the migrating position of monosomes (80S) and polysomes (P) in each panel. The P/80S ratios were obtained by measuring the area bellow both fractions on each graph. Similar results were obtained in triplicate experiments. |
CMI_13243_Figure S3.tiffTIFF image, 1.4 MB | FIGURE S3. Abnormal expression of metacyclic-specific proteins occurred only in eIF2α overexpressing epimastigotes. Extracts of epimastigotes (5 × 106) cultured in LIT medium for 1, 4, or 7 days and from non-transfected and purified metacyclic-trypomastigotes (2 × 107) were loaded in a gel and processed for western blotting. The membranes were probed for Hsp70, aldolase, or metacyclic-specific glycoproteins gp90 and gp82 (a). (b) Graph representing the mean and standard deviations of the levels of gp90 relative to Hsp70 (n = 3). (c) Similar extracts we prepared from exponentially growing overexpressors or Cas9 lines, loaded in a gel and probed with antibodies to gp90. The size markers of each gel are indicated on the right side. |
CMI_13243_Figure S4.tiffTIFF image, 2 MB | FIGURE S4. Relation betwen the 5′UTR and the presence of μORFs with the difference in protein expression. (a) Shows the relation between the UTR length and the difference in protein levels as found by MS/MS analysis for the hits with –log10 p > 3 as generated by Orange3 data analysis program. (b) Scatter plot showing the presence of hits with μORFs and the corresponding differences in expression generated by Orange3 data analysis program. Non-repressive are in blue and show genes whiteout μORF. The coloured symbols correspond to μORF non-overlapping (no), overlapping (o) and both (o/no) each ORF. Size of each symbol is proportional to the log of MSMS detection. Undetermined ORFs are not shown. (c) Frequency of μORF type among major class of ORFs corresponding to the indicated list. The classes shown in read are those with high proportion of μORF to non-repressive ORFs. |
CMI_13243_Figure S5.tiffTIFF image, 2.5 MB | FIGURE S5. Relation between codon adaptation index and proteomic data. (a) The graph shows the relation between the Log (MS/MS counts), which correspond to the total number of identified proteins in both populations and the codon adaptation index (CAI). (b) Volcano plot of the CAI and Difference detected in protein expression. Each hit was coloured according to the Log (MS/MS counts) as indicated in the legend of the figure. Both plots were generated by Orange3 software. |
CMI_13243_Figure S6.tiffTIFF image, 4.4 MB | FIGURE S6. Intracellular replication of amastigotes overexpressing different forms of eIF2α. (a) Panels show images obtained from high-content analysis (HCA) for the indicated lineages 3 or 4 days after infection with 40:1 multiplicity of infection. Bar = 20 μm. (b–d) The graphs show the number of amastigotes per infected cell 2, 3 and 4 days after infection of U-2 OS cells with the indicated multiplicity of infection. The values are means ± standard deviation of three independent experiments. The asterisk indicates p < .05, ** < .01 and *** p < .001 calculated using the two-way ANOVA, at the fourth day of replication. (e and f) Intracellular replication of amastigotes from non-transfected (NT), GFP expressing (GFP) and overexpressing eIF2α (WT, S43A, T169A and S43A/T169A) after 2 and 3 days in LLC-MK2-infected cells. The number of amastigotes per cell was counted in 100 infected cells using optical microscopy after Giemsa staining, as described in Methods. The values show means, min and max values and the standard deviation of triplicate (2 days) and duplicate (3 days) experiments. The asterisk indicates p < .05 and ** indicates p < .01 both calculated using the Student's t test in relation to NT parasites. # indicates p < .05, ## p < .01 and ### p < .001, calculated using the Student's t test in relation to WT overexpressors. |
CMI_13243_Figure S7.tiffTIFF image, 762.7 KB | FIGURE S7. Effect of immunosuppression on mice infected with eIF2α overexpressors. Mice were previously infected with trypomastigotes as shown in Figure 5. Forty days after infection, the mice started to be immunosuppressed with cyclophosphamide as described in Methods and blood parasitemia was followed again for the indicated period starting at the initial day of immunosuppression. The graphics displayed the percentage of animals with detectable blood parasites (a) and the respective parasitemia levels (b). |
CMI_13243_Table S1.docxWord 2007 document , 13.9 KB | TABLE S1. Primes used in this work. The bases in italic in the sgeIF2 primer correspond to the T7 promoter for the in vitro transcription, in bold, the homology region to eIF2α sequence and the underlined sequence corresponds to the bases of the pUC Sg vector. The double underlined bases in eIF2T169don are modified residues to replace the Thr 169 for Ala and insert the BssHII diagnostic site. |
TableS2.xlsxExcel 2007 spreadsheet , 7.2 MB | TABLE S2. Protein identification by MS/MS analysis. (Table S1.xlsx). Summary of proteomic data (n = 5) for controls and eIF2α mutants. Sheet 1 is the LFQ output for the 4,301 protein groups detected. For each protein group, a LFQ ratio of T169A mutant versus parental cells, the respective t-test difference and a corresponding log p-value are indicated. For ratio formation, a constant was added to each LFQ value, to avoid division by zero (such ‘infinite ratios’ are clearly distinguishable from genuine ratios by being significantly larger, smaller or exactly 1.0). GO annotations were downloaded from TriTrypDB. Sheets 2 and 3 are reduced to protein groups with significant abundance shift (–log10 p-value >1). Sheets 4, 5 and 6 are the output tables of the Maxquant analysis (summary, parameters and protein groups). |
TableS3.xlsxExcel 2007 spreadsheet , 42.3 KB | TABLE S3. Function attribution of the hits with -log10P-value > 1. (Table S2.xlsx). The most significant abundance shifts upon eIF2α T169A mutation detected by proteomic analysis with functional annotation. |
Table S4.xlsxExcel 2007 spreadsheet , 872 KB | TABLE S4. UTRs and μORFs calculated for the T. cruzi YC6 CDS. (Table S3.xlsx). In the first sheet, the predicted best 5′UTRs using the UTRme software are indicated and in the second, the identified μORFs. The third sheet summarises the enrichment analysis of the tree μORF categories (Fo = overlapping, Fno = non-overlapping, no-repression) and of predicted trans-sialidases, within both protein cohorts, increased and decreased as a result of the T169A mutation (–log p > .5) respectively. Categories with enrichment over 1.5-fold and Benjamin–Hochberg false discovery rate of 0.02 are highlighted. Sheet 4 lists the 15 predicted trans-sialidases used in the enrichment analysis. Sheet 5 lists the predicted best 3′UTR also using the UTRme software. The corresponding GFF files for the 5′UTR and 3′UTR are provided as separate supplementary files. |
Table S5.xlsxExcel 2007 spreadsheet , 126.1 KB | TABLE S5. CAI calculated for the T. cruzi YC6 CDs. (Table S4.xlsx). The values were calculated considering codon usage table for all CDSs, or using the codon usage table for the 100 top hits detected by MS/MS counts, both using the YC6 genome data. |
CMI_13243_Supporting information.docxWord 2007 document , 22 KB | Data S1. Additional supplementary files: (YUTR-5 best-score.gff) and (YUTR-3 best-score.gff) correspond to the annotation of the best hits for the 5′ and 3′UTR detected by using the UTRme software. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Abuin, G., Freitas, L., Colli, W., Alves, M., & Schenkman, S. (1999). Expression of trans-sialidase and 85-kDa glycoprotein genes in Trypanosoma cruzi is differentially regulated at the post-transcriptional level by labile protein factors. The Journal of Biological Chemistry, 274, 13041–13047.
- Amorim, J. C., Batista, M., da Cunha, E. S., Lucena, A. C. R., Lima, C. V. P., Sousa, K., … Marchini, F. K. (2017). Quantitative proteome and phosphoproteome analyses highlight the adherent population during Trypanosoma cruzi metacyclogenesis. Scientific Reports, 7, 9899.
- Andreev, D. E., O'Connor, P. B., Fahey, C., Kenny, E. M., Terenin, I. M., Dmitriev, S. E., … Baranov, P. V. (2015). Translation of 5′ leaders is pervasive in genes resistant to eIF2 repression. eLife, 4, e03971.
- Andrews, N. W., Hong, K. S., Robbins, E. S., & Nussenzweig, V. (1987). Stage-specific surface antigens expressed during the morphogenesis of vertebrate forms of Trypanosoma cruzi. Experimental Parasitology, 64, 474–484.
- Araguth, M. F., Rodrigues, M. M., & Yoshida, N. (1988). Trypanosoma cruzi metacyclic trypomastigotes: Neutralization by the stage-specific monoclonal antibody 1G7 and immunogenicity of 90 kD surface antigen. Parasite Immunology, 10, 707–712.
- Araya, J. E., Cano, M. I., Yoshida, N., & Da Silveira, J. F. (1994). Cloning and characterization of a gene for the stage-specific 82-kDa surface antigen of metacyclic trypomastigoates of Trypanosoma cruzi. Molecular and Biochemical Parasitology, 65, 161–169.
- Aslett, M., Aurrecoechea, C., Berriman, M., Brestelli, J., Brunk, B. P., Carrington, M., … Wang, H. (2010). TriTrypDB: A functional genomic resource for the Trypanosomatidae. Nucleic Acids Research, 38, D457–D462.
- Aulas, A., Fay, M. M., Lyons, S. M., Achorn, C. A., Kedersha, N., Anderson, P., & Ivanov, P. (2017). Stress-specific differences in assembly and composition of stress granules and related foci. Journal of Cell Science, 130, 927–937.
- Avila, A. R., Dallagiovanna, B., Yamada-Ogatta, S. F., Monteiro-Goes, V., Fragoso, S. P., Krieger, M. A., & Goldenberg, S. (2003). Stage-specific gene expression during Trypanosoma cruzi metacyclogenesis. Genetics and Molecular Research, 2, 159–168.
- Avila, C. C., Peacock, L., Machado, F. C., Gibson, W., Schenkman, S., Carrington, M., & Castilho, B. A. (2016). Phosphorylation of eIF2alpha on threonine 169 is not required for Trypanosoma brucei cell cycle arrest during differentiation. Molecular and Biochemical Parasitology, 205, 16–21.
- Baird, T. D., & Wek, R. C. (2012). Eukaryotic initiation factor 2 phosphorylation and translational control in metabolism. Advances in Nutrition, 3, 307–321.
- Bangs, J. D., Uyetake, L., Brickman, M. J., Balber, A. E., & Boothroyd, J. C. (1993). Molecular cloning and cellular localization of a BiP homologue in Trypanosoma brucei. Divergent ER retention signals in a lower eukaryote. Journal of Cell Science, 105, 1101–1113.
- Belew, A. T., Junqueira, C., Rodrigues-Luiz, G. F., Valente, B. M., Oliveira, A. E. R., Polidoro, R. B., … Teixeira, S. M. R. (2017). Comparative transcriptome profiling of virulent and non-virulent Trypanosoma cruzi underlines the role of surface proteins during infection. PLoS Pathogens, 13, e1006767.
- Bogorad, A. M., Lin, K. Y., & Marintchev, A. (2017). Novel mechanisms of eIF2B action and regulation by eIF2alpha phosphorylation. Nucleic Acids Research, 45, 11962–11979.
- Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.
- Brecht, M., & Parsons, M. (1998). Changes in polysome profiles accompany trypanosome development. Molecular and Biochemical Parasitology, 97, 189–198.
- Camargo, E. P. (1964). Growth and differentiation in Trypanosoma cruzi. I. Origin of metacyclic trypanosomes in liquid media. Revista do Instituto de Medicina Tropical de São Paulo, 6, 93–100.
- Cassola, A. (2011). RNA granules living a post-transcriptional life: The trypanosomes' case. Current Chemical Biology, 5, 108–117.
- Chow, C., Cloutier, S., Dumas, C., Chou, M. N., & Papadopoulou, B. (2011). Promastigote to amastigote differentiation of Leishmania is markedly delayed in the absence of PERK eIF2alpha kinase-dependent eIF2alpha phosphorylation. Cellular Microbiology, 13, 1059–1077.
- Chung, J., Rocha, A. A., Tonelli, R. R., Castilho, B. A., & Schenkman, S. (2013). Eukaryotic initiation factor 5A dephosphorylation is required for translational arrest in stationary phase cells. The Biochemical Journal, 451, 257–267.
- Clayton, C. (2019). Regulation of gene expression in trypanosomatids: Living with polycistronic transcription. Open Biology, 9, 190072.
- Cloutier, S., Laverdiere, M., Chou, M.-N., Boilard, N., Chow, C., & Papadopoulou, B. (2012). Translational control through eIF2alpha phosphorylation during the Leishmania differentiation process. PLoS One, 7, e35085.
- Cox, J., & Mann, M. (2008). MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nature Biotechnology, 26, 1367–1372.
- Cribb, P., Esteban, L., Trochine, A., Girardini, J., & Serra, E. (2010). Trypanosoma cruzi TBP shows preference for C/G-rich DNA sequences in vitro. Experimental Parasitology, 124, 346–349.
- Cuevas, I. C., Cazzulo, J. J., & Sanchez, D. O. (2003). gp63 homologues in Trypanosoma cruzi: Surface antigens with metalloprotease activity and a possible role in host cell infection. Infection and Immunity, 71, 5739–5749.
- da Silva Augusto, L., Moretti, N. S., Ramos, T. C., de Jesus, T. C., Zhang, M., Castilho, B. A., & Schenkman, S. (2015). A membrane-bound eIF2 alpha kinase located in endosomes is regulated by heme and controls differentiation and ROS levels in Trypanosoma cruzi. PLoS Pathogens, 11, e1004618.
- Das, A., Morales, R., Banday, M., Garcia, S., Hao, L., Cross, G. A., … Bellofatto, V. (2012). The essential polysome-associated RNA-binding protein RBP42 targets mRNAs involved in Trypanosoma brucei energy metabolism. RNA, 18, 1968–1983.
- Elias, M., Marques-Porto, R., Freymuller, E., & Schenkman, S. (2001). Transcription rate modulation through the Trypanosoma cruzi life cycle occurs in parallel with changes in nuclear organisation. Molecular and Biochemical Parasitology, 112, 79–90.
- Ferreira, L. R., Dossin Fde, M., Ramos, T. C., Freymuller, E., & Schenkman, S. (2008). Active transcription and ultrastructural changes during Trypanosoma cruzi metacyclogenesis. Anais da Academia Brasileira de Ciências, 80, 157–166.
- Franco, F. R. S., Paranhos-Bacalla, G. S., Yamauchi, L. M., Yoshida, N., & Da Silveira, J. F. (1993). Characterization of a cDNA clone encoding the carboxy-terminal domain of a 90-kilodalton surface antigen of Trypanosoma cruzi metacyclic trypomastigotes. Infection and Immunity, 61, 4196–4201.
- Frevert, U., Schenkman, S., & Nussenzweig, V. (1992). Stage-specific expression and intracellular shedding of the cell surface trans-sialidase of Trypanosoma cruzi. Infection and Immunity, 60, 2349–2360.
- Fritz, M., Vanselow, J., Sauer, N., Lamer, S., Goos, C., Siegel, T. N., … Kramer, S. (2015). Novel insights into RNP granules by employing the trypanosome's microtubule skeleton as a molecular sieve. Nucleic Acids Research, 43, 8013–8032.
- Goldenberg, S., & Avila, A. R. (2011). Aspects of Trypanosoma cruzi stage differentiation. Advances in Parasitology, 75, 285–305.
- Guerra-Slompo, E. P., Probst, C. M., Pavoni, D. P., Goldenberg, S., Krieger, M. A., & Dallagiovanna, B. (2012). Molecular characterization of the Trypanosoma cruzi specific RNA binding protein TcRBP40 and its associated mRNAs. Biochemical and Biophysical Research Communications, 420, 302–307.
- Guther, M. L. S., Cardoso de Almeida, M. L., Yoshida, N., & Ferguson, M. A. J. (1992). Structural studies on the glycosylphosphadidylinositol membrane anchor of Trypanosoma cruzi 1G7-antigen. The Journal of Biological Chemistry, 267, 6820–6828.
- Haile, S., & Papadopoulou, B. (2007). Developmental regulation of gene expression in trypanosomatid parasitic protozoa. Current Opinion in Microbiology, 10, 569–577.
- Hentze, M. W., Castello, A., Schwarzl, T., & Preiss, T. (2018). A brave new world of RNA-binding proteins. Nature Reviews. Molecular Cell Biology, 19, 327–341.
- Hinnebusch, A. G. (2000). Mechanism and regulation of initiator methionyl-tRNA binding to ribosomes. In N. Sonenberg, J. W. B. Hershey, & M. B. Mathews (Eds.), Translational control of gene expression (pp. 185–243). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
- Huyan, X. H., Lin, Y. P., Gao, T., Chen, R. Y., & Fan, Y. M. (2011). Immunosuppressive effect of cyclophosphamide on white blood cells and lymphocyte subpopulations from peripheral blood of Balb/c mice. International Immunopharmacology, 11, 1293–1297.
- Jeacock, L., Faria, J., & Horn, D. (2018). Codon usage bias controls mRNA and protein abundance in trypanosomatids. eLife, 7, e32496
- Joyce, B. R., Queener, S. F., Wek, R. C., & Sullivan, W. J., Jr. (2010). Phosphorylation of eukaryotic initiation factor-2α promotes the extracellular survival of obligate intracellular parasite Toxoplasma gondii. Proceedings of the National Academy of Sciences of the United States of America, 107, 17200–17205.
- Kashiwagi, K., Takahashi, M., Nishimoto, M., Hiyama, T. B., Higo, T., Umehara, T., … Yokoyama, S. (2016). Crystal structure of eukaryotic translation initiation factor 2B. Nature, 531, 122–125.
- Kolev, N. G., Ramey-Butler, K., Cross, G. A., Ullu, E., & Tschudi, C. (2012). Developmental progression to infectivity in Trypanosoma brucei triggered by an RNA-binding protein. Science, 338, 1352–1353.
- Kramer, S. (2012). Developmental regulation of gene expression in the absence of transcriptional control: The case of kinetoplastids. Molecular and Biochemical Parasitology, 181, 61–72.
- Kramer, S., Queiroz, R., Ellis, L., Webb, H., Hoheisel, J. D., Clayton, C., & Carrington, M. (2008). Heat shock causes a decrease in polysomes and the appearance of stress granules in trypanosomes independently of eIF2α phosphorylation at Thr169. Journal of Cell Science, 121, 3002–3014.
- Krishnamoorthy, T., Pavitt, G. D., Zhang, F., Dever, T. E., & Hinnebusch, A. G. (2001). Tight binding of the phosphorylated alpha subunit of initiation factor 2 (eIF2alpha) to the regulatory subunits of guanine nucleotide exchange factor eIF2B is required for inhibition of translation initiation. Molecular and Cellular Biology, 21, 5018–5030.
- Kulkarni, M. M., Olson, C. L., Engman, D. M., & McGwire, B. S. (2009). Trypanosoma cruzi GP63 proteins undergo stage-specific differential posttranslational modification and are important for host cell infection. Infection and Immunity, 77, 2193–2200.
- Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London), 227, 680–685.
- Lahav, T., Sivam, D., Volpin, H., Ronen, M., Tsigankov, P., Green, A., … Myler, P. J. (2011). Multiple levels of gene regulation mediate differentiation of the intracellular pathogen Leishmania. The FASEB Journal, 25, 515–525.
- Lander, N., Li, Z. H., Niyogi, S., & Docampo, R. (2015). CRISPR/Cas9-induced disruption of Paraflagellar rod protein 1 and 2 genes in Trypanosoma cruzi reveals their role in Flagellar attachment. MBio, 6, e01012.
- Malaga, S., & Yoshida, N. (2001). Targeted reduction in expression of Trypanosoma cruzi surface glycoprotein gp90 increases parasite infectivity. Infection and Immunity, 69, 353–359.
- Markmiller, S., Soltanieh, S., Server, K. L., Mak, R., Jin, W., Fang, M. Y., … Yeo, G. W. (2018). Context-dependent and disease-specific diversity in protein interactions within stress granules. Cell, 172, 590–604.e513.
- Martinez-Calvillo, S., Vizuet-de-Rueda, J.C., Florencio-Martinez, L.E., Manning-Cela, R.G., & Figueroa-Angulo, E.E. (2010). Gene expression in trypanosomatid parasites. Journal of Biomedicine & Biotechnology, 2010, 525241.
- McDowell, M. A., Ransom, D. M., & Bangs, J. D. (1998). Glycosylphosphatidylinositol-dependent secretory transport in Trypanosoma brucei. The Biochemical Journal, 335, 681–689.
- Medina-Acosta, E., & Cross, G. A. M. (1993). Rapid isolation of DNA from trypanosomatid protozoa using a simple ‘mini-prep’ procedure. Molecular and Biochemical Parasitology, 59, 327–330.
- Moon, S., Siqueira-Neto, J. L., Moraes, C. B., Yang, G., Kang, M., Freitas-Junior, L. H., & Hansen, M. A. (2014). An image-based algorithm for precise and accurate high throughput assessment of drug activity against the human parasite Trypanosoma cruzi. PLoS One, 9, e87188.
- Moraes, M. C., Jesus, T. C., Hashimoto, N. N., Dey, M., Schwartz, K. J., Alves, V. S., … Castilho, B. A. (2007). Novel membrane-bound eIF2alpha kinase in the flagellar pocket of Trypanosoma brucei. Eukaryotic Cell, 6, 1979–1991.
- Moretti, N. S., & Schenkman, S. (2013). Chromatin modifications in trypanosomes due to stress. Cellular Microbiology, 15, 709–717.
- Mucci, J., Lantos, A. B., Buscaglia, C. A., Leguizamon, M. S., & Campetella, O. (2016). The Trypanosoma cruzi surface, a nanoscale patchwork quilt. Trends in Parasitology, 33, 102–112.
- Mugo, E., & Clayton, C. (2017). Expression of the RNA-binding protein RBP10 promotes the bloodstream-form differentiation state in Trypanosoma brucei. PLoS Pathogens, 13, e1006560.
- Opperdoes, F. R., & Borst, P. (1977). Localization of nine glycolytic enzymes in a microbody-like organelle in Trypanosoma brucei: The glycosome. FEBS Letters, 80, 360–364.
- Pacheco-Lugo, L., Díaz-Olmos, Y., Sáenz-García, J., Probst, C. M., & DaRocha, W. D. (2017). Effective gene delivery to Trypanosoma cruzi epimastigotes through nucleofection. Parasitology International, 66(3), 236–239.
- Palam, L. R., Baird, T. D., & Wek, R. C. (2011). Phosphorylation of eIF2 facilitates ribosomal bypass of an inhibitory upstream ORF to enhance CHOP translation. The Journal of Biological Chemistry, 286, 10939–10949.
- Palenchar, J. B., & Bellofatto, V. (2006). Gene transcription in trypanosomes. Molecular and Biochemical Parasitology, 146, 135–141.
- Pavitt, G. D., Ramaiah, K. V., Kimball, S. R., & Hinnebusch, A. G. (1998). eIF2 independently binds two distinct eIF2B subcomplexes that catalyze and regulate guanine-nucleotide exchange. Genes & Development, 12, 514–526.
- Pereira, M., Malvezzi, A. M., Nascimento, L. M., da Costa Lima, T. D., Alves, V. S., Palma, M. L., … de Melo Neto, O. P. (2013). The eIF4E subunits of two distinct trypanosomatid eIF4F complexes are subjected to differential post-translational modifications associated to distinct growth phases in culture. Molecular and Biochemical Parasitology, 190, 82–86.
- Perez-Diaz, L., Correa, A., Moretao, M. P., Goldenberg, S., Dallagiovanna, B., & Garat, B. (2012). The overexpression of the trypanosomatid-exclusive TcRBP19 RNA-binding protein affects cellular infection by Trypanosoma cruzi. Memórias do Instituto Oswaldo Cruz, 107, 1076–1079.
- Piacenza, L., Alvarez, M. N., Peluffo, G., & Radi, R. (2009). Fighting the oxidative assault: The Trypanosoma cruzi journey to infection. Current Opinion in Microbiology, 12, 415–421.
- Radio, S., Fort, R. S., Garat, B., Sotelo-Silveira, J., & Smircich, P. (2018). UTRme: A scoring-based tool to annotate untranslated regions in Trypanosomatid genomes. Frontiers in Genetics, 9, 671.
- Radío, S., Garat, B., Sotelo-Silveira, J., & Smircich, P. (2020). Upstream ORFs influence translation efficiency in the parasite Trypanosoma cruzi. Frontiers in Genetics, 11, 166.
- Ramirez, M. I., Yamauchi, L. M., de Freitas, L. H., Jr., Uemura, H., & Schenkman, S. (2000). The use of the green fluorescent protein to monitor and improve transfection in Trypanosoma cruzi. Molecular and Biochemical Parasitology, 111, 235–240.
- Rao, S. J., Meleppattu, S., & Pal, J. K. (2016). A GCN2-like eIF2alpha kinase (LdeK1) of Leishmania donovani and its possible role in stress response. PLoS One, 11, e0156032.
- Rice, P., Longden, I., & Bleasby, A. (2000). EMBOSS: The European molecular biology open software suite. Trends in Genetics, 16, 276–277.
- Rodrigues, J. P. F., Sant'ana, G. H. T., Juliano, M. A., & Yoshida, N. (2017). Inhibition of host cell lysosome spreading by Trypanosoma cruzi Metacyclic stage-specific surface molecule gp90 downregulates parasite invasion. Infection and Immunity, 85(9), e00302-17
- Romagnoli, B. A. A., Holetz, F. B., Alves, L. R., & Goldenberg, S. (2020). RNA binding proteins and gene expression regulation in Trypanosoma cruzi. Frontiers in Cellular and Infection Microbiology, 10, 56.
- Rubin-de-Celis, S. S., Uemura, H., Yoshida, N., & Schenkman, S. (2006). Expression of trypomastigote trans-sialidase in metacyclic forms of Trypanosoma cruzi increases parasite escape from its parasitophorous vacuole. Cellular Microbiology, 8, 1888–1898.
- Schuller, A. P., Wu, C. C., Dever, T. E., Buskirk, A. R., & Green, R. (2017). eIF5A functions globally in translation elongation and termination. Molecular Cell, 66, 194–205 e195.
- Schwede, A., Kramer, S., & Carrington, M. (2012). How do trypanosomes change gene expression in response to the environment? Protoplasma, 249, 223–238.
- Smircich, P., Eastman, G., Bispo, S., Duhagon, M. A., Guerra-Slompo, E. P., Garat, B., … Sotelo-Silveira, J. R. (2015). Ribosome profiling reveals translation control as a key mechanism generating differential gene expression in Trypanosoma cruzi. BMC Genomics, 16, 443.
- Sonenberg, N., & Hinnebusch, A. (2009). Regulation of translation initiation in eukaryotes: Mechanisms and biological targets. Cell, 136, 731–745.
- Souza, W. (2009). Structural organization of Trypanosoma cruzi. Memórias do Instituto Oswaldo Cruz, 104(Suppl 1), 89–100.
- Suzuki, E., Tanaka, A. K., Toledo, M. S., Takahashi, H. K., & Straus, A. H. (2002). Role of beta-D-galactofuranose in Leishmania major macrophage invasion. Infection and Immunity, 70, 6592–6596.
- Suzuki, E., Toledo, M. S., Takahashi, H. K., & Straus, A. H. (1997). A monoclonal antibody directed to terminal residue of beta-galactofuranose of a glycolipid antigen isolated from Paracoccidioides brasiliensis: Cross-reactivity with Leishmania major and Trypanosoma cruzi. Glycobiology, 7, 463–468.
- Teixeira, M. M. G., & Yoshida, N. (1986). Stage-specific surface antigens of metacyclic trypomastigotes of Trypanosoma cruzi identified by monoclonal antibodies. Molecular and Biochemical Parasitology, 18, 271–282.
- Tonelli, R. R., Augusto, L.d. S., Castilho, B. A., & Schenkman, S. (2011). Protein synthesis attenuation by phosphorylation of eIF2alpha is required for the differentiation of Trypanosoma cruzi into infective forms. PLoS One, 6, e27094.
- Tyanova, S., Temu, T., Sinitcyn, P., Carlson, A., Hein, M. Y., Geiger, T., … Cox, J. (2016). The Perseus computational platform for comprehensive analysis of (prote)omics data. Nature Methods, 13, 731–740.
- Umaer, K., & Williams, N. (2015). Kinetoplastid specific RNA-protein interactions in Trypanosoma cruzi ribosome biogenesis. PLoS One, 10, e0131323.
- Vizcaino, J. A., Csordas, A., Del-Toro, N., Dianes, J. A., Griss, J., Lavidas, I., … Hermjakob, H. (2016). 2016 update of the PRIDE database and its related tools. Nucleic Acids Research, 44, 11033.
- Yoshida, N., Blanco, S. A., Araguth, M. F., Russo, M., & Gonzalez, J. (1990). The stage-specific 90-kilodalton surface antigen of metacyclic trypomastigotes of Trypanosoma cruzi. Molecular and Biochemical Parasitology, 39, 39–46.
- Zhang, M., Joyce, B. R., Sullivan, W. J., Jr., & Nussenzweig, V. (2013). Translational control in Plasmodium and Toxoplasma parasites. Eukaryotic Cell, 12, 161–167.
- Zinoviev, A., & Shapira, M. (2012). Evolutionary conservation and diversification of the translation initiation apparatus in trypanosomatids. Comparative and Functional Genomics, 2012, 813718.